The Eucalyptus Firewood: Understanding Consumers’ Behaviour and Motivations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection, Sample and Questionnaire
2.2. Statistical Analysis
- The first step: Building up of the simplest two level model.
- The second step: Building of the intermediate model.
- The third step: Building up the full model.
3. Results and Discussion
3.1. Descriptive Statistics
3.2. The Full Multilevel Logistic Regression Model
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bayle, G.K. Ecological and social impacts of eucalyptus tree plantation on the environment. J. Biodivers. Conserv. Bioresour. Manag. 2019, 5, 93–104. [Google Scholar] [CrossRef]
- Sgroi, F.; Di Trapani, A.M.; Foderà, M.; Testa, R.; Tudisca, S. Economic assessment of Eucalyptus (spp.) for biomass production as alternative crop in Southern Italy. Renew. Sustain. Energy Rev. 2015, 44, 614–619. [Google Scholar] [CrossRef]
- Boothroyd-Roberts, K.; Gagnon, D.; Truax, B. Hybrid poplar plantations are suitable habitat for reintroduced forest herbs with conservation status. SpringerPlus 2013, 2, 507. [Google Scholar] [CrossRef] [Green Version]
- Burrows, W.H.; Henry, B.K.; Back, P.V.; Hoffmann, M.B.; Tait, L.J.; Anderson, E.R.; Menke, N.; Danaher, T.; Carter, J.O.; McKeon, G.M. Growth and carbon stock change in eucalypt woodlands in northeast Australia: Ecological and greenhouse sink implications. Glob. Chang. Biol. 2002, 8, 769–784. [Google Scholar] [CrossRef]
- Du, H.; Zeng, F.; Peng, W.; Wang, K.; Zhang, H.; Liu, L.; Song, T. Carbon storage in a Eucalyptus plantation chronosequence in Southern China. Forests 2015, 6, 1763–1778. [Google Scholar] [CrossRef] [Green Version]
- Pettenella, D.; Masiero, M. Una Nuova Economia del Legno-Arredo tra Industria, Energia e Cambiamento Climatico; Gargiulo, T.Z.R., Ed.; FrancoAngeli: Monza, Italy, 2007. [Google Scholar]
- Deidda, A.; Buffa, F.; Linaldeddu, B.T.; Pinna, C.; Scanu, B.; Deiana, V.; Satta, A.; Franceschini, A.; Floris, I. Emerging pests and diseases threaten eucalyptus camaldulensis plantations in Sardinia, Italy. iForest Biogeosci. For. 2016, 9, 883–891. [Google Scholar] [CrossRef]
- Pari, L.; Bergonzoli, S.; Suardi, A.; Scarfone, A.; Alfano, V.; Mattei, P.; Lazar, S. Produttività dell’eucalipto Un impianto quinquennale in Italia centrale. Sherwood-Foreste ed Alberi Oggi 2019, 241, 70–72. [Google Scholar]
- Mughini, G.; Rosso, L. Selezioni di cloni di eucalitto per la destinazione da biomassa. Sherwood-Foreste ed Alberi Oggi 2017, 45–52. [Google Scholar]
- Mughini, G. Suggestions for sustainable Eucalyptus clonal cultivation in Mediterranean climate areas of central and southern Italy. For. Riv. Selvic. Ed. Ecol. For. 2016, 13, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Pierobon, F.; Zanetti, M. Life cycle environmental impact of firewood production—A case study in Italy. Appl. Energy 2015, 150, 185–195. [Google Scholar] [CrossRef]
- Caserini, S.; Fraccaroli, A.; Monguzzi, A.; Moretti, M.; Angelino, E. Stima dei Consumi di Legna da Ardere per Riscaldamento ed Uso Domestico in Italia [Estimation of the Domestical Firewood Consumption in Italy]; Agenzia Nazionale per la Protezione dell’Ambiente e per i Servizi Tecnici (APAT), Agenzia Regionale per la Protezione dell’Ambiente (ARPA): Milano, Italy, 2008; p. 60. [Google Scholar]
- Mairota, P.; Manetti, M.C.; Amorini, E.; Pelleri, F.; Terradura, M.; Frattegiani, M.; Savini, P.; Grohmann, F.; Mori, P.; Terzuolo, P.G.; et al. Opportunities for coppice management at the landscape level: The Italian experience. iForest Biogeosci. For. 2016, 9, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, G.; Florindo, T.; Talamini, E.; Fett Neto, A.; Ruviaro, C. Optimising Tree Plantation Land Use in Brazil by Analysing Trade-Offs between Economic and Environmental Factors Using Multi-Objective Programming. Forests 2020, 11, 723. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Pais, C.; Bachmatiuk, J.; Barreiro, S.; Weintraub, A. A progressive hedging approach to solve harvest scheduling problem under climate change. Forests 2020, 11, 224. [Google Scholar] [CrossRef] [Green Version]
- Luwesi, C.N.; Obando, J.A.; Shisanya, C.A. The Impact of a Warming Micro-Climate on Muooni Farmers of Kenya. Agriculture 2017, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Simioni, F.J.; de Almeida Buschinelli, C.C.; Moreira, J.M.M.Á.P.; dos Passos, B.M.; Girotto, S.B.F.T. Forest biomass chain of production: Challenges of small-scale forest production in southern Brazil. J. Clean. Prod. 2018, 174, 889–898. [Google Scholar] [CrossRef]
- Cuong, T.; Chinh, T.T.Q.; Zhang, Y.; Xie, Y. Economic Performance of Forest Plantations in Vietnam: Eucalyptus, Acacia mangium, and Manglietia conifera. Forests 2020, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Mastronardi, L.; Romagnoli, L.; Mazzocchi, G.; Giaccio, V.; Marino, D. Understanding consumer’s motivations and behaviour in alternative food networks. Br. Food J. 2019. [Google Scholar] [CrossRef]
- Botti, S.; McGill, A.L. The locus of choice: Personal causality and satisfaction with hedonic and utilitarian decisions. J. Consum. Res. 2011, 37, 1065–1078. [Google Scholar] [CrossRef]
- Palmieri, N.; Perito, M.A.; Lupi, C. Consumer Acceptance of Cultured Meat: Some Hints from Italy. Br. Food J. 2020. [Google Scholar] [CrossRef]
- Mughini, G.; Gras, M.; Salvati, L.; Filippelli, S.; Tanchis, U. Velino and Viglio: Two eucalypt hybrid clones for Italy. Sherwood-Foreste ed Alberi Oggi 2012, 187, 41–45. [Google Scholar]
- Palmieri, N.; Suardi, A.; Pari, L. Italian consumers’ willingness to pay for eucalyptus firewood. Sustainability 2020, 12, 2629. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, N.; Perito, M.A. Consumers’ Willingness To Consume Sustainable and Local Wine in Italy. Ital. J. Food Sci. 2020, 32, 222–233. [Google Scholar]
- Palmieri, N.; Perito, M.A.; Macrì, M.C.; Lupi, C. Exploring consumers’ willingness to eat insects in Italy. Br. Food J. 2019, 121, 2937–2950. [Google Scholar] [CrossRef]
- Aguilar, F.X.; Cai, Z. Conjoint effect of environmental labeling, disclosure of forest of origin and price on consumer preferences for wood products in the US and UK. Ecol. Econ. 2010, 70, 308–316. [Google Scholar] [CrossRef]
- Wöhler, M.; Andersen, J.S.; Becker, G.; Persson, H.; Reichert, G.; Schön, C.; Schmidl, C.; Jaeger, D.; Pelz, S.K. Investigation of real life operation of biomass room heating appliances—Results of a European survey. Appl. Energy 2016, 169, 240–249. [Google Scholar] [CrossRef]
- Adapa, S. Factors influencing consumption and anti-consumption of recycled water: Evidence from Australia. J. Clean. Prod. 2018, 201, 624–635. [Google Scholar] [CrossRef]
- Paletto, A.; Notaro, S.; Pastorella, F.; Giacovelli, G.; Giovannelli, S.; Turco, R. Certificazione forestale in Calabria: Attitudini, preferenze e disponibilità a pagare delle imprese di seconda trasformazione del legno. For. Silvic. For. Ecol. 2017, 14, 107. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.L.; Jakus, P.M.; English, B.C.; Menard, J. Consumers’ willingness to pay for eco-certified wood products. J. Agric. Appl. Econ. 2004, 36, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Altamore, L.; Ingrassia, M.; Columba, P.; Chironi, S.; Bacarella, S. Italian Consumers’ Preferences for Pasta and Consumption Trends: Tradition or Innovation? J. Int. Food Agribus. Mark. 2020, 32, 337–360. [Google Scholar] [CrossRef]
- Ceschi, S.; Canavari, M.; Castellini, A. Consumer’s Preference and Willingness to Pay for Apple Attributes: A Choice Experiment in Large Retail Outlets in Bologna (Italy) Consumer’s Preference and Willingness to Pay for Apple Attributes: A Choice Experiment in Large Retail Outlets in Bol. J. Int. Food Agribus. Mark. 2018, 30, 305–322. [Google Scholar] [CrossRef]
- Ingrassia, M.; Sgroi, F.; Tudisca, S.; Chironi, S. Study of Consumer Preferences in Regard to the Blonde Orange Cv. Washington Navel “Arancia Di Ribera PDO”. J. Food Prod. Mark. 2017, 23, 799–816. [Google Scholar] [CrossRef]
- Marinda, P.A. Child–mother nutrition and health status in rural Kenya: The role of intra-household resource allocation and education. Int. J. Consum. Stud. 2006, 30, 327–336. [Google Scholar] [CrossRef]
- Shi, S.; Li, H.; Ding, X.; Gao, X. Effects of household features on residential window opening behaviors: A multilevel logistic regression study. Build. Environ. 2020, 170, 106610. [Google Scholar] [CrossRef]
- Ruscone, M.N. Utilizzo dell’ICC Come Indicatore dell’Esistenza di Una Struttura Gerarchica; Università Cattolica del Sacro Cuore, Dipartimento di Scienze Statistiche: Milano, Italy, 2012; pp. 1–28. [Google Scholar]
- Iezzi, E. Modelli multilivello a scelta binaria: I vantaggi di una loro applicazione ai dati sanitari. Politiche Sanit. 2009, 10, 69–78. [Google Scholar]
- Bacci, S.; Chiandotto, B. Mobilità Dei Laureati per Motivi di Lavoro: UN’ Analisi Multilivello. Stat. Appl. 2007, 19, 5–40. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hiser, J.; Nayga, R.M.; Capps, O. An exploratory analysis of familiarity and willingness to use online food shopping services in a local area of Texas. J. Food Distrib. Res. 1999, 30, 78–90. [Google Scholar]
- Seo, S.; Kim, O.Y.; Oh, S.; Yun, N. Influence of informational and experiential familiarity on image of local foods. Int. J. Hosp. Manag. 2013, 34, 295–308. [Google Scholar] [CrossRef]
- Tan, H.S.G.; van den Berg, E.; Stieger, M. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Qual. Prefer. 2016, 52, 222–231. [Google Scholar] [CrossRef]
- Jang, S.C.S.; Kim, D.H. Enhancing ethnic food acceptance and reducing perceived risk: The effects of personality traits, cultural familiarity, and menu framing. Int. J. Hosp. Manag. 2015, 47, 85–95. [Google Scholar] [CrossRef]
- Van Kempen, L.; Muradian, R.; Sandóval, C.; Castañeda, J.P. Too poor to be green consumers? A field experiment on revealed preferences for firewood in rural Guatemala. Ecol. Econ. 2009, 68, 2160–2167. [Google Scholar] [CrossRef]
- Johnson, E.J.; Russo, J.E. Product familiarity and learning new information. J. Consum. Res. 1984, 11, 542–550. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; De Vries, P.W. Everyday behaviour and everyday risk: An approach to study people’s responses to frequently encountered food related health risks. Health. Risk Soc. 2008, 10, 385–397. [Google Scholar] [CrossRef]
- Iannuzzi, E.; Sisto, R.; Nigro, C. The willingness to consume insect-based food: An empirical research on italian consumers. Agric. Econ. 2019, 65, 454–462. [Google Scholar] [CrossRef]
- Ryynänen, T.; Heinonen, V. From nostalgia for the recent past and beyond: The temporal frames of recalled consumption experiences. Int. J. Consum. Stud. 2018, 42, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Aguilar, F.X.; Vlosky, R.P. Consumer willingness to pay price premiums for environmentally certified wood products in the US. For. Policy Econ. 2007, 9, 1100–1112. [Google Scholar] [CrossRef]
- Vásquez Lavin, F.; Barrientos, M.; Castillo, Á.; Herrera, I.; Ponce Oliva, R.D. Firewood certification programs: Key attributes and policy implications. Energy Policy 2020, 137, 111160. [Google Scholar] [CrossRef]
AIC | BIC | LogLik | |||
---|---|---|---|---|---|
300.3 | 307.2 | −148.1 | |||
Random effects | σ1 = 0.38 | σ2 = 0.62 | |||
Fixed effects | Value | Standard Error | z value | p-value | |
Intercept | 0.51 | 0.1739 | 2.965 | <0.001 | |
Note: The AIC (Akaike information criterion) and the BIC (Bayesian information criterion) are the well-known model fit indices. |
Model | df | AIC | BIC | LogLik | LRT | p-Value |
---|---|---|---|---|---|---|
Simplest two level model | 2 | 300.3 | 307.2 | −148.1 | ||
Intermediate model | 11 | 187.6 | 225.5 | −82.8 | 130.7 | <0.0001 |
Note: The AIC (Akaike information criterion) and the BIC (Bayesian information criterion) are the well-known model fit indices. |
AIC | BIC | LogLik | |||
---|---|---|---|---|---|
187.6 | 225.5 | −82.8 | |||
Random effects | σ1 = 0.37 | σ2 = 0.60 | |||
Fixed effects | Value | Standard Error | z value | p-value | |
Intercept | −2.06 | 1.29 | −1.59 | n.s. | |
Prov | 0.99 | 0.27 | 3.56 | <0.0001 | |
Origin | −0.88 | 0.32 | −2.73 | <0.001 | |
Familiarity | 1.26 | 0.50 | 2.51 | <0.01 | |
Cons | 1.81 | 0.57 | 3.18 | <0.001 | |
Will_q | 0.05 | 0.01 | 3.32 | <0.0001 | |
Curiosity | 0.57 | 0.15 | 3.61 | <0.0001 | |
Energetic | 0.71 | 0.21 | 3.25 | <0.001 | |
Age | −0.05 | 0.01 | −2.85 | <0.001 | |
Note: n.s. means that variable is not significant. The AIC (Akaike information criterion) and the BIC (Bayesian information criterion) are the well-known model fit indices. |
Model | df | AIC | BIC | LogLik | LRT | p-Value |
---|---|---|---|---|---|---|
Intermediate model | 11 | 187.6 | 225.5 | −82.8 | ||
Full Model | 21 | 177.5 | 249.8 | −67.7 | 30.008 | <0.0001 |
Note: The AIC (Akaike information criterion) and the BIC (Bayesian information criterion) are the well-known model fit indices. |
No | Label Variables | Description | Mean Value (M) and Standard Deviation (SD) |
---|---|---|---|
1 | Will | Willingness to consume domestic eucalyptus firewood (Yes = 1; No = 0) | M: 0.64; SD: 0.36 |
1st level variables | |||
2 | Prov | The degree to which consumers pay attention to provenience of firewood (i.e., if firewood comes from tropical countries or Mediterranean ones) | M: 3.53; SD: 1.35 |
3 | Origin | The degree to which consumers pay attention to origin of firewood (i.e., if firewood comes from an agro-forestry plant or natural woodland) | M: 3.65; SD: 1.35 |
4 | Familiarity | The familiarity with eucalyptus firewood (Yes = 1; No = 0) | M: 0.44; SD: 0.56 |
5 | Cons | Consume eucalyptus firewood in the past (Yes = 1; No = 0) | M: 0.17; SD: 0.38 |
6 | Will_q | The quantity of eucalyptus firewood that they were willingness to consume (quintals) | M: 14.53; SD: 31.89 |
7 | Curiosity | The degree to which consumers are willing to consume eucalyptus firewood for curiosity | M: 3.00; SD: 1.63 |
8 | Energetic | The degree to which consumers are willing to consume eucalyptus firewood for its energetic characteristics | M: 3.85; SD: 1.15 |
9 | Age | Consumer age | M: 42.95; SD:12.21 |
2nd level variable | |||
10 | Forn | The eucalyptus firewood supply methods, i.e., firewood in 10–15 kg bags (1), loose firewood (2), and (3) firewood arranged in pallets | M: 1.93; SD: 0.64 |
Prov | Origin | Familiarity | Cons | Will | Will_q | Forn | Curiosity | Energetic | Age | |
---|---|---|---|---|---|---|---|---|---|---|
Prov | 1.00 | |||||||||
Origin | 0.40 | 1.00 | ||||||||
Familiarity | 0.23 | 0.27 | 1.00 | |||||||
Cons | 0.17 | 0.20 | 0.19 | 1.00 | ||||||
Will | 0.14 | 0.01 * | 0.15 * | 0.03 * | 1.00 | |||||
Will_q | 0.01 * | 0.05 | 0.08 * | 0.08 | 0.23 | 1.00 | ||||
Forn | 0.05 ** | 0.08 | 0.07 * | 0.04 | 0.10 ** | 0.12 ** | 1.00 | |||
Curiosity | 0.16 | 0.24 | 0.18 | 0.32 | 0.13 | 0.12 | 0.01 | 1.00 | ||
Energetic | 0.39 | 0.34 | 0.09 | 0.17 | 0.03 | 0.11 * | 0.06 ** | 0.04 * | 1.00 | |
Age | 0.03 | 0.08 ** | 0.15 | 0.11 | 0.04 | 0.01 | 0.05 | 0.21 | 0.09 ** | 1.00 |
AIC | BIC | LogLik | ||||
---|---|---|---|---|---|---|
177.5 | 249.8 | −67.7 | ||||
Random effects | σ1 = 0.23 | σ2 = 0.48 | ||||
Fixed effects | Value | Standard Error | z value | p-value | Odds’ Ratio | |
Intercept | −5.73 | 6.08 | −0.94 | n.s | - | |
1st level variables | ||||||
Prov | 2.44 | 1.44 | 1.68 | <0.05 | 3.03 | |
Origin | −2.74 | 1.73 | −1.58 | n.s. | - | |
Familiarity | 7.75 | 2.34 | 3.31 | <0.0001 | 5.9 | |
Cons | 9.18 | 2.72 | 3.37 | <0.0001 | 5.5 | |
Will_q | −0.04 | 0.09 | −0.49 | n.s. | - | |
Curiosity | 1.34 | 0.74 | 1.80 | <0.05 | 1.3 | |
Energetic | 3.12 | 1.08 | 2.88 | <0.001 | 2.1 | |
Age | −0.16 | 0.08 | −1.89 | <0.05 | −0.1 | |
2nd level variable | ||||||
Forn | 1.38 | 2.76 | 0.50 | <0.0001 | 2.2 | |
Note: n.s. means that variable is not significant. The AIC (Akaike information criterion) and the BIC (Bayesian information criterion) are the well-known model fit indices. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, N.; Suardi, A.; Latterini, F.; Pari, L. The Eucalyptus Firewood: Understanding Consumers’ Behaviour and Motivations. Agriculture 2020, 10, 512. https://doi.org/10.3390/agriculture10110512
Palmieri N, Suardi A, Latterini F, Pari L. The Eucalyptus Firewood: Understanding Consumers’ Behaviour and Motivations. Agriculture. 2020; 10(11):512. https://doi.org/10.3390/agriculture10110512
Chicago/Turabian StylePalmieri, Nadia, Alessandro Suardi, Francesco Latterini, and Luigi Pari. 2020. "The Eucalyptus Firewood: Understanding Consumers’ Behaviour and Motivations" Agriculture 10, no. 11: 512. https://doi.org/10.3390/agriculture10110512
APA StylePalmieri, N., Suardi, A., Latterini, F., & Pari, L. (2020). The Eucalyptus Firewood: Understanding Consumers’ Behaviour and Motivations. Agriculture, 10(11), 512. https://doi.org/10.3390/agriculture10110512