Orthopaedic Surgery Elicits a Systemic Anti-Inflammatory Signature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population and Sample Procurement
2.2. Flow Cytometry
2.3. Multi-Analyte Microbead Array
2.4. Whole Blood Killing Assay
2.5. Peripheral Blood Mononuclear Cell (PBMC) Stimulation
2.6. Statistics
3. Results
3.1. Immune Alterations in the Peripheral Blood and Synovial Fluid of THA and TKA Patients
3.2. Effect of Spinal Arthroplasty on PBMC Responsiveness
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kremers, H.M.; Kremers, W.K.; Berry, D.J.; Lewallen, D.G. Social and Behavioral Factors in Total Knee and Hip Arthroplasty. J. Arthroplast. 2015, 30, 1852–1854. [Google Scholar] [CrossRef] [PubMed]
- Kremers, H.M.; Larson, D.R.; Crowson, C.S.; Kremers, W.K.; Washington, R.E.; Steiner, C.A.; Jiranek, W.A.; Berry, D.J. Prevalence of Total Hip and Knee Replacement in the United States. J. Bone Joint Surg. Am. 2015, 97, 1386–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Joint Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Rajaee, S.S.; Bae, H.W.; Kanim, L.E.A.; Delamarter, R.B. Spinal fusion in the United States: Analysis of trends from 1998 to 2008. Spine (Phila. Pa. 1976) 2012, 37, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery 2000, 127, 117–126. [Google Scholar] [CrossRef]
- Randau, T.; Friedrich, M.J.; Wimmer, M.D.; Reichert, B.; Kuberra, D.; Stoffel-Wagner, B.; Limmer, A.; Wirtz, D.C.; Gravius, S. Interleukin-6 in Serum and in Synovial Fluid Enhances the Differentiation between Periprosthetic Joint Infection and Aseptic Loosening. PLoS ONE 2014, 9, e89045. [Google Scholar] [CrossRef]
- Hogan, B.V.; Peter, M.B.; Shenoy, H.G.; Horgan, K.; Hughes, T.A. Surgery induced immunosuppression. Surgery 2011, 9, 38–43. [Google Scholar] [CrossRef]
- Van Dijk, W.C.; Verbrugh, H.A.; Van Rijswijk, R.E.; Vos, A.; Verhoef, J. Neutrophil function, serum opsonic activity, and delayed hypersensitivity in surgical patients. Surgery 1982, 92, 21–29. [Google Scholar]
- Chen, R.-M.; Wu, C.-H.; Chang, H.-C.; Wu, G.-J.; Lin, Y.-L.; Sheu, J.-R.; Chen, T.-L. Propofol Suppresses Macrophage Functions and Modulates Mitochondrial Membrane Potential and Cellular Adenosine Triphosphate Synthesis. Anesthesiology 2003, 98, 1178–1185. [Google Scholar] [CrossRef]
- Heim, C.E.; Vidlak, D.; Kielian, T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J. Leukoc. Boil. 2015, 98, 1003–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heim, C.E.; Vidlak, D.; Scherr, T.D.; Hartman, C.W.; Garvin, K.L.; Kielian, T. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during Staphylococcus aureus orthopedic implant infection. J. Immunol. 2015, 194, 3861–3872. [Google Scholar] [CrossRef] [Green Version]
- Heim, C.E.; Vidlak, D.; Scherr, T.D.; Kozel, J.A.; Holzapfel, M.; Muirhead, D.E.; Kielian, T. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J. Immunol. 2014, 192, 3778–3792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberger, P.H.; Ickovics, J.R.; Epel, E.; Nadler, E.; Jokl, P.; Fulkerson, J.P.; Tillie, J.M.; Dhabhar, F.S. Surgical Stress-Induced Immune Cell Redistribution Profiles Predict Short-Term and Long-Term Postsurgical Recovery. J. Bone Joint Surg. Am. 2009, 91, 2783–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoecklein, V.M.; Osuka, A.; Lederer, J.A. Trauma equals danger--damage control by the immune system. J. Leukoc. Boil. 2012, 92, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.E.; Vidlak, D.; Odvody, J.; Hartman, C.; Garvin, K.L.; Kielian, T. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence. J. Orthop. Res. 2017, 36, 1605–1613. [Google Scholar] [CrossRef] [Green Version]
- Thurlow, L.R.; Hanke, M.L.; Fritz, T.; Angle, A.; Aldrich, A.; Williams, S.H.; Engebretsen, I.L.; Bayles, K.W.; Horswill, A.R.; Kielian, T. Staphylococcus aureusBiofilms Prevent Macrophage Phagocytosis and Attenuate Inflammation In Vivo. J. Immunol. 2011, 186, 6585–6596. [Google Scholar] [CrossRef] [Green Version]
- Talmadge, J.E.; Gabrilovich, D.I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 2013, 13, 739–752. [Google Scholar] [CrossRef]
- Mukherjee, R.; Barman, P.K.; Thatoi, P.K.; Tripathy, R.; Das, B.K.; Ravindran, B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci. Rep. 2015, 5, 13886. [Google Scholar] [CrossRef] [Green Version]
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.M.; Liu, Y.-J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef]
- Clementsen, T.; Krohn, C.D.; Reikerås, O. Systemic and local cytokine patterns during total hip surgery. Scand. J. Clin. Lab. Investig. 2006, 66, 535–542. [Google Scholar] [CrossRef]
- Shah, K.; Mohammed, A.; Patil, S.; McFadyen, A.; Meek, R.M.D. Circulating Cytokines after Hip and Knee Arthroplasty: A Preliminary Study. Clin. Orthop. Relat. Res. 2008, 467, 946–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reikeras, O.; Borgen, P.O.; Reseland, J.E.; Lyngstadaas, S.P. Changes in serum cytokines in response to musculoskeletal surgical trauma. BMC Res. Notes 2014, 7, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, W.; Mindrinos, M.N.; Seok, J.; Cuschieri, J.; Cuenca, A.G.; Gao, H.; Hayden, D.L.; Hennessy, L.; Moore, E.E.; Minei, J.P.; et al. A genomic storm in critically injured humans. J. Exp. Med. 2011, 208, 2581–2590. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.; Güler, N.; Syed, D.; Hopkinson, W.; McComas, K.N.; Walborn, A.; Hoppensteadt, D.; Fareed, J.; Rondina, M.T.; Hopkins, W. Postoperative Changes in the Systemic Inflammatory Milieu in Older Surgical Patients. Clin. Appl. Thromb. 2017, 24, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Del Pozo, J.; Patel, R. Infection Associated with Prosthetic Joints. N. Engl. J. Med. 2009, 361, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Fang, A.; Hu, S.S.; Endres, N.; Bradford, D.S. Risk Factors for Infection After Spinal Surgery. Spine 2005, 30, 1460–1465. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Whitehouse, M.; Blom, A.W.; Beswick, A.D.; Team, I. Patient-Related Risk Factors for Periprosthetic Joint Infection after Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0150866. [Google Scholar] [CrossRef]
- Triantafyllopoulos, G.; Stundner, O.; Memtsoudis, S.; Poultsides, L.A. Patient, Surgery, and Hospital Related Risk Factors for Surgical Site Infections following Total Hip Arthroplasty. Sci. World J. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Gato, M.; Blanco-Luquin, I.; Zudaire, M.; Morentin, X.M.; Pérez-Valderrama, E.; Zabaleta, A.; Kochan, G.; Escors, D.; Fernández-Irigoyen, J.; Santamaría, E. Drafting the proteome landscape of myeloid-derived suppressor cells. Proteomics 2015, 16, 367–378. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Waight, J.D.; Hu, Q.; Miller, A.; Liu, S.; Abrams, S.I. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism. PLoS ONE 2011, 6, e27690. [Google Scholar] [CrossRef]
- Chakraborty, A.; Tweardyabc, D.J. Stat3 and G-CSF-Induced Myeloid Differentiation. Leuk. Lymphoma 1998, 30, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Wasko, M.K.; Struminski, M.; Bobecka, K.; Kowalczewski, J. Neutrophil-to-lymphocyte ratio shows faster changing kinetics than C-reactive protein after total hip and knee arthroplasty. J. Orthop. Transl. 2017, 10, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Gaudillière, B.; Fragiadakis, G.K.; Bruggner, R.V.; Nicolau, M.; Finck, R.; Tingle, M.; Silva, J.; Ganio, E.A.; Yeh, C.G.; Maloney, W.J.; et al. Clinical recovery from surgery correlates with single-cell immune signatures. Sci. Transl. Med. 2014, 6, 255ra131. [Google Scholar] [CrossRef] [Green Version]
- Katoh, N.; Nishino, J.; Nishimura, K.; Kawabata, C.; Hotta, Y.; Matsui, T.; Nakamura, S.; Matsushita, T. Normal sequential changes in neutrophil CD64 expression after total joint arthroplasty. J. Orthop. Sci. 2013, 18, 949–954. [Google Scholar] [CrossRef] [Green Version]
- Yombi, J.C.; Schwab, P.E.; Thienpont, E. Neutrophil-to-lymphocyte ratio (NLR) distribution shows a better kinetic pattern than C-reactive protein distribution for the follow-up of early inflammation after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2015, 24, 3287–3292. [Google Scholar] [CrossRef]
- Bossche, W.V.D.; Rykov, K.; Teodosio, C.; Have, B.L.T.; Knobben, B.A.; Sietsma, M.S.; Josiassen, K.; Versteeg, S.D.B.-; Orfao, A.; Van Dongen, J.J.; et al. Flow cytometric assessment of leukocyte kinetics for the monitoring of tissue damage. Clin. Immunol. 2018, 197, 224–230. [Google Scholar] [CrossRef]
- Langkilde, A.; Jakobsen, T.L.; Bandholm, T.; Eugen-Olsen, J.; Blauenfeldt, T.; Petersen, J.; Andersen, O. Inflammation and post-operative recovery in patients undergoing total knee arthroplasty-secondary analysis of a randomized controlled trial. Osteoarthr. Cartil. 2017, 25, 1265–1273. [Google Scholar] [CrossRef]
- Giannoudis, P.V.; Smith, R.M.; Perry, S.L.; Windsor, A.J.; Dickson, R.A.; Bellamy, M.C. Immediate IL-10 expression following major orthopaedic trauma: Relationship to anti-inflammatory response and subsequent development of sepsis. Intensiv. Care Med. 2000, 26, 1076–1081. [Google Scholar] [CrossRef]
- Lyman, S.D.; Jacobsen, S.E.W. c-kit Ligand and Flt3 Ligand: Stem/Progenitor Cell Factors With Overlapping Yet Distinct Activities. Blood 1998, 91, 1101–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuéllar, V.G.; Cuéllar, J.M.; Kirsch, T.; Strauss, E.J.; Information, P.E.K.F.C. Correlation of Synovial Fluid Biomarkers With Cartilage Pathology and Associated Outcomes in Knee Arthroscopy. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 475–485. [Google Scholar] [CrossRef]
- Tanaka, T.; Kishimoto, T. Immunotherapeutic implication of IL-6 blockade. Immunotherapy 2012, 4, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, A.; Beekhuizen, M.; Rutgers, M.; Van Osch, G.J.; Bekkers, J.; Bot, A.G.; Geurts, B.; Dhert, W.; Saris, D.; Creemers, L.B. Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res. Ther. 2012, 14, R262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Shen, W.; Zhang, Y.; Liu, M.; Zhang, L.; Liu, Q.; Lu, H.H.; Bo, J. Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget 2017, 8, 38378–38388. [Google Scholar] [CrossRef] [Green Version]
- Levinger, I.; Levinger, P.; Trenerry, M.K.; Feller, J.A.; Bartlett, J.R.; Bergman, N.; McKenna, M.J.; Cameron-Smith, D. Increased inflammatory cytokine expression in the vastus lateralis of patients with knee osteoarthritis. Arthritis Rheum. 2011, 63, 1343–1348. [Google Scholar] [CrossRef]
- Latourte, A.; Cherifi; C.; Maillet, J.; Ea, H.-K.; Bouaziz, W.; Funck-Brentano, T.; Cohen-Solal, M.; Hay, E.; Richette, P. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Ann. Rheum. Dis. 2017, 76, 748–755. [Google Scholar] [CrossRef]
Age | Sex | Surgery Type | Diagnosis |
---|---|---|---|
68 | M | Primary Hip | Osteoarthritis |
76 | M | Primary Hip | Osteoarthritis |
58 | F | Primary Hip | Osteoarthritis |
83 | F | Primary Hip | Osteoarthritis |
53 | F | Primary Hip | Osteoarthritis |
66 | F | Primary Hip | Osteoarthritis |
48 | M | Primary Knee | Osteoarthritis |
40 | M | Primary Hip | Osteoarthritis |
70 | M | Primary Knee | Trauma |
68 | M | Primary Knee | Osteoarthritis |
64 | F | Primary Knee | Osteoarthritis |
63 | F | Primary Hip | Osteoarthritis |
49 | F | Primary Hip | Osteoarthritis |
77 | F | Primary Knee | Osteoarthritis |
65 | F | Primary Knee | Osteoarthritis |
65 | F | Primary Knee | Osteoarthritis |
64 | M | Primary Hip | Osteoarthritis |
79 | M | Primary Hip | Osteoarthritis |
68 | M | Primary Hip | Osteoarthritis |
67 | F | Primary Hip | Traumatic arthritis |
48 | M | Primary Hip | Avascular Necrosis |
62 | F | Primary Knee | Osteoarthritis |
69 | F | Primary Hip | Osteoarthritis |
42 | M | Primary Hip | Osteoarthritis |
72 | M | Primary Knee | Osteoarthritis |
65 | F | Primary Knee | Osteoarthritis |
Age | Sex | Surgery Type | Diagnosis |
---|---|---|---|
70 | M | Primary | Stenosis |
72 | M | Primary | Anterior cervical discectomy with fusion |
69 | M | Revision | Osteoarthritis |
57 | M | Primary | Stenosis |
63 | F | Primary | Stenosis, spondylolisthesis |
62 | F | Primary | Stenosis, spondylolisthesis |
57 | M | Primary | Osteoarthritis |
75 | F | Primary | Stenosis, spondylolisthesis |
70 | M | Primary | Stenosis, Scoliosis/Kyphoscoliosis |
66 | F | Primary | Stenosis, myelopathy, kyphosis |
70 | F | Primary | Stenosis, spondylolisthesis |
77 | M | Primary | Stenosis, spondylolisthesis |
75 | M | Primary | Stenosis, spondylolisthesis |
38 | F | Revision | Cervical stenosis and DDD * |
57 | M | Primary | Cervical spondylosis |
74 | M | Primary | Stenosis, spondylolisthesis, arthritis |
73 | M | Revision | Loosening, recurrent stenosis |
68 | F | Primary | Stenosis, spondylolisthesis |
64 | F | Primary | Stenosis, spondylolisthesis |
56 | F | Primary | Cervical DDD and stenosis |
62 | F | Primary | Stenosis |
87 | M | Primary | Stenosis |
Criteria | Description |
---|---|
1 | Immunocompromised |
2 | Diagnosed with a known bleeding disorder |
3 | Received blood products 60 days prior to consent |
4 | History of leukemia, lymphoma, or underlying bone marrow disorder |
5 | Malignancy that required treatment with chemotherapy (including the use of adjunctive and hormonal therapy), immunotherapy, radiation therapy, or other antineoplastic target therapy within the past 24 months |
6 | Congenital, functional, or surgical asplenia |
7 | End stage renal disease (defined as requiring or anticipating requirements for hemodialysis, peritoneal dialysis, or renal transplant) or nephrotic syndrome |
8 | Previous administration of S. aureus or S. aureus/Candida vaccine or S. aureus immunoglobulins (monoclonal or polyclonal) |
9 | Participation in other studies involving investigational drug(s) (Phases 1-4) within 30 days prior to consent and/or during study participation |
Mediator | Variable | N | Median | Min | Max | p-Value |
---|---|---|---|---|---|---|
IL-12p40 * | Pre-PGN | 22 | 3 | 0 | 3 | |
Post-PGN | 21 | 0 | 0 | 3 | ||
PGN (Post-Pre) | 21 | −1 | −3 | 1 | 0.004 | |
Pre-Pam3CSK4 | 21 | 3 | 0 | 3 | ||
Post-Pam3CSK4 | 19 | 0 | 0 | 3 | ||
Pam3CSK4 (Post-Pre) | 18 | −1 | −3 | 0 | 0.002 | |
Pre-HKSA | 22 | 2 | 0 | 3 | ||
Post-HKSA | 21 | 0 | 0 | 3 | ||
HKSA (Post-Pre) | 21 | −1 | −3 | 1 | 0.003 | |
IL-1β | Pre-PGN | 21 | 3 | 2 | 3 | |
Post-PGN | 21 | 2 | 0 | 3 | ||
PGN (Post-Pre) | 20 | 0 | −3 | 1 | 0.1133 | |
Pre-Pam3CSK4 | 21 | 3 | 0 | 3 | ||
Post-Pam3CSK4 | 19 | 2 | 0 | 3 | ||
Pam3CSK4 (Post-Pre) | 18 | 0 | −3 | 1 | 0.0449 | |
Pre-HKSA | 22 | 2 | 1 | 3 | ||
Post-HKSA | 20 | 2 | 0 | 3 | ||
HKSA (Post-Pre) | 20 | −1 | −3 | 1 | 0.0041 | |
IL-1α | Pre-PGN | 21 | 2 | 0 | 3 | |
Post-PGN | 20 | 2 | 0 | 3 | ||
PGN (Post-Pre) | 20 | 0 | −3 | 2 | 0.125 | |
Pre-Pam3CSK4 | 20 | 3 | 1 | 3 | ||
Post-Pam3CSK4 | 18 | 2 | 0 | 3 | ||
Pam3CSK4 (Post-Pre) | 17 | −1 | −3 | 1 | 0.014 | |
Pre-HKSA | 21 | 2 | 0 | 3 | ||
Post-HKSA | 20 | 2 | 0 | 3 | ||
HKSA (Post-Pre) | 20 | 0 | −2 | 1 | 0.036 | |
CCL21 | Pre-PGN | 22 | 0 | 0 | 3 | |
Post-PGN | 21 | 0 | 0 | 2 | ||
PGN (Post-Pre) | 21 | 0 | −3 | 2 | 0.023 | |
Pre-Pam3CSK4 | 21 | 2 | 0 | 3 | ||
Post-Pam3CSK4 | 20 | 0.5 | 0 | 3 | ||
Pam3CSK4 (Post-Pre) | 19 | −1 | −3 | 3 | 0.075 | |
Pre-HKSA | 22 | 0.5 | 0 | 3 | ||
Post-HKSA | 21 | 0 | 0 | 2 | ||
HKSA (Post-Pre) | 21 | 0 | −3 | 1 | 0.006 |
Mediator | Variable | N | Median | Min | Max | p-Value |
---|---|---|---|---|---|---|
G-CSF * | Pre-PGN | 22 | 3 | 1 | 3 | |
Post-PGN | 21 | 2 | 0 | 3 | ||
PGN (Post-Pre) | 21 | −1 | −3 | 1 | 0.0093 | |
Pre-Pam3CSK4 | 21 | 3 | 1 | 3 | ||
Post-Pam3CSK4 | 19 | 2 | 0 | 3 | ||
Pam3CSK4 (Post-Pre) | 18 | −0.5 | −3 | 2 | 0.0273 | |
Pre-HKSA | 22 | 2 | 2 | 3 | ||
Post-HKSA | 21 | 2 | 0 | 3 | ||
HKSA (Post-Pre) | 21 | 0 | −2 | 1 | 0.1023 | |
GM-CSF | Pre-PGN | 22 | 3 | 0 | 3 | |
Post-PGN | 21 | 1 | 0 | 3 | ||
PGN (Post-Pre) | 21 | −1 | −3 | 1 | 0.0002 | |
Pre-Pam3CSK4 | 21 | 3 | 0 | 3 | ||
Post-Pam3CSK4 | 19 | 1 | 0 | 3 | ||
Pam3CSK4 (Post-Pre) | 18 | −1.5 | −3 | 1 | 0.0013 | |
Pre-HKSA | 22 | 2 | 0 | 3 | ||
Post-HKSA | 21 | 2 | 0 | 3 | ||
HKSA (Post-Pre) | 21 | 0 | −3 | 2 | 0.3008 | |
IL-10 | Pre-PGN | 22 | 3 | 0 | 3 | |
Post-PGN | 21 | 2 | 0 | 3 | ||
PGN (Post-Pre) | 21 | 0 | −3 | 1 | 0.012 | |
Pre-Pam3CSK4 | 21 | 3 | 1 | 3 | ||
Post-Pam3CSK4 | 19 | 2 | 0 | 3 | ||
Pam3CSK4 (Post-Pre) | 18 | 0 | −3 | 1 | 0.023 | |
Pre-HKSA | 22 | 3 | 2 | 3 | ||
Post-HKSA | 21 | 2 | 0 | 3 | ||
HKSA (Post-Pre) | 21 | 0 | −3 | 1 | 0.022 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heim, C.E.; Yamada, K.J.; Fallet, R.; Odvody, J.; Schwarz, D.M.; Lyden, E.R.; Anderson, M.J.; Alter, R.; Vidlak, D.; Hartman, C.W.; et al. Orthopaedic Surgery Elicits a Systemic Anti-Inflammatory Signature. J. Clin. Med. 2020, 9, 2123. https://doi.org/10.3390/jcm9072123
Heim CE, Yamada KJ, Fallet R, Odvody J, Schwarz DM, Lyden ER, Anderson MJ, Alter R, Vidlak D, Hartman CW, et al. Orthopaedic Surgery Elicits a Systemic Anti-Inflammatory Signature. Journal of Clinical Medicine. 2020; 9(7):2123. https://doi.org/10.3390/jcm9072123
Chicago/Turabian StyleHeim, Cortney E., Kelsey J. Yamada, Rachel Fallet, Jessica Odvody, Dana M. Schwarz, Elizabeth R. Lyden, Matthew J. Anderson, Roxanne Alter, Debbie Vidlak, Curtis W. Hartman, and et al. 2020. "Orthopaedic Surgery Elicits a Systemic Anti-Inflammatory Signature" Journal of Clinical Medicine 9, no. 7: 2123. https://doi.org/10.3390/jcm9072123
APA StyleHeim, C. E., Yamada, K. J., Fallet, R., Odvody, J., Schwarz, D. M., Lyden, E. R., Anderson, M. J., Alter, R., Vidlak, D., Hartman, C. W., Konigsberg, B. S., Cornett, C. A., Garvin, K. L., Mohamed, N., Anderson, A. S., & Kielian, T. (2020). Orthopaedic Surgery Elicits a Systemic Anti-Inflammatory Signature. Journal of Clinical Medicine, 9(7), 2123. https://doi.org/10.3390/jcm9072123