A Panel of Broad-Spectrum Antivirals in Topical Ophthalmic Medications from the Drug Repurposing Approach during and after the Coronavirus Disease 2019 Era
Abstract
:1. Introduction
2. Drug Repurposing Approach: Potential Antiviral Action of Drugs in Eye Drops and Ophthalmic Ointments
3. Literature Review
4. Preservatives and Buffering Agents (Excipients)
5. Antiseptic-Disinfectant Agents
6. Artificial Tears
7. Anti-Glaucoma Eye Drops
8. Antibiotics and Other Antimicrobials
9. Antiallergic Eye Drops
10. Anti-Inflammatory Ophthalmic Preparations
11. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Napoli, P.E.; Nioi, M. Global Spread of Coronavirus Disease 2019 and Malaria: An Epidemiological Paradox in the Early Stage of a Pandemic. J. Clin. Med. 2020, 9, 1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoli, P.E.; Nioi, M.; D’Aloja, E.; Fossarello, M. Safety Recommendations and Medical Liability in Ocular Surgery during the COVID-19 Pandemic: An Unsolved Dilemma. J. Clin. Med. 2020, 9, 1403. [Google Scholar] [CrossRef] [PubMed]
- Napoli, P.E.; Nioi, M.; D’Aloja, E.; Fossarello, M. The Ocular Surface and the Coronavirus Disease 2019: Does a Dual ‘Ocular Route’ Exist? J. Clin. Med. 2020, 9, 1269. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J. Med. Virol. 2020, 92, 589–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.-W.; Liu, X.-F.; Jia, Z.-F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 2020, 395, e39. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Wang, M.; Dai, J.; Wang, W.; Yang, Y.; Jin, W. Novel coronavirus disease with conjunctivitis and conjunctivitis as first symptom: Two cases report. Chin. J. Exp. Ophthalmol. 2020, 38. [Google Scholar] [CrossRef]
- Li, X.J.; Wang, M.; Chen, C.Z.; Yang, A.; Jin, W. Ophthalmologists’ strategy for the prevention and control of coronavirus pneumonia with conjunctivitis or with conjunctivitis as the first symptom. Chin. J. Exp. Ophthalmol. 2020, 38, 276–280. [Google Scholar] [CrossRef]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Wu, P.; Duan, F.; Luo, C.; Liu, Q.; Qu, X.; Liang, L.; Wu, K. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020, 138, 575. [Google Scholar] [CrossRef]
- Epstein, S.P.; Ahdoot, M.; Marcus, E.; Asbell, P.A. Comparative Toxicity of Preservatives on Immortalized Corneal and Conjunctival Epithelial Cells. J. Ocul. Pharmacol. Ther. 2009, 25, 113–119. [Google Scholar] [CrossRef]
- Tu, E.Y. Balancing antimicrobial efficacy and toxicity of currently available topical ophthalmic preservatives. Saudi J. Ophthalmol. 2014, 28, 182–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, Y.S.; Goyal, S.M. Virucidal efficacy of sodium bicarbonate on a food contact surface against feline calicivirus, a norovirus surrogate. Int. J. Food Microbiol. 2006, 109, 160–163. [Google Scholar] [CrossRef] [PubMed]
- List N: Disinfectants for Use against SARS-CoV-2. United States Environmental Protection Agency. Available online: https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2 (accessed on 18 May 2020).
- Hernandez-Patlan, D.; Solis-Cruz, B.; Méndez-Albores, A.; Latorre, J.D.; Hernandez-Velasco, X.; Tellez-Isaias, G.; López-Arellano, R. Comparison of PrestoBlue® and plating method to evaluate antimicrobial activity of ascorbic acid, boric acid and curcumin in an in vitro gastrointestinal model. J. Appl. Microbiol. 2018, 124, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Schrank, C.L.; Minbiole, K.P.C.; Wuest, W.M. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Wood, A.; Payne, D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J. Hosp. Infect. 1998, 38, 283–295. [Google Scholar] [CrossRef]
- Sattar, S.A.; Springthorpe, V.S.; Karim, Y.; Loro, P. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses. Epidemiol. Infect. 1989, 102, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Rabenau, H.; Kampf, G.; Cinatl, J.; Doerr, H. Efficacy of various disinfectants against SARS coronavirus. J. Hosp. Infect. 2005, 61, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Sizun, J.; Yu, M.; Talbot, P. Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: A possible source ofhospital-acquired infections. J. Hosp. Infect. 2000, 46, 55–60. [Google Scholar] [CrossRef]
- Kariwa, H.; Fujii, N.; Takashima, I. Inactivation of SARS Coronavirus by Means of Povidone-Iodine, Physical Conditions and Chemical Reagents. Dermatology 2006, 212, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-J.; Ding, S.-J. Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces in Vitro. Int. J. Mol. Sci. 2016, 17, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermelli, C.; Cuoghi, A.; Scuri, M.; Bettua, C.; Neglia, R.G.; Ardizzoni, A.; Blasi, E.; Iannitti, T.; Palmieri, B. In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid. Virol. J. 2011, 8, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillemard, E.; Geniteau-Legendre, M.; Mabboux, B.; Poilane, I.; Kergot, R.; Lemaire, G.; Petit, J.; Labarre, C.; Quero, A. Antiviral action of trehalose dimycolate against EMC virus: Role of macrophages and interferon α/β. Antivir. Res. 1993, 22, 201–213. [Google Scholar] [CrossRef]
- Guillemard, E.; Geniteau-Legendre, M.; Kergot, R.; Lemaire, G.; Petit, J.; Labarre, C.; Quero, A. Role of trehalose dimycolate-induced interferon-α/β in the restriction of encephalomyocarditis virus growth in vivo and in peritoneal macrophage cultures. Antivir. Res. 1995, 28, 175–189. [Google Scholar] [CrossRef]
- De Clercq, E.; Luczak, M. Antiviral activity of carbopol, a cross-linked polycarboxylate. Arch. Virol. 1976, 52, 151–158. [Google Scholar] [CrossRef]
- Harmsen, M.C.; Swart, P.J.; Bethune, M.-P.D.; Pauwels, R.; Clercq, E.D.; The, T.B.; Meijer, D.K.F. Antiviral Effects of Plasma and Milk Proteins: Lactoferrin Shows Potent Activity against Both Human Immunodeficiency Virus and Human Cytomegalovirus Replication In Vitro. J. Infect. Dis. 1995, 172, 380–388. [Google Scholar] [CrossRef]
- Van Der Strate, B.W.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D. Antiviral activities of lactoferrin. Antivir. Res. 2001, 52, 225–239. [Google Scholar] [CrossRef]
- Koch, C.; Reichling, J.; Schneele, J.; Schnitzler, P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine 2008, 15, 71–78. [Google Scholar] [CrossRef]
- Koch, C.; Reichling, J.; Kehm, R.; Sharaf, M.M.; Zentgraf, H.; Schneele, J.; Schnitzler, P. Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpes viruses. J. Pharm. Pharmacol. 2008, 60, 1545–1550. [Google Scholar] [CrossRef]
- Binns, S.E.; Merali, S.; Hudson, J.; Arnason, J.T. Antiviral Activity of Characterized Extracts from Echinacea spp. (Heliantheae: Asteraceae) against Herpes simplex Virus (HSV-I). Planta Med. 2002, 68, 780–783. [Google Scholar] [CrossRef]
- Danaher, R.J.; Wang, C.; Dai, J.; Mumper, R.J.; Miller, C.S. Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, e31–e35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral Natural Products and Herbal Medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-Z.; Li, W.-J.; Tao, R.; Ye, J.-Z.; Zhang, H.-Y. Antiviral Activity of a Nanoemulsion of Polyprenols from Ginkgo Leaves against Influenza A H3N2 and Hepatitis B Virus in Vitro. Molecules 2015, 20, 5137–5151. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Park, J.-S.; Lee, S.-W.; Hwang, S.-Y.; Young, B.-E.; Choi, H.-J. Porcine epidemic diarrhea virus infection: Inhibition by polysaccharide from Ginkgo biloba exocarp and mode of its action. Virus Res. 2015, 195, 148–152. [Google Scholar] [CrossRef]
- Hamidi, J.A.; Ismaili, N.H.; Ahmadi, F.B.; Lajisi, N.H. Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J. Trop. Agric. Sci. 1996, 19, 129–136. [Google Scholar]
- Tharanath, V.; Peddanna, K.; Kotaiah, Y.; Venkataramana, D. Flavonoids isolated from Foeniculum vulgare (Fennel) have virostatic efficiency against bluetongue virus. Int. J. Pharm. Sci. Rev. Res. 2013, 23, 237–242. [Google Scholar]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential Oils of Aromatic Plants with Antibacterial, Antifungal, Antiviral, and Cytotoxic Properties—An Overview. Complement. Med. Res. 2009, 16, 79–90. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev. Anti-Infect. Ther. 2014, 4, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Welch, J.L.; Xiang, J.; Okeoma, C.M.; Schlievert, P.M.; Stapleton, J.T. Glycerol Monolaurate, an Analogue to a Factor Secreted by Lactobacillus, Is Virucidal against Enveloped Viruses, Including HIV-1. mBio 2020, 11. [Google Scholar] [CrossRef]
- Patrick, L. N-acetylcysteine, Alpha-Lipoic Acid, L-Glutamine, and L-Carnitine. Altern. Med. Rev. 2000, 5, 290. [Google Scholar]
- Travagli, V.; Zanardi, I.; Bocci, V. Topical applications of ozone and ozonated oils as anti-infective agents: An insight into the patent claims. Recent Pat. Anti-Infect. Drug Discov. 2009, 4, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Ugazio, E.; Tullio, V.; Binello, A.; Tagliapietra, S.; Dosio, F. Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques. Molecules 2020, 25, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowen, R.J.; Robins, H. A Plausible “Penny” Costing Effective Treatment for Corona Virus Ozone Therapy. J. Infect. Dis. Epidemiol. 2020, 6, 113. [Google Scholar]
- Lee, H.; Ko, G. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome. Sci. Rep. 2016, 6, 25835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyama, A.H.; Furuya, A.; Uozaki, M.; Yamasaki, H.; Arakawa, T.; Arita, M. Antiviral effects of ascorbic and dehydroascorbic acids in vitro. Int. J. Mol. Med. 1998, 22, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Brinkevich, S.D.; Boreko, E.; Savinova, O.V.; Pavlova, N.I.; Shadyro, O.I. Radical-regulating and antiviral properties of ascorbic acid and its derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 2424–2427. [Google Scholar] [CrossRef]
- Hovi, T.; Hirvimies, A.; Stenvik, M.; Vuola, E.; Pippuri, R. Topical treatment of recurrent mucocutaneous herpes with ascorbic acid-containing solution. Antivir. Res. 1995, 27, 263–270. [Google Scholar] [CrossRef]
- Bitetto, D.; Fabris, C.; Fornasiere, E.; Pipan, C.; Fumolo, E.; Cussigh, A.; Bignulin, S.; Cmet, S.; Fontanini, E.; Falleti, E.; et al. Vitamin D supplementation improves response to antiviral treatment for recurrent hepatitis C. Transpl. Int. 2010, 24, 43–50. [Google Scholar] [CrossRef]
- Gal-Tanamy, M.; Bachmetov, L.; Ravid, A.; Koren, R.; Erman, A.; Tur-Kaspa, R.; Zemel, R. Vitamin D: An innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology 2011, 54, 1570–1579. [Google Scholar] [CrossRef]
- Hubbard, G.B.; Herron, B.E.; Andrews, J.S.; Elliott, J.H. Influence of topical and oral zinc upon corneal wound healing. Br. J. Ophthalmol. 1969, 53, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Titiyal, J.S.; Kaur, M.; Falera, R.; Bharghava, A.; Sah, R.; Sen, S. Efficacy and Safety of Topical Chloroquine in Mild to Moderate Dry Eye Disease. Curr. Eye Res. 2019, 44, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Wand, M.; Gilbert, C.M.; Liesegang, T.J. Latanoprost and herpes simplex keratitis. Am. J. Ophthalmol. 1999, 127, 602–624. [Google Scholar] [CrossRef]
- Kaufman, H.E.; Varnell, E.D.; Thompson, H.W. Latanoprost increases the severity and recurrence of herpetic keratitis in the rabbit. Am. J. Ophthalmol. 1999, 127, 531–536. [Google Scholar] [CrossRef]
- Park, H.G.; Choi, S. A Case of Herpetic Simplex Keratitis after Application of 0.015% Tafluprost Eye Drops. J. Korean Ophthalmol. Soc. 2013, 54, 1950. [Google Scholar] [CrossRef]
- Kroll, D.M.; Schuman, J.S. Reactivation of herpes simplex virus keratitis after initiating bimatoprost treatment for glaucoma. Am. J. Ophthalmol. 2002, 133, 401–403. [Google Scholar] [CrossRef]
- Yang, H.S.; Park, H.G.; Choi, S. Reactivation of Herpetic Keratitis in a Patient after Using Two Different Prostaglandin Analogues. J. Korean Ophthalmol. Soc. 2011, 52, 1119. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, S.; Vetrichelvan, T. Formulation Development and Evaluation of OpthalmicOcusert Containing Timolol Maleate. Res. Rev. A J. Drug Formul. Dev. Prod. 2017, 4, 8–12. [Google Scholar]
- Bao, J.; Marathe, B.; Govorkova, E.A.; Zheng, J.J. Drug Repurposing Identifies Inhibitors of Oseltamivir-Resistant Influenza Viruses. Angew. Chem. Int. Ed. Engl. 2016, 55, 3438–3441. [Google Scholar] [CrossRef] [Green Version]
- Josset, L.; Textoris, J.; Loriod, B.; Ferraris, O.; Moules, V.; Lina, B.; N’Guyen, C.; Diaz, J.-J.; Rosa-Calatrava, M. Gene Expression Signature-Based Screening Identifies New Broadly Effective Influenza A Antivirals. PLoS ONE 2010, 5, e13169. [Google Scholar] [CrossRef] [Green Version]
- Juurlink, D.N. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. Can. Med. Assoc. J. 2020, 192, E450–E453. [Google Scholar] [CrossRef] [Green Version]
- Sodhi, M.; Etminan, M. Therapeutic Potential for Tetracyclines in the Treatment of COVID-19. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 487–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enoki, Y.; Ishima, Y.; Tanaka, R.; Sato, K.; Kimachi, K.; Shirai, T.; Watanabe, H.; Chuang, V.T.G.; Fujiwara, Y.; Takeya, M.; et al. Pleiotropic Effects of Levofloxacin, Fluoroquinolone Antibiotics, against Influenza Virus-Induced Lung Injury. PLoS ONE 2015, 10, e0130248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, G.A.; Humar, A.; Fergusson, D.; Johnston, O.; House, A.A.; Kim, S.J.; Ramsay, T.; Chassé, M.; Pang, X.; Zaltzman, J.; et al. Levofloxacin for BK Virus Prophylaxis Following Kidney Transplantation. JAMA 2014, 312, 2106. [Google Scholar] [CrossRef]
- Kim, H.; Lee, M.-K.; Ko, J.; Park, C.-J.; Kim, M.; Jeong, Y.; Hong, S.; Varani, G.; Choi, B.-S. Aminoglycoside antibiotics bind to the influenza a virus RNA promoter. Mol. BioSyst. 2012, 8, 2857–2859. [Google Scholar] [CrossRef]
- Topno, R.; Khan, S.A.; Chowdhury, P.; Mahanta, J. Pharmacodynamics of aminoglycosides and tetracycline derivatives against Japanese encephalitis virus. Asian Pac. J. Trop. Med. 2016, 9, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zegarelli, E.V.; Budowsky, J.; Silvers, H.F.; Kutscher, A.H. Chloramphenicol in Treatment of Primary Herpetic Stomatitis And Herpes Labialis. Arch. Dermatol. 1953, 67, 635–636. [Google Scholar] [CrossRef] [PubMed]
- David, H.L.; Rastogi, N.; Clavel-Sérès, S.; Clément, F. Action of Colistin (Polymyxin E) on the Lytic Cycle of the Mycobacteriophage D29 in Mycobacterium tuberculosis. Zent. Bakteriol. Mikrobiol. Hyg. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1986, 262, 321–334. [Google Scholar] [CrossRef]
- Chan, J.F.-W.; Ma, M.K.-M.; Chan, G.S.-W.; Chan, G.C.-W.; Choi, G.K.-Y.; Chan, K.-H.; Cheng, V.C.-C.; Choy, B.-Y.; Yuen, K.-Y.; Chan, K.-W. Rapid reduction of viruria and stabilization of allograft function by fusidic acid in a renal transplant recipient with JC virus-associated nephropathy. Infection 2015, 43, 577–581. [Google Scholar] [CrossRef]
- Famularo, G.; De Simone, C.; Tzantzoglou, S.; Trinchieri, V.; Moretti, S.; Tonietti, G. In Vivo and in Vitro Efficacy of Fusidic Acid in HIV Infection. Ann. N. Y. Acad. Sci. 1993, 685, 341–343. [Google Scholar] [CrossRef]
- Rhoden, E.; Nix, W.A.; Weldon, W.C.; Selvarangan, R. Antifungal azoles itraconazole and posaconazole exhibit potent in vitro antiviral activity against clinical isolates of parechovirus A3 (Picornaviridae). Antivir. Res. 2018, 149, 75–77. [Google Scholar] [CrossRef]
- Jordan, G.W.; Seet, E.C. Antiviral Effects of Amphotericin B Methyl Ester. Antimicrob. Agents Chemother. 1978, 13, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloer, S.; Goretzko, J.; Kühnl, A.; Brunotte, L.; Ludwig, S.; Rescher, U. The clinically licensed antifungal drug itraconazole inhibits influenza virus in vitro and in vivo. Emerg. Microbes Infect. 2019, 8, 80–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamura, E.; Uchio, E.; Ebihara, N.; Ohno, S.; Ohashi, Y.; Okamoto, S.; Kumagai, N.; Satake, Y.; Shoji, J.; Nakagawa, Y.; et al. Japanese guidelines for allergic conjunctival diseases 2017. Allergol. Int. 2017, 66, 220–229. [Google Scholar] [CrossRef]
- Leonardi, A.; Bogacka, E.; Fauquert, J.-L.; Kowalski, M.L.; Groblewska, A.; Jedrzejczak-Czechowicz, M.; Doan, S.; Marmouz, F.; Demoly, P.; Delgado, L. Ocular allergy: Recognizing and diagnosing hypersensitivity disorders of the ocular surface. Allergy 2012, 67, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; De Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II pathophysiology report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Gu, J.; Yuan, J.; Chen, J.-Q. Tacrolimus in the Treatment of Ocular Diseases. BioDrugs 2011, 25, 89–103. [Google Scholar] [CrossRef]
- He, S.; Lin, B.; Chu, V.; Hu, Z.; Hu, X.; Xiao, J.; Wang, A.Q.; Schweitzer, C.J.; Li, Q.; Imamura, M.; et al. Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Sci. Transl. Med. 2015, 7, 282ra49. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Xia, S.; Pu, J.; Wang, Q.; Li, P.; Lu, L.; Jiang, S. The Antihistamine Drugs Carbinoxamine Maleate and Chlorpheniramine Maleate Exhibit Potent Antiviral Activity against a Broad Spectrum of Influenza Viruses. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Schafer, A.; Cheng, H.; Xiong, R.; Soloveva, V.; Retterer, C.; Mo, F.; Bavari, S.; Thatcher, G.; Rong, L. Repurposing potential of 1st generation H 1 -specific antihistamines as anti-filovirus therapeutics. Antivir. Res. 2018, 157, 47–56. [Google Scholar] [CrossRef]
- Tan, J.W.; Zahidi, N.F.W.; Kow, A.S.F.; Soo, K.M.; Shaari, K.; Israf, D.A.; Chee, H.Y.; Tham, C.L. Mast cell stabilizing effect of a geranyl acetophenone in dengue virus infection using in vitro model of DENV3-induced RBL-2H3 cells. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Zawar, V.P.; Godse, K.; Sankalecha, S. Chronic urticaria associated with recurrent genital herpes simplex infection and success of antiviral therapy—A report of two cases. Int. J. Infect. Dis. 2010, 14, e514–e517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.-C.; Chang, Y.-S.; Wang, J.-P.; Chen, S.-C.; Kuo, S.-C. Three New Flavonoids and Antiallergic, Anti-Inflammatory Constituents from the Heartwood of Dalbergia odorifera. Planta Med. 1998, 64, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaul, T.N.; Middleton, E.; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985, 15, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Rabie, R.; Mumtaz, K.; Renner, E.L. Efficacy of antiviral therapy for hepatitis C after liver transplantation with cyclosporine and tacrolimus: A systematic review and meta-analysis. Liver Transplant. 2012, 19, 36–48. [Google Scholar] [CrossRef]
- Qing, M.; Yang, F.; Zhang, B.; Zou, G.; Robida, J.M.; Yuan, Z.; Tang, H.; Shi, P.-Y. Cyclosporine Inhibits Flavivirus Replication through Blocking the Interaction between Host Cyclophilins and Viral NS5 Protein. Antimicrob. Agents Chemother. 2009, 53, 3226–3235. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Li, F.; Musharrafieh, R.G.; Wang, J. Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high in vitro genetic barrier of drug resistance. Antivir. Res. 2016, 133, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Khyatti, M.; Menezes, J. The effect of indometacin, prostaglandin E2 and interferon on the multiplication of herpes simplex virus type 1 in human lymphoid cells. Antivir. Res. 1990, 14, 161–172. [Google Scholar] [CrossRef]
- Higaki, S.; Watanabe, K.; Itahashi, M.; Shimomura, Y. Cyclooxygenase (COX)-Inhibiting Drug Reduces HSV-1 Reactivation in the Mouse Eye Model. Curr. Eye Res. 2009, 34, 171–176. [Google Scholar] [CrossRef]
- Kaye, S.; Choudhary, A. Herpes simplex keratitis. Prog. Retin. Eye Res. 2006, 25, 355–380. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Khan, S.; Bunce, C.; Khawaja, A.P.; Siriwardena, D.; Larkin, D.F.P. A randomised placebo-controlled trial of topical steroid in presumed viral conjunctivitis. Br. J. Ophthalmol. 2011, 95, 1299–1303. [Google Scholar] [CrossRef]
- Khan, J.; Mack, H.G. Management of conjunctivitis during the COVID-19 pandemic 2020. Aust. J. Gen. Pract. 2020, 49. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, L.; Pacella, F.; Pacella, E.; Tiscione, G.; Oliva, A.; Violi, F. Conjunctivitis and COVID-19: A meta-analysis. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, M.; Zhang, Z.; Qiao, K.; Huang, T.; Chen, M.; Xin, N.; Huang, Z.; Liu, L.; Zhang, G.; et al. Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease. Br. J. Ophthalmol. 2020, 104, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Solano, D.; Virgile, J.; Czyz, C.N. Viral Conjunctivitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Skevaki, C.L.; Galani, I.E.; Pararas, M.V.; Giannopoulou, K.P.; Tsakris, A. Treatment of Viral Conjunctivitis with Antiviral Drugs. Drugs 2011, 71, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zeng, Y.; Tong, Y.; Chen, C. Ophthalmologic evidence against the interpersonal transmission of 2019 novel coronavirus through conjunctiva. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Colavita, F.; Lapa, D.; Carletti, F.; Lalle, E.; Bordi, L.; Marsella, P.; Nicastri, E.; Bevilacqua, N.; Giancola, M.L.; Corpolongo, A.; et al. SARS-CoV-2 Isolation From Ocular Secretions of a Patient With COVID-19 in Italy With Prolonged Viral RNA Detection. Ann. Intern. Med. 2020. [Google Scholar] [CrossRef]
- Napoli, P.E.; Satta, G.M.; Coronella, F.; Fossarello, M. Spectral-Domain Optical Coherence Tomography Study on Dynamic Changes of Human Tears After Instillation of Artificial Tears. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4533–4540. [Google Scholar] [CrossRef] [Green Version]
- Napoli, P.E.; Coronella, F.; Satta, G.M.; Fossarello, M. A Novel Technique of Contrast-Enhanced Optical Coherence Tomography Imaging in Evaluation of Clearance of Lipids in Human Tears. PLoS ONE 2014, 9, e109843. [Google Scholar] [CrossRef] [Green Version]
- Napoli, P.E.; Nioi, M.; Mangoni, L.; Gentile, P.; Braghiroli, M.; D’Aloja, E.; Fossarello, M. Fourier-Domain OCT Imaging of the Ocular Surface and Tear Film Dynamics: A Review of the State of the Art and an Integrative Model of the Tear Behavior during the Inter-Blink Period and Visual Fixation. J. Clin. Med. 2020, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Van Santvliet, L.; Ludwig, A. Determinants of eye drop size. Surv. Ophthalmol. 2004, 49, 197–213. [Google Scholar] [CrossRef]
- Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T.; Khader, S. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 186–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Can an anti-HIV combination or other existing drugs outwit the new coronavirus? Science 2020, 10. [Google Scholar] [CrossRef]
- Wu, K.; Chen, L.; Peng, G.; Zhou, W.; Pennell, C.A.; Mansky, L.M.; Geraghty, R.J.; Li, F. A Virus-Binding Hot Spot on Human Angiotensin-Converting Enzyme 2 Is Critical for Binding of Two Different Coronaviruses. J. Virol. 2011, 85, 5331–5337. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Baba, M.; Sato, A.; Pauwels, R.; De Clercq, E.; Shigeta, S. Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antiviral Res. 1987, 7, 361–367. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jin, W.; Sood, A.; Montgomery, D.W.; Grant, O.C.; Fuster, M.M.; Fu, L.; Dordick, J.S.; Woods, R.J.; Zhang, F.; et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 2020, 10, 104873. [Google Scholar] [CrossRef]
- Schnitzler, P.; Schön, K.; Reichling, J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Die Pharm. 2001, 56, 343–347. [Google Scholar]
- Bishop, C.D. Antiviral Activity of the Essential Oil of Melaleuca alternifolia (Maiden amp; Betche) Cheel (Tea Tree) Against Tobacco Mosaic Virus. J. Essent. Oil Res. 1995, 7, 641–644. [Google Scholar] [CrossRef]
- Garozzo, A.; Timpanaro, R.; Stivala, A.; Bisignano, G.; Castro, A. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: Study on the mechanism of action. Antivir. Res. 2011, 89, 83–88. [Google Scholar] [CrossRef]
Original Indication | Repurposing Potential as Antiviral | Note | |
---|---|---|---|
Benzalkonium Chloride (BAK) (0.015–0.05%) | Preservative (Detergent) | e.g., DNA (HSV-2, CMV, Adenovirus, BK Virus) and RNA (RSV, Enterovirus, Norovirus, Porcine Epidemic Diarrhea) Viruses | Controversial Results for SARS-Cov-2 (See Text) |
Chlorobutanol | Preservative (Detergent) | e.g., HBV | - |
Sodium Perborate (And Related Hydrogen Peroxide) | Preservative (Oxidative) | Broad Antiviral Effect | - |
Stabilized Oxychloro Complex (SOC) (Purite®, Bio-Cide International Inc., Norman, OK, USA) | Preservative (Oxidative) | Broad Antiviral Effect | Balancing Antimicrobial Efficacy and Toxicity of Currently Available Topical Ophthalmic Preservatives |
Methyl Paraben | Preservative (Chelating Agent) | Antiretroviral Effect | - |
Citric Acid | Preservative (Chelating Agent)/Buffering Agent | e.g., Coxsackievirus, Herpesviruses, Porcine Epidemic Diarrhea Virus (Coronavirus) | - |
Thimerosal | Preservative (Organomercurial) | e.g., Pseudorabies Virus | Removed from Ophthalmic Preparations for Toxic Effects |
Disodium-Ethylene Diamine Tetra-Acetate (EDTA) | Buffering Agents | e.g., Porcine Epidemic Diarrhea Virus (Coronavirus) | - |
Phosphate-Buffered Saline | Buffering Agents | e.g., Porcine Epidemic Diarrhea Virus (Coronavirus) | - |
Sodium Bicarbonate | Buffering Agents | e.g., Calicivirus | - |
Boric Acid | Buffering Agents | e.g., White Spot Syndrome Virus (WSSV) | - |
Povidone Iodine (<0.76% Free Iodine) | Antiseptic Agent | SARS-Cov-2 and Others | In Suspension Tests and Contact Times of 5 Min |
Sodium Hypochlorite (At Least 0.21%) | Antiseptic Agent | e.g., MHV | - |
Chlorhexidine | Antiseptic Agent | e.g., Coronaviruses | Modest Antiviral Action |
Hexamidine | Antiseptic Agent | e.g., Coronaviruses | Weak Antiviral Action |
Polyhexamethylene Biguanide (PHMB) | Antiseptic Agent | e.g., HIV, Herpesviruses, HPV | - |
Phenolic Compounds | Antiseptic Agent | Broad Antiviral Effect | Weak Antiviral Action |
High Molecular Weight Hyaluronic Acid | Artificial Tear | Coxsackievirus, Influenza Virus, HSV-1, Porcine Parvovirus (Coronavirus) | Mild Inhibition Of HSV-1 and Porcine Parvovirus |
Trehalose | Artificial Tear | e.g., EMC Virus | - |
Carbopol | Artificial Tear | e.g., HSV-1/HSV-2, HZV | - |
Lactoferrin | Artificial Tear | e.g., HIV, CMV | - |
Chamomile Oils | Artificial Tear (Vegetal Extract) | e.g., Herpesviruses | - |
Echinacea Purpurea | Artificial Tears (Vegetal Extract) | e.g., HSV-1 | - |
Rubus Fruticosus (Blackberry) | Artificial Tears (Vegetal Extract) | e.g., HSV-1 | - |
Ginkgo Biloba | Artificial Tears (Vegetal Extract) | e.g., Influenza A H3N2, HBV, Porcine Parvovirus (Coronavirus) | - |
Centella Asiatica | Artificial Tears (Vegetal Extract) | e.g., HSV-1, Vesicular Stomatitis Viruses (VSV) | - |
Foeniculum Vulgare | Artificial Tears (Vegetal Extract) | e.g., Bluetongue Virus | - |
Aloe Vera | Artificial Tears (Vegetal Extract) | e.g., SARS-CoV, CMV, Enterovirus 71, Japanese Encephalitis Virus, Herpesviruses, Influenza A Virus, Haemagglutinating Viruses | Aloe Emodin is an Anthraquinone and a Variety of Emodin Present in Aloe Latex, An Exudate From the Aloe Plant. In Some Cases, Aloe Emodin is Obtained and Studied After Extraction from the Isatis Indigotica |
Glycerol | Artificial Tears (Excipient) | e.g., HIV-1 | - |
L-Carnitine | Artificial Tears (Excipient) | e.g., HIV-1 | - |
Ozonated Oils | Artificial Tears (Excipients) | e.g., Plant Viruses, Coronavirus | Presumed Antiviral Action on SARS-Cov-2 Based on Oxidation of Specific Viral Receptors in Cellular Plants |
Zinc | Artificial Tears (Excipient)/Astringent Eye Drops | SARS-Cov-2 | Blocking of Viral Replication by Inhibiting SARS-Cov-2 Polymerase Activity |
Acetylcysteine | Artificial Tears (Antioxidant) | e.g., HIV-1 | - |
Vitamin A | Artificial Tears (Antioxidant) | e.g., Norovirus | - |
Vitamin C | Artificial Tears (Antioxidant) | e.g., Herpesviruses | - |
Vitamin D | Artificial Tears (Immunomodulator) | e.g., HCV | By Improving Innate or Therapeutic Antiviral Response to Various Viruses |
Chloroquine | Artificial Tears (Immunomodulator) | SARS-Cov-2, Retroviruses, Flaviviruses, And Coronaviruses | Inhibition of the Ph Linked Steps of Viral Replication |
Timolol Maleate | Anti-Glaucoma Eye Drops | e.g., HSV-1 | - |
Dorzolamide | Anti-Glaucoma Eye Drops | e.g., Influenza Viruses | - |
Brinzolamide | Anti-Glaucoma Eye Drops | e.g., H3N2, H1N1, Avian H5N2, H7N1 Influenza Viruses | - |
Azithromycin | Antibiotic | SARS-Cov-2 Infection | - |
Tetracyclines | Antibiotic | SARS-Cov-2 Infection | - |
Fluoroquinolones | Antibiotic | e.g., Influenza Virus, Polyomavirus BK | - |
Aminoglycosides | Antibiotic | e.g., Influenza A Virus, Japanese Encephalitis Virus | - |
Chloramphenicol | Antibiotic | e.g., Herpetic Stomatitis, Herpes Labialis | - |
Colistin | Antibiotic | e.g., Mycobacteriophage D29 | - |
Fusidic Acid | Antibiotic | e.g., HIV, JC Virus | - |
Itraconazole | Antifungal | e.g., Parechovirus A3 (Picornaviridae), Influenza Virus | - |
Posaconazole | Antifungal | e.g., ParechovirusA3 (Picornaviridae) | - |
Amphotericin B | Antifungal | e.g., Vesicular Stomatitis Virus, HSV-1, HSV-2, Sindbis Virus, Vaccinia Virus | - |
Ketotifen Fumarate | Anti-Allergic | e.g., Dengue Virus | Controversial Results for Herpesviruses (See Text) |
Chlorcyclizine | Anti-Allergic | e.g., HCV, Filoviridae (Ebola Virus, Marburg Virus and Cuevavirus) | - |
Chlorpheniramine | Anti-Allergic | e.g., Influenza A Virus | - |
Diphenhydramine | Anti-Allergic | e.g., Filoviridae (Ebola Virus, Marburg Virus and Cuevavirus) | - |
Flavonoids | Anti-Allergic/Artificial Tear | e.g., HSV-1, Polio-Virus Type 1, Respiratory Syncytial Virus (RSV) | Broad Effect on Eye Disease (See Text) |
Cyclosporine | Anti-Allergic | e.g., HCV, Flavivirus, Influenza Virus | Broad Effect on Inflammatory Eye Disease (See Text) |
Indometacin | Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) | e.g., HSV-1 | - |
Bromfenac | Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) | e.g., HSV-1 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napoli, P.E.; Mangoni, L.; Gentile, P.; Braghiroli, M.; Fossarello, M. A Panel of Broad-Spectrum Antivirals in Topical Ophthalmic Medications from the Drug Repurposing Approach during and after the Coronavirus Disease 2019 Era. J. Clin. Med. 2020, 9, 2441. https://doi.org/10.3390/jcm9082441
Napoli PE, Mangoni L, Gentile P, Braghiroli M, Fossarello M. A Panel of Broad-Spectrum Antivirals in Topical Ophthalmic Medications from the Drug Repurposing Approach during and after the Coronavirus Disease 2019 Era. Journal of Clinical Medicine. 2020; 9(8):2441. https://doi.org/10.3390/jcm9082441
Chicago/Turabian StyleNapoli, Pietro Emanuele, Lorenzo Mangoni, Pietro Gentile, Mirco Braghiroli, and Maurizio Fossarello. 2020. "A Panel of Broad-Spectrum Antivirals in Topical Ophthalmic Medications from the Drug Repurposing Approach during and after the Coronavirus Disease 2019 Era" Journal of Clinical Medicine 9, no. 8: 2441. https://doi.org/10.3390/jcm9082441
APA StyleNapoli, P. E., Mangoni, L., Gentile, P., Braghiroli, M., & Fossarello, M. (2020). A Panel of Broad-Spectrum Antivirals in Topical Ophthalmic Medications from the Drug Repurposing Approach during and after the Coronavirus Disease 2019 Era. Journal of Clinical Medicine, 9(8), 2441. https://doi.org/10.3390/jcm9082441