Eating Disorders, Heredity and Environmental Activation: Getting Epigenetic Concepts into Practice
Abstract
:1. Introduction
2. What are Eating Disorders (EDs)?
3. Etiology
3.1. Heredity
3.2. Genetics
4. Genes and Environmental Activation
Epigenetic Processes
Environments of Concern
The Prenatal Environment
The Childhood Environment
The Nutritional Environment
5. Findings on DNA Methylation in People with EDs
5.1. Methylation Studies in Candidate Genes
5.2. Global Methylation Level Studies
5.3. Epigenome-Wide Methylation Studies
6. Clinical Applications
- They blame affected individuals less. Since the causes of EDs are increasingly understood to involve the activation of real physical susceptibilities by real environmental exposures, it becomes possible to trace with patients the sequence of life events (that may include perinatal insults, childhood adversities, school-related stresses and, invariably, the effects of prolonged caloric restraint) that served to activate inherited susceptibilities toward ED development. Likewise, because they take into account multiple causal factors (and complex interactions among them), informed models do less “finger pointing” at parents and other caregivers. It is never a single event or action (e.g., parents’ divorce, or a care-taker’s depressive episode) that caused someone’s ED.
- They help promote greater self-acceptance. Clinical experience dictates that a common “symptom” of an ED is shame. People invariably feel stupid to have developed their disorder, weak to not yet have overcome it, and guilty for the distress their disorder causes relatives and friends. When with someone experiencing shame around his/her ED, and speaking from an epigenetically informed understanding, we might often say something like: “You didn’t ask to have an ED. At the end of the day, when you fully understand why you developed this disorder, you won’t have to feel ashamed. You’ll just say, ‘I see why I got an ED’”. This stance on therapists’ part, when sincere, helps promote self-acceptance in people who are prone instead to self-disparagement. Likewise, especially when afflicted by an ED after several rounds of therapy, or decades of suffering, it is natural for affected people to feel inadequate, and perhaps deserving of messages they may have received from uninformed carers or therapists that “you aren’t trying hard enough” or “You’re choosing to keep your ED”. Findings from the epigenetic literature suggest that chronic exposure to malnutrition and dietary distress amplify psychological tendencies (e.g., compulsivity, anxiety) and metabolic adaptations (e.g., altered lipid metabolism) that help “lock” the ED into place. The difficulty one may experience in recovering from an ED becomes understood, not as an index of character weakness or obstinacy, but of the extent to which biological processes anchor symptoms and behaviors into place.
- They help patients (and therapists) accept “incremental response.” Epigenetic data in AN suggest that there are many disorder-induced alterations in the expression of genes that affect mental status, metabolism, and immune/inflammatory processes—and that such alterations become more pronounced with increasing chronicity of illness (see [71,74]). It is likely that these same factors need to be “reset” before someone affected can take back control. Encouragingly, some findings show that nutritional rehabilitation does help undo problematic changes—but it remains unclear over what span of time such alterations take place.
- They assign proper importance to nutritional factors. It is clear that malnutrition and dietary distress amplify physical and psychological problems in ED patients, and help lock the disorder into place. Various recent findings suggest that epigenetic processes may contribute to ED entrenchment through nutritionally-induced alterations in gene expression [71,72,74]. An implicit message is that: ”Your ED was triggered by too much caloric restraint and, logically, recovery will depend upon re-establishing a healthy nutritional state”. Although further research is required to establish parameters, a related concern may help moderate messages aimed at preventing obesity that encourage dietary restraint.
- They help separate the person affected from his/her illness. “Externalizing the illness” is an explicit operation in family-based treatment approaches [78], and an implicit one in Cognitive Behavioral Therapy [79] and other established ED treatments. Recognizing that one is separate from one’s disorder (and the behaviors that it drives) helps affected people overcome shame, and increases empathy on the part of family members, partners, and friends. A genetically/epigenetically informed model implicitly separates individuals from the factors that caused and perpetuate their illnesses—in the sense that the model makes explicit the point that EDs represent the activation of heritable physical susceptibilities by real-life experiences. We often say: “You did not ask to have this disorder. You are responsible for repairing the damage and recovering, but not for what caused the illness in the first place”. In a related vein, because of its ego-syntonic nature, people with AN sometimes identify positively with their disorder, or assume it as an identity. We believe that an epigenetically informed perspective helps counteract such tendencies. It helps people affected by the disorder recognize that “you are not ‘an anorexic’. Rather, you are someone in whom a vulnerability has been switched on by too much dieting. And the effect is that restricting food intake feels good in a bit the same way that abusing drugs feels good to a person with an addiction.”
Author Contributions
Funding
Conflicts of Interest
References
- Gordon, R. Eating Disorders: Anatomy of a Social Epidemic, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2000. [Google Scholar]
- Minuchin, S.; Baker, L.; Rosman, B.L.; Liebman, R.; Milman, L.; Todd, T.C. A conceptual model of psychosomatic illness in children. Family organization and family therapy. Arch. Gen. Psychiatry 1975, 32, 1031–1038. [Google Scholar] [CrossRef]
- Himmerich, H.; Bentley, J.; Kan, C.; Treasure, J. Genetic risk factors for eating disorders: An update and insights into pathophysiology. Ther. Adv. Psychopharmacol. 2019, 9. [Google Scholar] [CrossRef]
- Hubel, C.; Marzi, S.J.; Breen, G.; Bulik, C.M. Epigenetics in eating disorders: A systematic review. Mol. Psychiatry 2019, 24, 901–915. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Arcelus, J.; Mitchell, A.J.; Wales, J.; Nielsen, S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch. Gen. Psychiatry 2011, 68, 724–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigel, A.; Konig, H.H.; Gumz, A.; Lowe, B.; Brettschneider, C. Correlates of health related quality of life in anorexia nervosa. Int. J. Eat. Disord. 2016, 49, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.; Thornton, L.M.; Root, T.L.; Pinheiro, A.P.; Strober, M.; Brandt, H.; Crawford, S.; Crow, S.; Fichter, M.M.; Halmi, K.A.; et al. Life beyond the eating disorder: Education, relationships, and reproduction. Int. J. Eat. Disord. 2011, 44, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Wentz, E.; Gillberg, I.C.; Anckarsater, H.; Gillberg, C.; Rastam, M. Adolescent-onset anorexia nervosa: 18-year outcome. Br. J. Psychiatry 2009, 194, 168–174. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.A.; Chiu, W.T.; Deitz, A.C.; Hudson, J.I.; Shahly, V.; Aguilar-Gaxiola, S.; Alonso, J.; Angermeyer, M.C.; Benjet, C.; et al. The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol. Psychiatry 2013, 73, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Steiger, H.; Coelho, J.; Thaler, L.; Van den Eynde, F. Eating disorders. In Oxford Textbook of Psychopathology; Blaney, P., Krueger, R., Millon, T., Eds.; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Striegel-Moore, R.H.; Bulik, C.M. Risk factors for eating disorders. Am. Psychol. 2007, 62, 181–198. [Google Scholar] [CrossRef]
- Strober, M.; Freeman, R.; Lampert, C.; Diamond, J.; Kaye, W. Controlled family study of anorexia nervosa and bulimia nervosa: Evidence of shared liability and transmission of partial syndromes. Am. J. Psychiatry 2000, 157, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Klump, K.L.; Suisman, J.L.; Burt, S.A.; McGue, M.; Iacono, W.G. Genetic and environmental influences on disordered eating: An adoption study. J. Abnorm. Psychol. 2009, 118, 797–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, T.C.; Bulik, C.M. Genetic Influences on Eating Disorders. In The Oxford Handbook of Eating Disorders; Agras, W.S., Robinson, A., Eds.; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Calati, R.; De Ronchi, D.; Bellini, M.; Serretti, A. The 5-HTTLPR polymorphism and eating disorders: A meta-analysis. Int. J. Eat. Disord. 2011, 44, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ceccarini, M.R.; Tasegian, A.; Franzago, M.; Patria, F.F.; Albi, E.; Codini, M.; Conte, C.; Bertelli, M.; Dalla Ragione, L.; Stuppia, L.; et al. 5-HT2AR and BDNF gene variants in eating disorders susceptibility. Am. J. Med. Genet. B NeuroPsychiatr. Genet. 2019, 183, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Naessen, S.; Dahlman, I.; Linden Hirschberg, A.; Gustafsson, J.A.; Dahlman-Wright, K. Association of estrogen receptor beta gene polymorphisms with bulimic disease in women. Mol. Psychiatry 2004, 9, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, T.D.; Tschop, M.H.; Jarick, I.; Ehrlich, S.; Scherag, S.; Herpertz-Dahlmann, B.; Zipfel, S.; Herzog, W.; de Zwaan, M.; Burghardt, R.; et al. Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. J. Psychiatr. Res. 2011, 45, 706–711. [Google Scholar] [CrossRef]
- Baker, J.H.; Schaumberg, K.; Munn-Chernoff, M.A. Genetics of anorexia nervosa. Curr. Psychiatry Rep. 2017, 19, 84. [Google Scholar] [CrossRef]
- Boraska, V.; Franklin, C.S.; Floyd, J.A.; Thornton, L.M.; Huckins, L.M.; Southam, L.; Rayner, N.W.; Tachmazidou, I.; Klump, K.L.; Treasure, J.; et al. A genome-wide association study of anorexia nervosa. Mol. Psychiatry 2014, 19, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Huckins, L.M.; Hatzikotoulas, K.; Southam, L.; Thornton, L.M.; Steinberg, J.; Aguilera-McKay, F.; Treasure, J.; Schmidt, U.; Gunasinghe, C.; Romero, A.; et al. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa. Mol. Psychiatry 2018, 23, 1169–1180. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, H.; Bloss, C.S.; Duvvuri, V.; Kaye, W.; Schork, N.J.; Berrettini, W.; Hakonarson, H.; Price Foundation Collaborative, G. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol. Psychiatry 2011, 16, 949–959. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chang, X.; Connolly, J.J.; Tian, L.; Liu, Y.; Bhoj, E.J.; Robinson, N.; Abrams, D.; Li, Y.R.; Bradfield, J.P.; et al. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling. Sci. Rep. 2017, 7, 3847. [Google Scholar] [CrossRef] [Green Version]
- Duncan, L.; Yilmaz, Z.; Gaspar, H.; Walters, R.; Goldstein, J.; Anttila, V.; Bulik-Sullivan, B.; Ripke, S.; Eating Disorders Working Group of the Psychiatric Genomics; Thornton, L.; et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 2017, 174, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Zerwas, S.; Larsen, J.T.; Petersen, L.; Thornton, L.M.; Quaranta, M.; Koch, S.V.; Pisetsky, D.; Mortensen, P.B.; Bulik, C.M. Eating disorders, autoimmune, and autoinflammatory disease. Pediatrics 2017, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, H.J.; Yilmaz, Z.; Thornton, L.M.; Hubel, C.; Coleman, J.R.I.; Gaspar, H.A.; Bryois, J.; Hinney, A.; Leppa, V.M.; Mattheisen, M.; et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 2019, 51, 1207–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madra, M.; Zeltser, L.M. BDNF-Val66Met variant and adolescent stress interact to promote susceptibility to anorexic behavior in mice. Transl. Psychiatry 2016, 6, e776. [Google Scholar] [CrossRef] [Green Version]
- Karwautz, A.F.; Wagner, G.; Waldherr, K.; Nader, I.W.; Fernandez-Aranda, F.; Estivill, X.; Holliday, J.; Collier, D.A.; Treasure, J.L. Gene-environment interaction in anorexia nervosa: Relevance of non-shared environment and the serotonin transporter gene. Mol. Psychiatry 2011, 16, 590–592. [Google Scholar] [CrossRef]
- Steiger, H.; Thaler, L. Eating disorders, gene-environment interactions and the epigenome: Roles of stress exposures and nutritional status. Physiol. Behav. 2016, 162, 181–185. [Google Scholar] [CrossRef]
- Szyf, M. DNA methylation, behavior and early life adversity. J. Genet. Genom. 2013, 40, 331–338. [Google Scholar] [CrossRef]
- Szyf, M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur. Neuropsychopharmacol. 2015, 25, 682–702. [Google Scholar] [CrossRef]
- Cecil, C.A.M.; Zhang, Y.; Nolte, T. Childhood maltreatment and DNA methylation: A systematic review. NeuroSci. BioBehav. Rev. 2020, 112, 392–409. [Google Scholar] [CrossRef]
- Tobi, E.W.; Goeman, J.J.; Monajemi, R.; Gu, H.; Putter, H.; Zhang, Y.; Slieker, R.C.; Stok, A.P.; Thijssen, P.E.; Muller, F.; et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat. Commun. 2014, 5, 5592. [Google Scholar] [CrossRef] [Green Version]
- Nemoda, Z.; Szyf, M. Epigenetic alterations and prenatal maternal depression. Birth Defects Res. 2017, 109, 888–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, A.; Lahti, J.; Czamara, D.; Lahti-Pulkkinen, M.; Knight, A.K.; Girchenko, P.; Hamalainen, E.; Kajantie, E.; Lipsanen, J.; Laivuori, H.; et al. The epigenetic clock at birth: Associations with maternal antenatal depression and child psychiatric problems. J. Am. Acad Child. Adolesc. Psychiatry 2018, 57, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcho, C.; Oluwayiose, O.A.; Pilsner, J.R. The preconception environment and sperm epigenetics. Andrology 2020. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.; Nugent, B.M.; Bale, T.L. Parental advisory: Maternal and paternal stress can impact offspring neurodevelopment. Biol. Psychiatry 2018, 83, 886–894. [Google Scholar] [CrossRef]
- Noor, N.; Cardenas, A.; Rifas-Shiman, S.L.; Pan, H.; Dreyfuss, J.M.; Oken, E.; Hivert, M.F.; James-Todd, T.; Patti, M.E.; Isganaitis, E. Association of periconception paternal body mass index with persistent changes in DNA methylation of offspring in childhood. JAMA Netw. Open 2019, 2. [Google Scholar] [CrossRef]
- St-Hilaire, A.; Steiger, H.; Liu, A.; Laplante, D.P.; Thaler, L.; Magill, T.; King, S. A prospective study of effects of prenatal maternal stress on later eating-disorder manifestations in affected offspring: Preliminary indications based on the Project Ice Storm cohort. Int. J. Eat. Disord. 2015, 48, 512–516. [Google Scholar] [CrossRef]
- Cao-Lei, L.; Dancause, K.N.; Elgbeili, G.; Massart, R.; Szyf, M.; Liu, A.; Laplante, D.P.; King, S. DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13(1/2) years: Project Ice Storm. Epigenetics 2015, 10, 749–761. [Google Scholar] [CrossRef]
- Kazmi, N.; Gaunt, T.R.; Relton, C.; Micali, N. Maternal eating disorders affect offspring cord blood DNA methylation: A prospective study. Clin. Epigenet. 2017, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Weaver, I.C.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. NeuroSci. 2004, 7, 847–854. [Google Scholar] [CrossRef]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonte, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. NeuroSci. 2009, 12, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Roth, T.L.; Sweatt, J.D. Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm. Behav. 2011, 59, 315–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suderman, M.; McGowan, P.O.; Sasaki, A.; Huang, T.C.; Hallett, M.T.; Meaney, M.J.; Turecki, G.; Szyf, M. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc. Natl. Acad. Sci. USA 2012, 109, 17266–17272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, L., Jr.; Shutman, E.; Chinaka, C.; Deepika, K.; Pelaez, L.; Dabney, K.W. Aberrant epigenomic modulation of glucocorticoid receptor gene (NR3C1) in early life stress and major depressive disorder correlation: Systematic review and quantitative evidence synthesis. Int. J. Environ. Res. Public Health 2019, 16, 4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawahar, M.C.; Murgatroyd, C.; Harrison, E.L.; Baune, B.T. Epigenetic alterations following early postnatal stress: A review on novel aetiological mechanisms of common psychiatric disorders. Clin. Epigenet. 2015, 7, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Lee, Y.; Cao, B.; Zuckerman, H.; Kalantarova, A.; McIntyre, R.S. Stress, epigenetics and depression: A systematic review. NeuroSci. BioBehav. Rev. 2019, 102, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, A.; Roszkowski, M.; Mansuy, I.M. Transgenerational epigenetics of traumatic stress. Prog. Mol. Biol. Transl. Sci. 2018, 158, 273–298. [Google Scholar] [CrossRef]
- Watkeys, O.J.; Kremerskothen, K.; Quide, Y.; Fullerton, J.M.; Green, M.J. Glucocorticoid receptor gene (NR3C1) DNA methylation in association with trauma, psychopathology, transcript expression, or genotypic variation: A systematic review. NeuroSci. BioBehav. Rev. 2018, 95, 85–122. [Google Scholar] [CrossRef]
- Steiger, H.; Labonte, B.; Groleau, P.; Turecki, G.; Israel, M. Methylation of the glucocorticoid receptor gene promoter in bulimic women: Associations with borderline personality disorder, suicidality, and exposure to childhood abuse. Int. J. Eat. Disord. 2013, 46, 246–255. [Google Scholar] [CrossRef]
- Thaler, L.; Gauvin, L.; Joober, R.; Groleau, P.; de Guzman, R.; Ambalavanan, A.; Israel, M.; Wilson, S.; Steiger, H. Methylation of BDNF in women with bulimic eating syndromes: Associations with childhood abuse and borderline personality disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 54, 43–49. [Google Scholar] [CrossRef]
- Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry 2020. [Google Scholar] [CrossRef]
- Groleau, P.; Joober, R.; Israel, M.; Zeramdini, N.; DeGuzman, R.; Steiger, H. Methylation of the dopamine D2 receptor (DRD2) gene promoter in women with a bulimia-spectrum disorder: Associations with borderline personality disorder and exposure to childhood abuse. J. Psychiatr. Res. 2014, 48, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Amenyah, S.D.; Hughes, C.F.; Ward, M.; Rosborough, S.; Deane, J.; Thursby, S.-J.; Walsh, C.P.; Kok, D.E.; Strain, J.J.; McNulty, H.; et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults—a systematic review and meta-analysis. Nutr. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- McGarel, C.; Pentieva, K.; Strain, J.J.; McNulty, H. Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc. Nutr. Soc. 2015, 74, 46–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, A.J.; Rucklidge, J.J.; Kennedy, M.A. Epigenetics, nutrition and mental health. Is there a relationship? Nutr. NeuroSci. 2018, 21, 602–613. [Google Scholar] [CrossRef]
- Burdo, J.; Booij, L.; Kahan, E.; McGregor, K.; Greenlaw, K.; Agellon, L.B.; Thaler, L.; Labbe, A.; Israël, M.; Wykes, L.; et al. Association between plasma nutrient levels and methylation of selected genomic probes in women with anorexia nervosa. In Proceedings of the International Conference on Eating Disorders, New York, NY, USA, 15 March 2019. [Google Scholar]
- Frieling, H.; Gozner, A.; Romer, K.D.; Lenz, B.; Bonsch, D.; Wilhelm, J.; Hillemacher, T.; de Zwaan, M.; Kornhuber, J.; Bleich, S. Global DNA hypomethylation and DNA hypermethylation of the alpha synuclein promoter in females with anorexia nervosa. Mol. Psychiatry 2007, 12, 229–230. [Google Scholar] [CrossRef] [Green Version]
- Frieling, H.; Römer, K.D.; Scholz, S.; Mittelbach, F.; Wilhelm, J.; De Zwaan, M.; Jacoby, G.E.; Kornhuber, J.; Hillemacher, T.; Bleich, S. Epigenetic dysregulation of dopaminergic genes in eating disorders. Int. J. Eat. Disord. 2010, 43, 577–583. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Kim, J.-H.; Kim, M.J.; Treasure, J. Differential methylation of the oxytocin receptor gene in patients with anorexia nervosa: A pilot study. PLoS ONE 2014, 9, e88673. [Google Scholar] [CrossRef] [Green Version]
- Thaler, L.; Brassard, S.; Booij, L.; Kahan, E.; McGregor, K.; Labbe, A.; Israel, M.; Steiger, H. Methylation of the OXTR gene in women with anorexia nervosa: Relationship to social behavior. Eur. Eat. Disord. Rev. 2020, 28, 79–86. [Google Scholar] [CrossRef]
- Subramanian, S.; Braun, P.R.; Han, S.; Potash, J.B. Investigation of differential HDAC4 methylation patterns in eating disorders. Psychiatr. Genet. 2018, 28, 12–15. [Google Scholar] [CrossRef]
- Neyazi, A.; Buchholz, V.; Burkert, A.; Hillemacher, T.; de Zwaan, M.; Herzog, W.; Jahn, K.; Giel, K.; Herpertz, S.; Buchholz, C.A.; et al. Association of leptin gene DNA methylation with diagnosis and treatment outcome of anorexia nervosa. Front. Psychiatry 2019, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Boehm, I.; Walton, E.; Alexander, N.; Batury, V.L.; Seidel, M.; Geisler, D.; King, J.A.; Weidner, K.; Roessner, V.; Ehrlich, S. Peripheral serotonin transporter DNA methylation is linked to increased salience network connectivity in females with anorexia nervosa. J. Psychiatry NeuroSci. 2019, 45, 190016. [Google Scholar] [CrossRef]
- Frieling, H.; Bleich, S.; Otten, J.; Romer, K.D.; Kornhuber, J.; de Zwaan, M.; Jacoby, G.E.; Wilhelm, J.; Hillemacher, T. Epigenetic downregulation of atrial natriuretic peptide but not vasopressin mRNA expression in females with eating disorders is related to impulsivity. Neuropsychopharmacology 2008, 33, 2605–2609. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.F.; Choi, Y.; Ayers-Ringler, J.R.; Biernacka, J.M.; Geske, J.R.; Lindberg, D.R.; McElroy, S.L.; Frye, M.A.; Choi, D.S.; Veldic, M. Differential SLC1A2 promoter methylation in bipolar disorder with or without addiction. Front. Cell NeuroSci. 2017, 11, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saffrey, R.; Novakovic, B.; Wade, T.D. Assessing global and gene specific DNA methylation in anorexia nervosa: A pilot study. Int. J. Eat. Disord. 2014, 47, 206–210. [Google Scholar] [CrossRef]
- Tremolizzo, L.; Conti, E.; Bomba, M.; Uccellini, O.; Rossi, M.S.; Marfone, M.; Corbetta, F.; Santarone, M.E.; Raggi, M.E.; Neri, F.; et al. Decreased whole-blood global DNA methylation is related to serum hormones in anorexia nervosa adolescents. World J. Biol. Psychiatry 2014, 15, 327–333. [Google Scholar] [CrossRef]
- Booij, L.; Casey, K.F.; Antunes, J.M.; Szyf, M.; Joober, R.; Israel, M.; Steiger, H. DNA methylation in individuals with anorexia nervosa and in matched normal-eater controls: A genome-wide study. Int. J. Eat. Disord. 2015, 48, 874–882. [Google Scholar] [CrossRef]
- Kesselmeier, M.; Putter, C.; Volckmar, A.L.; Baurecht, H.; Grallert, H.; Illig, T.; Ismail, K.; Ollikainen, M.; Silen, Y.; Keski-Rahkonen, A.; et al. High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation. World J. Biol. Psychiatry 2018, 19, 187–199. [Google Scholar] [CrossRef]
- Lee, M.; Strand, M. Ehlers-Danlos syndrome in a young woman with anorexia nervosa and complex somatic symptoms. Int. J. Eat. Disord. 2018, 51, 281–284. [Google Scholar] [CrossRef]
- Steiger, H.; Booij, L.; Kahan, E.; McGregor, K.; Thaler, L.; Fletcher, E.; Labbe, A.; Joober, R.; Israel, M.; Szyf, M.; et al. A longitudinal, epigenome-wide study of DNA methylation in anorexia nervosa: Results in actively ill, partially weight-restored, long-term remitted and non-eating-disordered women. J. Psychiatry NeuroSci. 2019, 44, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Farrell, N.R.; Lee, A.A.; Deacon, B.J. Biological or psychological? Effects of eating disorder psychoeducation on self-blame and recovery expectations among symptomatic individuals. Behav. Res. Ther. 2015, 74, 32–37. [Google Scholar] [CrossRef]
- Bulik, C.M.; Blake, L.; Austin, J. Genetics of eating disorders: What the clinician needs to know. Psychiatr. Clin. North. Am. 2019, 42, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Semaka, A.; Austin, J. Patient perspectives on the process and outcomes of psychiatric genetic counseling: An “empowering encounter”. J. Genet. Couns 2019, 28, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Lock, J.; Le Grange, D. Treatment Manual for Anorexia Nervosa, 2nd ed.; Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- Fairburn, C.G. Cognitive Behavior Therapy and Eating Disorders; Guilford Press: New York, NY, USA, 2008. [Google Scholar]
- Steiger, H. Evidence-informed practices in the real-world treatment of people with eating disorders. Eat. Disord. 2017, 25, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiger, H.; Sansfacon, J.; Thaler, L.; Leonard, N.; Cottier, D.; Kahan, E.; Fletcher, E.; Rossi, E.; Israel, M.; Gauvin, L. Autonomy support and autonomous motivation in the outpatient treatment of adults with an eating disorder. Int. J. Eat. Disord. 2017, 50, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiger, H.; Booij, L. Eating Disorders, Heredity and Environmental Activation: Getting Epigenetic Concepts into Practice. J. Clin. Med. 2020, 9, 1332. https://doi.org/10.3390/jcm9051332
Steiger H, Booij L. Eating Disorders, Heredity and Environmental Activation: Getting Epigenetic Concepts into Practice. Journal of Clinical Medicine. 2020; 9(5):1332. https://doi.org/10.3390/jcm9051332
Chicago/Turabian StyleSteiger, Howard, and Linda Booij. 2020. "Eating Disorders, Heredity and Environmental Activation: Getting Epigenetic Concepts into Practice" Journal of Clinical Medicine 9, no. 5: 1332. https://doi.org/10.3390/jcm9051332