Factors Determining Farmers’ Access to and Sources of Credit: Evidence from the Rain-Fed Zone of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Sampling
2.3. Variables and Expectations
2.4. Binary Logit Model
2.5. Multinomial Logit Model
3. Results and Discussion
3.1. Sample Overview and Summary Statistics
3.2. Association of Credit Access and Technology Adoption
3.3. Farmers’ Perceptions of the Factors Affecting Their Access to Multiple Credit Sources and Adoption
3.4. Determinants of Farmers’ Access to Credit
3.5. Determinants of Farmers’ Choice of Credit Sources for the Adoption of Agricultural Technologies
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmood, N.; Arshad, M.; Kaechele, H.; Ma, H.; Ullah, A.; Müller, K. Wheat yield response to input and socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Sci. Total Environ. 2019, 688, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Mainuddin, M.; Khaliq, T.; Cheema, M.J.M. Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050. Agric. Water Manag. 2017, 179, 34–46. [Google Scholar] [CrossRef]
- Mellor, J.W.; Malik, S.J. The impact of growth in small commercial farm productivity on rural poverty reduction. World Dev. 2017, 91, 1–10. [Google Scholar] [CrossRef]
- Mahmood, N.; Arshad, M.; Kaechele, H.; Shahzad, M.F.; Ullah, A.; Mueller, K. Fatalism, Climate Resiliency Training and Farmers’ Adaptation Responses: Implications for Sustainable Rainfed-Wheat Production in Pakistan. Sustainability 2020, 12, 1650. [Google Scholar] [CrossRef] [Green Version]
- Chandio, A.A.; Jiang, Y. Determinants of Credit Constraints: Evidence from Sindh, Pakistan. Emerg. Mark. Financ. Trade 2018, 54, 3401–3410. [Google Scholar] [CrossRef]
- Gentle, P.; Maraseni, T.N. Climate change, poverty and livelihoods: Adaptation practices by rural mountain communities in Nepal. Environ. Sci. Policy 2012, 21, 24–34. [Google Scholar] [CrossRef]
- Tippe, D.E.; Rodenburg, J.; Schut, M.; van Ast, A.; Kayeke, J.; Bastiaans, L. Farmers’ knowledge, use and preferences of parasitic weed management strategies in rain-fed rice production systems. Crop Prot. 2017, 99, 93–107. [Google Scholar] [CrossRef]
- Mahmood, N.; Arshad, M.; Kaechele, H.; Ullah, A.; Müller, K. Economic efficiency of rainfed wheat farmers under changing climate: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 34453–34467. [Google Scholar] [CrossRef]
- Wossen, T.; Alene, A.; Abdoulaye, T.; Feleke, S.; Rabbi, I.Y.; Manyong, V. Poverty reduction effects of agricultural technology adoption: The case of improved cassava varieties in Nigeria. J. Agric. Econ. 2019, 70, 392–407. [Google Scholar] [CrossRef]
- Ali, A.; Rahut, D.B.; Behera, B.; Imtiaz, M. Farmers’ access to certified wheat seed and its effect on poverty reduction in Pakistan. J. Crop Improv. 2015, 29, 247–265. [Google Scholar] [CrossRef]
- Ullah, A.; Arshad, M.; Kächele, H.; Zeb, A.; Mahmood, N.; Müller, K. Socio-economic analysis of farmers facing asymmetric information in inputs markets: Evidence from the rainfed zone of Pakistan. Technol. Soc. 2020, 63, 101405. [Google Scholar] [CrossRef]
- Elahi, E.; Abid, M.; Zhang, L.; ul Haq, S.; Sahito, J.G.M. Agricultural advisory and financial services; farm level access, outreach and impact in a mixed cropping district of Punjab, Pakistan. Land Use Policy 2018, 71, 249–260. [Google Scholar] [CrossRef]
- Ullah, A.; Arshad, M.; Kachele, H.; Khan, A.; Mahmood, N.; Müller, K. Information asymmetry, input markets, adoption of innovations and agricultural land use in Khyber Pakhtunkhwa, Pakistan. Land Use Policy 2020, 90, 104261. [Google Scholar] [CrossRef]
- Lakhan, G.R.; Channa, S.A.; Magsi, H.; Koondher, M.A.; Wang, J.; Channa, N.A. Credit constraints and rural farmers’ welfare in an agrarian economy. Heliyon 2020, 6, e05252. [Google Scholar]
- Abdallah, A.H. Agricultural credit and technical efficiency in Ghana: Is there a nexus? Agric. Financ. Rev. 2016, 76, 309–324. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Wei, F.; Rehman, A.; Liu, D. Famers’ access to credit: Does collateral matter or cash flow matter?—Evidence from Sindh, Pakistan. Cogent Econ. Financ. 2017, 5, 1369383. [Google Scholar] [CrossRef]
- Hussain, A.; Thapa, G.B. Smallholders’ access to agricultural credit in Pakistan. Food Secur. 2012, 4, 73–85. [Google Scholar] [CrossRef]
- Burton, M.; Fileccia, T.; Gulliver, A.; Qamar, M.; Tayyab, A. Pakistan: Priority Areas for Investment in the Agricultural Sector. FAO Investment Centre, Country Highlights (FAO). 2012. Available online: http://www.fao.org/3/i2879e/i2879e.pdf (accessed on 27 September 2020).
- e Saqib, S.; Ahmad, M.M.; Panezai, S.; Ali, U. Factors influencing farmers’ adoption of agricultural credit as a risk management strategy: The case of Pakistan. Int. J. Disaster Risk Reduct. 2016, 17, 67–76. [Google Scholar] [CrossRef]
- Karaivanov, A.; Kessler, A. (Dis)advantages of informal loans—Theory and evidence. Eur. Econ. Rev. 2018, 102, 100–128. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Gessesse, A.T.; Dunya, R. The nexus of agricultural credit, farm size and technical efficiency in Sindh, Pakistan: A stochastic production frontier approach. J. Saudi Soc. Agric. Sci. 2019, 18, 348–354. [Google Scholar] [CrossRef]
- Nouman, M.; Siddiqi, M.; Asim, S.; Hussain, Z. Impact of socio-economic characteristics of farmers on access to agricultural credit. Sarhad J. Agric. 2013, 29, 469–476. [Google Scholar]
- Rasheed, R.; Xia, L.C.; Ishaq, M.N.; Mukhtar, M.; Waseem, M. Determinants influencing the demand of microfinance in agriculture production and estimation of constraint factors: A case from south Region of Punjab Province, Pakistan. Int. J. Agric. Ext. Rural Dev. Stud. 2016, 3, 45–58. [Google Scholar]
- Saleem, M.A.; Jan, F.A. The impact of agricultural credit on agricultural productivity in Dera Ismail Khan (District) Khyber Pakhtonkhawa Pakistan. Eur. J. Bus. Manag. 2011, 3, 38–44. [Google Scholar]
- Rehman, A.; Chandio, A.A.; Hussain, I.; Jingdong, L. Is credit the devil in the agriculture? The role of credit in Pakistan’s agricultural sector. J. Financ. Data Sci. 2017, 3, 38–44. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Rehman, A. Credit margin of investment in the agricultural sector and credit fungibility: The case of smallholders of district Shikarpur, Sindh, Pakistan. Financ. Innov. 2018, 4, 27. [Google Scholar] [CrossRef]
- Ullah, A.; Khan, A. Effect of extension-farmers contact on farmers’ knowledge of different pest management practices in the rain-fed districts of Khyber Pakhtunkhwa, Pakistan. Sarhad J. Agric. 2019, 35, 602–609. [Google Scholar] [CrossRef]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967; p. 886. [Google Scholar]
- Hua, X.; Yan, J.; Zhang, Y. Evaluating the role of livelihood assets in suitable livelihood strategies: Protocol for anti-poverty policy in the Eastern Tibetan Plateau, China. Ecol. Indic. 2017, 78, 62–74. [Google Scholar] [CrossRef]
- Barslund, M.; Tarp, F. Formal and informal rural credit in four provinces of Vietnam. J. Dev. Stud. 2008, 44, 485–503. [Google Scholar] [CrossRef]
- Ojo, T.O.; Baiyegunhi, L.J.S. Determinants of credit constraints and its impact on the adoption of climate change adaptation strategies among rice farmers in South-West Nigeria. J. Econ. Struct. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Gujarati, D.N.; Porter, D.C. Basic Econometrics, 4th ed.; The MacGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Danso-Abbeam, G.; Baiyegunhi, L.J. Welfare impact of pesticides management practices among smallholder cocoa farmers in Ghana. Technol. Soc. 2018, 54, 10–19. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Zulfiqar, F.; Iqbal, M.N.; Shah, A.A. Disaster risk management in agriculture: Tragedies of the smallholders. Nat. Hazards 2017, 87, 1361–1375. [Google Scholar] [CrossRef]
- Saqib, S.E.; Kuwornu, J.K.M.; Panezia, S.; Ali, U. Factors determining subsistence farmers’ access to agricultural credit in flood-prone areas of Pakistan. Kasetsart J. Soc. Sci. 2018, 39, 262–268. [Google Scholar] [CrossRef]
- Kumar, A.; Das, R.; Aditya, K.S.; Bathla, S.; Jha, G.K. Examining institutional credit access among agricultural households in Eastern India: Trends, patterns and determinants. Agric. Financ. Rev. 2020. [Google Scholar] [CrossRef]
- Moahid, M.; Maharjan, K.L. Factors Affecting Farmers’ Access to Formal and Informal Credit: Evidence from Rural Afghanistan. Sustainability 2020, 12, 1268. [Google Scholar] [CrossRef] [Green Version]
- Kofarmata, Y.I.; Danlami, A.H. Determinants of credit rationing among rural farmers in developing areas. Agric. Financ. Rev. 2019, 9, 158–173. [Google Scholar] [CrossRef]
- Akhtar, S.; Li, G.; Nazir, A.; Razzaq, A.; Ullah, R.; Faisal, M.; Naseer, M.A.U.R.; Raza, M.H. Maize production under risk: The simultaneous adoption of off-farm income diversification and agricultural credit to manage risk. J. Integr. Agric. 2019, 18, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Belay, A.; Recha, J.W.; Woldeamanuel, T.; Morton, J.F. Smallholder farmers’ adaptation to climate change and determinants of their adaptation decisions in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2017, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Kebede, T.; Kassie, M.; Fisher, M. Market imperfections, access to information and technology adoption in Uganda: Challenges of overcoming multiple constraints. Agric. Econ. 2015, 46, 475–488. [Google Scholar] [CrossRef]
- Pal, D.; Laha, A.K. Credit off-take from formal financial institutions in rural India: Quantile regression results. Agric. Food Econ. 2014, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Abedullah, N.; Khalid, M.; Kouser, S. The role of agricultural credit in the growth of livestock sector: A case study of Faisalabad. Pakistan Vet. J. 2009, 29, 81–84. [Google Scholar]
Variables | With Access | Without Access | Test Statistics |
---|---|---|---|
Farmers socioeconomic attributes | Mean | Mean | t-test |
Age of household head | 49.16 (13.66) | 42.54 (15.24) | 4.374 *** |
Education of household head | 3.77 (5.12) | 3.56 (4.30) | 0.415 |
Household size | 13.11 (5.64) | 12.16 (5.74) | 1.570 |
Farm size | 29.79 (28.99) | 19.19 (14.43) | 3.970 *** |
Farming experience | 33.29 (13.67) | 25.82 (12.95) | 5.223 *** |
Monthly farm income | 33524.63 (32478.38) | 16860.13 (13881.54) | 5.658 *** |
Institutional and other factors | No. | No. | χ2-test |
Access to information | 97 (24.6) | 1 (0.3) | 62.056 *** |
Interest rate | 192 (48.6) | 129 (32.7) | 32.492 *** |
Asset status | 93 (13.5) | 13 (3.3) | 29.727 *** |
Credit sources | No. | - | Percentage (%) |
Banks | 47 | - | 11.90 |
Relatives and friends | 76 | - | 19.24 |
Inputs Providers | 139 | - | 35.19 |
No access | 133 | - | 33.67 |
Adoption Status | χ2-Test | Yule’s Q Test | |||
---|---|---|---|---|---|
Access | No Access | Total | χ2 Value | Yule’s Value | |
Adopters | 157 (39.7) | 30 (7.6) | 187 (47.3) | 94.411 *** | 0.674 |
Non-adopters | 105 (26.6) | 103 (26.1) | 208 (52.7) | ||
Total | 262 (66.3) | 133 (33.7) | 395 (100.0) |
Variables | Coefficient | Standard Error | Wald- χ2 | Odds Ratio |
---|---|---|---|---|
Farmers socioeconomic attributes | - | - | - | - |
Age of household head | 0.006 | 0.017 | 0.148 | 1.006 |
Education of household head | 0.022 | 0.030 | 0.554 | 1.022 |
Household size | 0.037 | 0.025 | 2.186 | 1.037 |
Farm size | 0.022 * | 0.013 | 2.745 | 1.022 |
Farming experience | −0.032 * | 0.018 | 3.098 | 0.968 |
Monthly farm income | 0.000 *** | 0.000 | 18.581 | 1.000 |
Institutional and other factors | - | - | - | - |
Access to information | 4.159 *** | 1.176 | 12.515 | 63.993 |
Interest rate | 0.737 | 0.681 | 1.172 | 2.091 |
Asset status | 1.017 *** | 0.432 | 5.542 | 2.765 |
Observations = 395 |
Variables | Friends and Relatives | Inputs Providers | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
Farmers socioeconomic attributes | - | - | - | - |
Age of household head | 0.049 | 0.052 | 0.090 * | 0.052 |
Education of household head | 0.056 | 0.072 | 0.162 ** | 0.072 |
Household size | 0.047 | 0.061 | −0.028 | 0.059 |
Farm size | −0.013 | 0.017 | 0.026 * | 0.015 |
Farming experience | −0.114 ** | 0.052 | −0.154 *** | 0.053 |
Monthly farm income | 0.000 | 0.000 | 0.000 *** | 0.000 |
Institutional and other factors | - | - | - | - |
Access to information | −4.281 *** | 0.821 | −4.208 *** | 0.855 |
Interest rate | 0.622 | 0.687 | 0.993 | 0.702 |
Asset status | −0.575 | 0.647 | −1.847 *** | 0.651 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Mahmood, N.; Zeb, A.; Kächele, H. Factors Determining Farmers’ Access to and Sources of Credit: Evidence from the Rain-Fed Zone of Pakistan. Agriculture 2020, 10, 586. https://doi.org/10.3390/agriculture10120586
Ullah A, Mahmood N, Zeb A, Kächele H. Factors Determining Farmers’ Access to and Sources of Credit: Evidence from the Rain-Fed Zone of Pakistan. Agriculture. 2020; 10(12):586. https://doi.org/10.3390/agriculture10120586
Chicago/Turabian StyleUllah, Ayat, Nasir Mahmood, Alam Zeb, and Harald Kächele. 2020. "Factors Determining Farmers’ Access to and Sources of Credit: Evidence from the Rain-Fed Zone of Pakistan" Agriculture 10, no. 12: 586. https://doi.org/10.3390/agriculture10120586
APA StyleUllah, A., Mahmood, N., Zeb, A., & Kächele, H. (2020). Factors Determining Farmers’ Access to and Sources of Credit: Evidence from the Rain-Fed Zone of Pakistan. Agriculture, 10(12), 586. https://doi.org/10.3390/agriculture10120586