Improving the Quality of Turkey Meat via Storage Temperature, Packaging Atmosphere, and Oregano (Origanum vulgare) Essential Oil Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures for Sampling
2.1.1. Preparation of Inoculum
2.1.2. Experimental Design
2.1.3. Microbiological Analysis
2.1.4. E. coli O157: H7 Enrichment Technique
2.1.5. Measurement of pH and Eh Values
2.1.6. Carbon Dioxide and Oxygen Measurements
2.1.7. Statistical Analysis
3. Results
3.1. Effect of Packaging Atmosphere, OEO, and Storage Temperatures on Growth/Survival of E. coli O157:H7 on Ready-to-Eat Smoked Turkey
3.2. E. coli O157:H7 in Ready-to-Eat Smoked Turkey
3.3. The Development of Endogenous Flora in Packaging Smoked Turkey During Storage at Different Temperature Regimes
3.4. pH and Redox Values in Smoked Turkey
3.5. MAP Gases Alterations in MAP and MAPEO Smoked Turkey at Different Storage Systems
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- Han, J.H. Antimicrobial food packaging. Food Technol. 2000, 54, 56–65. [Google Scholar]
- Han, J.H. Antimicrobial packaging materials and films. In Novel Food Packaging Techniques; Ahvenainen, R., Ed.; Woodhead Publishing Ltd: Cambridge, UK, 2003; pp. 50–70. [Google Scholar]
- Han, J.H. Design of antimicrobial packaging systems. Int. Rev. Food Sci. Technol. 2003, 11, 106–109. [Google Scholar]
- Ekonomou, S.I.; Bulut, S.; Karatzas, K.A.G.; Boziaris, I.S. Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102427. [Google Scholar] [CrossRef]
- Sahraee, S.; Regenstein, J.M.; Kafil, H.S. Protection of foods against oxidative deterioration using edible films and coatings: A review. Food Biosci. 2019, 32, 100451. [Google Scholar] [CrossRef]
- Wells, J.B.G.; Davis, B.R.; Wachsmuth, I.K.; Riley, L.W.; Remis, R.S.; Sokolow, R.; Morris, G.K. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J. Clin. Microbiol. 1983, 18, 512–520. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Zhao, S.; Doyle, M.P. Virulence genes of Shiga toxin-producing Escherichia coli isolated from food, animals, and humans. Int. J. Food Microbiol. 1998, 45, 229–235. [Google Scholar] [CrossRef]
- Blanco, M.; Blanco, J.E.; Mora, A.; Rey, J.; Alonso, J.M.; Hermoso, M.; Hermoso, J.; Alonso, M.P.; Dahbi, G.; González, E.A.; et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from healthy sheep in Spain. J. Clin. Microbiol. 2003, 41, 1351–1365. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Mosci, R.E.; Anderson, C.M.; Snyder, B.A.; Collins, J.; Rudrik, J.T.; Manning, S.D. Antimicrobial drug–resistant shiga toxin–producing Escherichia coli Infections, MI, USA. Emerg. Infect. Dis. 2017, 23, 1609–1611. [Google Scholar] [CrossRef] [Green Version]
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef]
- Tarr, P.I. Escherichia coli 0157:H7: Clinical, diagnostic and epidemiological aspects of human infection. Clin. Infect. Dis. 1995, 20, 1–10. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Amézquita-López, B.A.; Quiñones, B.; Soto-Beltrán, M.; Lee, B.G.; Yambao, J.C.; Lugo-Melchor, O.Y. Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and non-O157 recovered from domestic farm animals in rural communities in northwestern Mexico. Antimicrob. Resist. Infect. Control 2016, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, A.; Blanco, J.E.; Blanco, M.; Alonso, M.P.; Dhabi, G.; Echeita, A. Antimicrobial resistance of Shiga toxin (verotoxin)–producing Escherichia coli O157:H7 and non-O157 strains isolated from humans, cattle, sheep and food in Spain. Res. Microbiol. 2005, 156, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Strachan, N.J.C.; Doyle, M.P.; Kasuga, F.; Rotariu, O.; Ogden, I.D. Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. Int. J. Food Microbiol. 2005, 103, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Introduction, background and conclusions: Background and objectives. In Proceedings of the International Workshop on Heat Resistance of Pathogenic Organisms, International Dairy Federation, Brussels, Belgium, 2004; p. 14. [Google Scholar]
- ICMSF. International Commission on Microbiological Specifications for Foods Microorganisms in foods 7: Microbiologic Testing Food Safety Management; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2008. [Google Scholar]
- Shekarforoush, S.S.; Nazer, A.H.K.; Firouzi, R.; Rostami, M. Effects of storage temperatures and essential oils of oregano and nutmeg on the growth and survival of Escherichia coli O157:H7 in barbecued chicken used in Iran. Food Control 2007, 18, 1428–1433. [Google Scholar] [CrossRef]
- Tamplin, M.L. Growth of Escherichia coli O157:H7 in raw ground beef stored at 10 °C and the influence of competitive bacteria flora, strain variation, and fat level. J. Food Prot. 2008, 65, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Barrera, O.; Rodríguez-Calleja, J.M.; Santos, J.A.; Otero, A.; García-López, M.L. Effect of different storage conditions on E. coli O157:H7 and the indigenous bacterial microflora on lamb meat. Int. J. Food Microbiol. 2007, 115, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Vold, V.; Holck, A.; Wasteson, Y.; Nissen, H. High levels of background flora inhibits growth of Escherichia coli O157:H7 in ground beef. Int. J. Food Microbiol. 2000, 56, 219–225. [Google Scholar] [CrossRef]
- Silva, J.P.L.; Duarte-Almeida, J.M.; Perez, D.V.; Franco, B.D.G.M. Óleo essencial de orégano: Interferência da composição química na atividade frente a Salmonella enteritidis. Cienc. Tecnol. Aliment. 2010, 30, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Souza, G.T.; De Carvalho, R.J.; De Sousa, J.P.; Tavares, J.F.; Schaffner, D.; De Souza, E.L.; Magnani, M. Effects of the essential oil from Origanum vulgare L. on survival of pathogenic bacteria and starter lactic acid bacteria in semihard cheese broth and slurry. J. Food Prot. 2016, 79, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Tappi, S.; Rocculi, P.; Gardini, F.; Lanciotti, F. Natural antimicrobials to prolong the shelf-life of minimally processed lamb’s lettuce. Postharvest Biol. Technol. 2015, 103, 35–44. [Google Scholar] [CrossRef]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C. Biological and pharmaceutical activities of carvacrol and carvacrol bearing essential oil. Curr. Pharm. Des. 2008, 14, 3106–3120. [Google Scholar] [CrossRef]
- Rubilar, J.F.; Cruz, R.M.S.; Silva, H.D.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J. Food Eng. 2013, 115, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Cattelan, M.G.; Nishiyama, Y.P.O.; Gonçalves, T.M.V.; Coelho, A.R. Combined effects of oregano essential oil and salt on the growth of Escherichia coli in salad dressing. Food Microbiol. 2018, 73, 305–310. [Google Scholar] [CrossRef]
- Beuchat, R.E.; Ryu, J.H. Produce handling and processing practices. Emerg. Infect. Dis. 1997, 3, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Pandit, V.A.; Shelef, L.A. Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiol. 1994, 11, 57–63. [Google Scholar] [CrossRef]
- Solomakos, N.; Govaris, A.; Koidis, P.; Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157:H7 in minced beef during refrigerated storage. Meat Sci. 2008. [Google Scholar] [CrossRef]
- Li, Q.; Logue, C.M. The growth and survival of Escherichia coli O157:H7 on minced bison and pieces of bison meat stored at 5 and 10 °C. Food Microbiol. 2005, 22, 415–421. [Google Scholar] [CrossRef]
- Erickson, J.P.; Stamer, J.W.; Hayes, M.; McKenna, D.N.; Van Alstin, L.A. An assessment of Escherichia coli O157:H7 contamination risks in commercial mayonnaise from pasteurized eggs and environmental sources, and behavior in low-pH dressings. J. Food Prot. 1995, 58, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; Reinders, R.D. Antimicrobial activity selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conner, D.E.; Beuchat, L.R. Effects of essential oils from plants on growth of food spoilage yeasts. J. Food Sci. 1984, 49, 429–434. [Google Scholar] [CrossRef]
- Martin-Sanchez, A.M.; Chaves-Lopez, C.; Sendra, E.; Sayas, E.; Fenandez-Lopez, J.; Perez-Alvarez, J.A. Lipolysis, proteolysis and sensory characteristics of a Spanish fermented dry-cured meat product (salchichon) with oregano essential oil used as surface mold inhibitor. Meat Sci. 2011, 89, 35–44. [Google Scholar] [CrossRef]
- Champagne, C.P. Inhibition of psychrotrophic bacteria in raw milk by immobilized lactic acid bacteria. Biotech. Lett. 1990, 12, 771–776. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.-M.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.L.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) oil as a potential alternative to antibiotics in poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef]
- Mahgoub, S.A.M.; Abd El-Hack, M.E.; Saadeldin, I.M.; Hussein, M.A.; Swelum, A.A.; Alagawany, M. Impact of Rosmarinus officinalis cold-pressed oil on health, growth performance, intestinal bacterial populations, and immunocompetence of Japanese quail. Poult. Sci. 2019, 89, 2139–2149. [Google Scholar] [CrossRef]
- Kishawy, A.T.Y.; Amer, S.A.; Abd El-Hack, M.E.; Saadeldin, I.M.; Swelum, A.A. The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian-Australas. J. Anim. Sci. 2019, 32, 1161–1171. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Abd El-Hack, M.E.; Mahgoub, S.A.; Saadeldin, I.M.; Swelum, A.A. Effects of clove (Syzygium aromaticum) oil on quail growth, carcass traits, blood components, meat quality and intestinal microbiota. Poult. Sci. 2019, 98, 319–329. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Hussein, M.M.A.; Saadeldin I, M. Improving growth performance and health status of meat-type quail by supplementing the diet with black cumin cold-pressed oil as a natural alternative for antibiotics. Environ. Sci. Pollut. Res. 2018, 25, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Alagawany, M.; Ragab Farag, M.; Tiwari, R.; Karthik, K.; Dhama, K.; Adel, M. Beneficial impacts of thymol essential oil on health and production of animals, fish and poultry: A review. J. Essent. Oil Res. 2016, 28, 365–382. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Shaheen, H.M.; Abdel-Latif, M.A.; Noreldin, A.E.; Patra, A.K. The usefulness of oregano and its derivatives in poultry nutrition. World’s Poult. Sci. J. 2018, 74, 463–474. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Shaheen, H.M.; Abdel-Latif, M.A.; Noreldin, A.E.; Khafaga, A.F. The applications of Origanum vulgare and its derivatives in human, ruminant and fish nutrition–a review. Ann. Anim. Sci. 2020, 20, 389–407. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahgoub, S.A.; Abd El-Hack, M.E.; Mulla, Z.S.; El-Ghareeb, W.R.; Taha, A.E.; Al-Ghadi, M.Q.; Alhimaidi, A.R.; Amran, R.A.; Almutairi, B.; Tufarelli, V.; et al. Improving the Quality of Turkey Meat via Storage Temperature, Packaging Atmosphere, and Oregano (Origanum vulgare) Essential Oil Addition. Agriculture 2020, 10, 463. https://doi.org/10.3390/agriculture10100463
Mahgoub SA, Abd El-Hack ME, Mulla ZS, El-Ghareeb WR, Taha AE, Al-Ghadi MQ, Alhimaidi AR, Amran RA, Almutairi B, Tufarelli V, et al. Improving the Quality of Turkey Meat via Storage Temperature, Packaging Atmosphere, and Oregano (Origanum vulgare) Essential Oil Addition. Agriculture. 2020; 10(10):463. https://doi.org/10.3390/agriculture10100463
Chicago/Turabian StyleMahgoub, Samir A., Mohamed E. Abd El-Hack, Zohair S. Mulla, Waleed R. El-Ghareeb, Ayman E. Taha, Muath Q. Al-Ghadi, Ahmad R. Alhimaidi, Ramzi A. Amran, Bader Almutairi, Vincenzo Tufarelli, and et al. 2020. "Improving the Quality of Turkey Meat via Storage Temperature, Packaging Atmosphere, and Oregano (Origanum vulgare) Essential Oil Addition" Agriculture 10, no. 10: 463. https://doi.org/10.3390/agriculture10100463
APA StyleMahgoub, S. A., Abd El-Hack, M. E., Mulla, Z. S., El-Ghareeb, W. R., Taha, A. E., Al-Ghadi, M. Q., Alhimaidi, A. R., Amran, R. A., Almutairi, B., Tufarelli, V., & Swelum, A. A. (2020). Improving the Quality of Turkey Meat via Storage Temperature, Packaging Atmosphere, and Oregano (Origanum vulgare) Essential Oil Addition. Agriculture, 10(10), 463. https://doi.org/10.3390/agriculture10100463