Baseline Cognitive Performance Moderates the Effects of Physical Activity on Executive Functions in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Tasks
2.2.1. Modified Flanker Task
2.2.2. Color-Shape Switch Task
2.2.3. Modified Sternberg Task
2.2.4. Modified Stroop Task
2.3. Statistical Analysis
3. Results
3.1. Main Analysis
3.2. EF Difference Score Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamijo, K.; McGowan, A.L.; Pontifex, M.B. Effects of physical activity on cognition in children and adolescents. In APA Handbook of Sport and Exercise Psychology; American Psychological Association: Washington, DC, USA, 2019; Volume 2, pp. 331–343. [Google Scholar]
- Cho, S.-Y.; So, W.-Y.; Roh, H.-T. The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2017, 14, 454. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, D.J.; Krafft, C.E.; Schwarz, N.F.; Chi, L.; Rodrigue, A.L.; Pierce, J.E.; Allison, J.D.; Yanasak, N.E.; Liu, T.; Davis, C.L.; et al. An 8-month exercise intervention alters frontotemporal white matter integrity in overweight children. Psychophysiology 2014, 51, 728–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drollette, E.S.; Pontifex, M.B.; Raine, L.B.; Scudder, M.R.; Moore, R.D.; Kao, S.-C.; Westfall, D.R.; Wu, C.-T.; Kamijo, K.; Castelli, D.M.; et al. Effects of the FITKids physical activity randomized controlled trial on conflict monitoring in youth. Psychophysiology 2018, 55, e13017. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids Randomized Controlled Trial on Executive Control and Brain Function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, K.; Pontifex, M.B.; O’Leary, K.C.; Scudder, M.R.; Wu, C.-T.; Castelli, D.M.; Hillman, C.H. The effects of an afterschool physical activity program on working memory in preadolescent children: Fitness and working memory in children. Dev. Sci. 2011, 14, 1046–1058. [Google Scholar] [CrossRef] [Green Version]
- Ludyga, S.; Gerber, M.; Herrmann, C.; Brand, S.; Pühse, U. Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends Neurosci. Educ. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Schmidt, M.; Jäger, K.; Egger, F.; Roebers, C.M.; Conzelmann, A. Cognitively Engaging Chronic Physical Activity, but Not Aerobic Exercise, Affects Executive Functions in Primary School Children: A Group-Randomized Controlled Trial. J. Sport Exerc. Psychol. 2015, 37, 575–591. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Zelazo, P.D. Executive function: Reflection, iterative reprocessing, complexity, and the developing brain. Dev. Rev. 2015, 38, 55–68. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 2011, 21, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckworth, A.L.; Seligman, M.E.P. Self-discipline outdoes IQ in predicting academic performance of adolescents. Psychol. Sci. 2005, 16, 939–944. [Google Scholar] [CrossRef]
- de Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Resaland, G.K.; Aadland, E.; Moe, V.F.; Aadland, K.N.; Skrede, T.; Stavnsbo, M.; Suominen, L.; Steene-Johannessen, J.; Glosvik, Ø.; Andersen, J.R.; et al. Effects of physical activity on schoolchildren’s academic performance: The Active Smarter Kids (ASK) cluster-randomized controlled trial. Prev. Med. 2016, 91, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartee, R.T.; Heelan, K.A.; Dority, B.L. Longitudinal Evaluation of Aerobic Fitness and Academic Achievement Among Schoolchildren. J. Sch. Health 2018, 88, 644–650. [Google Scholar] [CrossRef]
- Drollette, E.S.; Scudder, M.R.; Raine, L.B.; Moore, R.D.; Saliba, B.J.; Pontifex, M.B.; Hillman, C.H. Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Dev. Cogn. Neurosci. 2014, 7, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Sato, D.; Yamashiro, K.; Tsubaki, A.; Takehara, N.; Uetake, Y.; Nakano, S.; Maruyama, A. Inter-individual differences in working memory improvement after acute mild and moderate aerobic exercise. PLoS ONE 2018, 13, e0210053. [Google Scholar] [CrossRef]
- Mezzacappa, E. Alerting, orienting, and executive attention: Developmental properties and sociodemographic correlates in an epidemiological sample of young, urban children. Child. Dev. 2004, 75, 1373–1386. [Google Scholar] [CrossRef]
- Ishihara, T.; Mizuno, M. Effects of tennis play on executive function in 6–11-year-old children: A 12-month longitudinal study. Eur. J. Sport Sci. 2018, 18, 741–752. [Google Scholar] [CrossRef]
- Colcombe, S.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef]
- Brookes, S.T.; Whitely, E.; Egger, M.; Smith, G.D.; Mulheran, P.A.; Peters, T.J. Subgroup analyses in randomized trials: Risks of subgroup-specific analyses: Power and sample size for the interaction test. J. Clin. Epidemiol. 2004, 57, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Espy, K.A. The shape school: Assessing executive function in preschool children. Dev. Neuropsychol. 1997, 13, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Kray, J.; Lindenberger, U. Adult age differences in task switching. Psychol. Aging 2000, 15, 126–147. [Google Scholar] [CrossRef]
- Rogers, R.D.; Monsell, S. Costs of a predictible switch between simple cognitive tasks. J. Exp. Psychol. Gen. 1995, 124, 207–231. [Google Scholar] [CrossRef]
- Sternberg, S. High-speed scanning in human memory. Science 1966, 153, 652–654. [Google Scholar] [CrossRef] [Green Version]
- Stroop, J.R. Studies of Interference in Serial Verbal Reactions. J. Exp. Psychol. 1935, 18, 643. [Google Scholar] [CrossRef]
- Johnson, P.O.; Neyman, J. Tests of certain linear hypotheses and their application to some educational problems. Stat. Res. Mem. 1936, 1, 57–93. [Google Scholar]
- Chaddock-Heyman, L.; Erickson, K.I.; Voss, M.W.; Knecht, A.M.; Pontifex, M.B.; Castelli, D.M.; Hillman, C.H.; Kramer, A.F. The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Front. Hum. Neurosci. 2013, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziereis, S.; Jansen, P. Effects of physical activity on executive function and motor performance in children with ADHD. Res. Dev. Disabil. 2015, 38, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Gogtay, N.; Giedd, J.N.; Lusk, L.; Hayashi, K.M.; Greenstein, D.; Vaituzis, A.C.; Nugent, T.F.; Herman, D.H.; Clasen, L.S.; Toga, A.W.; et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA 2004, 101, 8174–8179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, K.L.; Goddings, A.-L.; Clasen, L.S.; Giedd, J.N.; Blakemore, S.-J. The Developmental Mismatch in Structural Brain Maturation during Adolescence. Dev. Neurosci. 2014, 36, 147–160. [Google Scholar] [CrossRef] [PubMed]
Trial | N | Age | Intervention | Task | Main Findings |
---|---|---|---|---|---|
Hillman et al., 2014 | Control: 112 Intervention: 109 | Control: 9 years old Intervention: 9 years old | Control: Waitlist (no intervention) Intervention: 9 months, 5 days/week, 120 min, 70+ min of moderate-to-vigorous PA | Flanker task Lower-EF: congruent Higher-EF: incongruent | PA intervention improved cognitive performance across the congruent and incongruent conditions (i.e., general effects |
Color-shape switch task Lower-EF: homogeneous Higher-EF: heterogeneous | PA intervention improved cognitive performance in the heterogeneous condition to a greater extent than in the homogeneous condition (i.e., disproportionate effects). | ||||
Kamijo et al., 2011 | Control: 16 Intervention: 20 | Control: 9 years old Intervention: 9 years old | Control: Waitlist (no intervention) Intervention: 9 months, 5 days/week, 120 min, 70+ min of moderate-to-vigorous PA | Sternberg task Lower-EF: one letter Higher-EF: five letters | PA intervention improved cognitive performance in the five letters condition to a greater extent than in the one letter condition (i.e., disproportionate effects). |
Ludyga et al., 2018 | Control: 16 Intervention: 19 | Control: 12 years old Intervention: 13 years old | Control: 8 weeks, 5 days/week, 20 min of social interaction Intervention: 8 weeks, 5 days/week, 20 min of moderate PA | Stroop task Lower-EF: congruent Higher-EF: incongruent | PA intervention improved cognitive performance across the congruent and incongruent conditions (i.e., general effects). |
Step 1 | Step 2 | |||
---|---|---|---|---|
Variables | β | 95% CI | β | 95% CI |
Group | 0.09 * | 0.04 to 0.15 | 0.09 * | 0.04 to 0.14 |
Baseline Performance | −0.57 * | −0.064 to −0.50 | −0.56 * | −0.63 to −0.48 |
Baseline Performance2 | 0.06 * | 0.002 to 0.13 | 0.10 * | 0.02 to 0.17 |
EF Condition | −0.17 * | −0.22 to −0.11 | −0.17 * | −0.23 to −0.11 |
Group × Baseline Performance | −0.07 * | −0.14 to −0.003 | ||
Group × Baseline Performance2 | 0.03 | −0.03 to 0.09 | ||
Group × EF Condition | −0.03 | −0.08 to 0.03 | ||
Baseline Performance × EF Condition | 0.07 * | 0.008 to 0.14 | ||
Baseline Performance2 × EF Condition | −0.003 | −0.08 to 0.07 | ||
ΔR2 | 0.33 * | 0.01 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishihara, T.; Drollette, E.S.; Ludyga, S.; Hillman, C.H.; Kamijo, K. Baseline Cognitive Performance Moderates the Effects of Physical Activity on Executive Functions in Children. J. Clin. Med. 2020, 9, 2071. https://doi.org/10.3390/jcm9072071
Ishihara T, Drollette ES, Ludyga S, Hillman CH, Kamijo K. Baseline Cognitive Performance Moderates the Effects of Physical Activity on Executive Functions in Children. Journal of Clinical Medicine. 2020; 9(7):2071. https://doi.org/10.3390/jcm9072071
Chicago/Turabian StyleIshihara, Toru, Eric S. Drollette, Sebastian Ludyga, Charles H. Hillman, and Keita Kamijo. 2020. "Baseline Cognitive Performance Moderates the Effects of Physical Activity on Executive Functions in Children" Journal of Clinical Medicine 9, no. 7: 2071. https://doi.org/10.3390/jcm9072071