Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (756)

Search Parameters:
Keywords = Khyber Pakhtunkhwa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2781 KB  
Article
Photocatalytic Degradation of Organophosphates Using Nanocrystalline ZnO Synthesized by Modified Sonochemical Method
by Jamshed Khan, Mshari A. Alotaibi, Israf Ud Din, Abdulrahman I. Alharthi, Tooba Saeed, Qazi Nasir, Ho Soon Min, Abdul Naeem, Md Afroz Bakht and Akil Ahmad
Catalysts 2025, 15(9), 820; https://doi.org/10.3390/catal15090820 - 28 Aug 2025
Viewed by 95
Abstract
Organophosphates, especially their ester, are not only toxic to humans but equally toxic to aquatic and other animal life on Earth when exposed to them. Here, we designed an efficient and easy way to degrade hexamethyl phosphoramide and omethoate organophosphate catalytically in a [...] Read more.
Organophosphates, especially their ester, are not only toxic to humans but equally toxic to aquatic and other animal life on Earth when exposed to them. Here, we designed an efficient and easy way to degrade hexamethyl phosphoramide and omethoate organophosphate catalytically in a natural way into non-toxic products. Both hexamethyl phosphoramide and omethoate are possible carcinogens and cause serious health issues in humans and other animals when exposed to them. In this work, a modified sonochemical method was used for the synthesis of ZnO nanoparticles using zinc acetate dihydrate, ethylenediamine dihydrochloride, and polyvinylpyrrolidone. Sodium hydroxide was used as the precipitating agent, and distilled water was used as the solvent. An Elmasonic ultra-sonicator with 240-watt power was used for the preparation of ZnO nanoparticles. The synthesized ZnO nanoparticles with a high surface area (250 m2/g), average particle size of 23 ± 1 nm, and a mesoporous structure with 1.858 nm average pore size were then used for the degradation of organophosphate, i.e., hexamethyl phosphoramide and omethoate pesticide, using 10 µL of concentration to check their catalytic efficiency for the first time. The degradation products were identified using gas chromatography–electron impact mass spectrometry (GC/EIMS). The results showed that omethoate was completely degraded, while hexamethyl phosphoramide showed partial degradation, both producing fewer toxic intermediates. Full article
Show Figures

Figure 1

28 pages, 1673 KB  
Review
Advancement of 3D Bioprinting Towards 4D Bioprinting for Sustained Drug Delivery and Tissue Engineering from Biopolymers
by Maryam Aftab, Sania Ikram, Muneeb Ullah, Shahid Ullah Khan, Abdul Wahab and Muhammad Naeem
J. Manuf. Mater. Process. 2025, 9(8), 285; https://doi.org/10.3390/jmmp9080285 - 21 Aug 2025
Viewed by 577
Abstract
The transition from three-dimensional (3D) to four-dimensional (4D)-bioprinting marks a significant advancement in tissue engineering and drug delivery. 4D-bioprinting offers the potential to more accurately mimic the adaptive qualities of living tissues due to its dynamic flexibility. Structures created with 4D-bioprinting can change [...] Read more.
The transition from three-dimensional (3D) to four-dimensional (4D)-bioprinting marks a significant advancement in tissue engineering and drug delivery. 4D-bioprinting offers the potential to more accurately mimic the adaptive qualities of living tissues due to its dynamic flexibility. Structures created with 4D-bioprinting can change shape in response to internal and external stimuli. This article reviews the background, key concepts, techniques, and applications of 4D-bioprinting, focusing on its role in tissue scaffolding and drug delivery. We discuss the limitations of traditional 3D-bioprinting in providing customized and sustained medication release. Shape memory polymers and hydrogels are examples of new responsive materials enabled by 4D-bioprinting that can enhance drug administration. Additionally, we provide a thorough analysis of various biopolymers used in drug delivery systems, including cellulose, collagen, alginate, and chitosan. The use of biopolymers in 4D-printing significantly increases material responsiveness, allowing them to react to stimuli such as temperature, light, and humidity. This capability enables complex designs with programmable shape and function changes. The expansion and contraction of hydrogels in response to temperature changes offer a practical method for controlled drug release. 4D-bioprinting has the potential to address significant challenges in tissue regeneration and medication administration, spurring ongoing research in this technology. By providing precise control over cell positioning and biomaterial integration, traditional 3D-bioprinting has evolved into 4D-bioprinting, enhancing the development of tissue constructs. 4D-bioprinting represents a paradigm shift in tissue engineering and biomaterials, offering enhanced possibilities for creating responsive, adaptive structures that address clinical needs. Researchers can leverage the unique properties of biopolymers within the 4D-printing framework to develop innovative approaches for tissue regeneration and drug delivery, leading to advanced treatments in regenerative medicine. One potential future application is in vivo tissue regeneration using bioprinted structures that can enhance the body’s natural healing capabilities. Full article
Show Figures

Figure 1

14 pages, 3633 KB  
Article
Insecticide Resistance Evolution Negatively Affects the Fitness of Aphis gossypii Glover During Selection on Cotton Plants Under Laboratory Conditions
by Hina Gul, Ali Güncan, Arzlan Abbas, Zeeshan Ullah, Xie Yuqing, Farman Ullah, Nicolas Desneux and Xiaoxia Liu
Plants 2025, 14(16), 2527; https://doi.org/10.3390/plants14162527 - 14 Aug 2025
Viewed by 423
Abstract
The cotton aphid, Aphis gossypii Glover, is among the most economically significant sap-sucking insect pests, inflicting substantial economic losses worldwide. Insecticides such as thiamethoxam, bifenthrin, and flonicamid are commonly used to manage this pest, despite the inherent risk of developing resistance. In this [...] Read more.
The cotton aphid, Aphis gossypii Glover, is among the most economically significant sap-sucking insect pests, inflicting substantial economic losses worldwide. Insecticides such as thiamethoxam, bifenthrin, and flonicamid are commonly used to manage this pest, despite the inherent risk of developing resistance. In this study, we investigated the evolution of insecticide resistance in A. gossypii after continuous selection with thiamethoxam, bifenthrin, and flonicamid over more than ten generations in a controlled laboratory environment. We assessed the fitness of resistant strains using an age-stage, two-sex life table approach, comparing them to a susceptible population. The results indicated that A. gossypii achieved resistance levels of 158.60-fold against thiamethoxam, 129.18-fold against bifenthrin, and 104.75-fold against flonicamid. Furthermore, life table analyses revealed that the developmental stages were significantly extended, while longevity decreased in all resistant strains compared to the susceptible population. Additionally, the net reproductive rate (R0), fecundity, and reproductive days were notably reduced in the resistant cohorts when compared to the susceptible strain. Overall, these findings provide valuable insights into the laboratory-induced evolution of insecticide resistance and the associated fitness costs in A. gossypii when feeding on cotton plants. This information could be instrumental in formulating effective resistance management strategies to control this significant pest. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

19 pages, 5484 KB  
Article
Comprehensive Molecular and Epidemiological Characterization of Staphylococcus aureus Isolated from Bovine Mastitis in Water Buffalo of the Peshawar Division, Khyber Pakhtunkhwa, Pakistan
by Salma Javed, Jo-Ann McClure, Irfan Ullah, Shahzad Ali, Mohammad Ejaz, Sadia Tabassum, Muhammad Ali Syed and Kunyan Zhang
Pathogens 2025, 14(8), 735; https://doi.org/10.3390/pathogens14080735 - 25 Jul 2025
Viewed by 687
Abstract
Water buffalo (Bubalus bubalis) are a primary source of milk in Pakistan, where bovine mastitis is a significant health issue among cattle, leading to substantial economic losses. Staphylococcus aureus is a predominant pathogen associated with mastitis; however, a detailed molecular characterization [...] Read more.
Water buffalo (Bubalus bubalis) are a primary source of milk in Pakistan, where bovine mastitis is a significant health issue among cattle, leading to substantial economic losses. Staphylococcus aureus is a predominant pathogen associated with mastitis; however, a detailed molecular characterization of the strains in the country remains limited. We previously characterized mastitis strains from the Hazara division of Khyber Pakhtunkhwa, Pakistan. In this study, we investigated mastitis cases in the Peshawar division, including samples from both animals and human farm workers for comparison. Higher rates of mastitis (67.27% of animals) and sub-clinical mastitis (91.03% of positive animals) were identified in Peshawar than for those (34.55% and 75.31%, respectively) previously observed in Hazara. Methicillin-susceptible S. aureus (MSSA) belonging to clonal complex 9 (ST2454) were predominant. Methicillin-resistant S. aureus (MRSA) belonging to ST22 and ST8 were also detected in the Nowshera district. While no S. aureus colonization was observed among animal handlers, evidence of hand contamination suggests a potential route for pathogen spread. Low levels of antibiotic resistance were noted amongst isolates, but higher rates were seen in MRSA. This study presents only the second comprehensive molecular investigation of S. aureus isolated from buffalo mastitis in Pakistan and indicates a concerning rise in mastitis within the province. Full article
Show Figures

Figure 1

19 pages, 1142 KB  
Article
Matching Concepts of m-Polar Fuzzy Incidence Graphs
by Dilara Akter Mitu, Weihua Yang, Abid Ali, Tanmoy Mahapatra, Gohar Ali and Ioan-Lucian Popa
Symmetry 2025, 17(7), 1160; https://doi.org/10.3390/sym17071160 - 20 Jul 2025
Viewed by 256
Abstract
The m-Polar Fuzzy Incidence Graph (m-PFIG) is an extension of the m-Polar Fuzzy Graph (m-PFG), which provides information on how vertices affect edges. This study explores the concept of matching within both bipartite and general m-polar [...] Read more.
The m-Polar Fuzzy Incidence Graph (m-PFIG) is an extension of the m-Polar Fuzzy Graph (m-PFG), which provides information on how vertices affect edges. This study explores the concept of matching within both bipartite and general m-polar fuzzy incidence graphs (m-PFIGs). It extends various results and theorems from fuzzy graph theory to the framework of m-PFIGs. This research investigates various operations within m-PFIGs, including augmenting paths, matching principal numbers, and the relationships among them. It focuses on identifying the most suitable employees for specific roles and achieving optimal outcomes, particularly in situations involving internal conflicts within an organization. To address fuzzy maximization problems involving vertex–incidence pairs, this study outlines key properties of maximum matching principal numbers in m-PFIGs. Ultimately, the matching concept is applied to attain these maximum principal values, demonstrating its effectiveness, particularly in bipartite m-PFIG scenarios. Full article
(This article belongs to the Special Issue Symmetry and Graph Theory, 2nd Edition)
Show Figures

Figure 1

15 pages, 1490 KB  
Article
Comparative Transcriptome and Hormonal Analysis Reveals the Mechanisms of Salt Tolerance in Rice
by Dingsha Jin, Yanchao Xu, Asif Iqbal, Yuqing Liu, Yage Zhang, Youzhen Lin, Liqiong Tang, Xinhua Wang, Junjie Wang, Mengshu Huang, Peng Xu and Xiaoning Wang
Int. J. Mol. Sci. 2025, 26(14), 6660; https://doi.org/10.3390/ijms26146660 - 11 Jul 2025
Viewed by 353
Abstract
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and [...] Read more.
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and salt-sensitive P559. Germination assays under increasing NaCl concentrations (50–300 mM) revealed that 100 mM NaCl induced clear phenotypic divergence. SR86 maintained bud growth and showed enhanced root elongation under moderate salinity, while P559 exhibited significant growth inhibition. Transcriptomic profiling of buds and roots under 100 mM NaCl identified over 3724 differentially expressed genes (DEGs), with SR86 showing greater transcriptional plasticity, particularly in roots. Gene ontology enrichment revealed tissue- and genotype-specific responses. Buds showed enrichment in photosynthesis-related and redox-regulating pathways, while roots emphasized ion transport, hormonal signaling, and oxidative stress regulation. SR86 specifically activated genes related to photosystem function, DNA repair, and transmembrane ion transport, while P559 showed activation of oxidative stress-related and abscisic acid (ABA)-regulated pathways. Hormonal profiling supported transcriptomic findings as follows: both varieties showed increased gibberellin 3 (GA3) and gibberellin 4 (GA4) levels under salt stress. SR86 showed elevated auxin (IAA) and reduced jasmonic acid (JA), whereas P559 maintained stable IAA and JA levels. Ethylene precursor and salicylic acid levels declined in both varieties. ABA levels rose slightly but not significantly. These findings suggest that SR86’s superior salt tolerance results from rapid growth, robust transcriptional reprogramming, and coordinated hormonal responses. This study offers key insights into early-stage salt stress adaptation and identifies molecular targets for improving stress resilience in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

26 pages, 1556 KB  
Article
Modified Two-Parameter Ridge Estimators for Enhanced Regression Performance in the Presence of Multicollinearity: Simulations and Medical Data Applications
by Muteb Faraj Alharthi and Nadeem Akhtar
Axioms 2025, 14(7), 527; https://doi.org/10.3390/axioms14070527 - 10 Jul 2025
Viewed by 389
Abstract
Predictive regression models often face a common challenge known as multicollinearity. This phenomenon can distort the results, causing models to overfit and produce unreliable coefficient estimates. Ridge regression is a widely used approach that incorporates a regularization term to stabilize parameter estimates and [...] Read more.
Predictive regression models often face a common challenge known as multicollinearity. This phenomenon can distort the results, causing models to overfit and produce unreliable coefficient estimates. Ridge regression is a widely used approach that incorporates a regularization term to stabilize parameter estimates and improve the prediction accuracy. In this study, we introduce four newly modified ridge estimators, referred to as RIRE1, RIRE2, RIRE3, and RIRE4, that are aimed at tackling severe multicollinearity more effectively than ordinary least squares (OLS) and other existing estimators under both normal and non-normal error distributions. The ridge estimators are biased, so their efficiency cannot be judged by variance alone; instead, we use the mean squared error (MSE) to compare their performance. Each new estimator depends on two shrinkage parameters, k and d, making the theoretical analysis complex. To address this, we employ Monte Carlo simulations to rigorously evaluate and compare these new estimators with OLS and other existing ridge estimators. Our simulations show that the proposed estimators consistently minimize the MSE better than OLS and other ridge estimators, particularly in datasets with strong multicollinearity and large error variances. We further validate their practical value through applications using two real-world datasets, demonstrating both their robustness and theoretical alignment. Full article
(This article belongs to the Special Issue Applied Mathematics and Mathematical Modeling)
Show Figures

Figure 1

26 pages, 1192 KB  
Article
Religion as a Political Instrument: Comparing State Assimilationist Strategies in Khyber Pakhtunkhwa (KP) and Balochistan
by Shakir Ullah, Ali Abbas and Usman Khan
Religions 2025, 16(7), 864; https://doi.org/10.3390/rel16070864 - 3 Jul 2025
Viewed by 818
Abstract
This study explores the role of religion as a state-promoted tool for political assimilation in Pakistan’s border provinces of Khyber Pakhtunkhwa (KP) and Balochistan. The study is based on five phases of fieldwork (2016–2024) combined with a thematic literature review. The research explores [...] Read more.
This study explores the role of religion as a state-promoted tool for political assimilation in Pakistan’s border provinces of Khyber Pakhtunkhwa (KP) and Balochistan. The study is based on five phases of fieldwork (2016–2024) combined with a thematic literature review. The research explores how religious strategies were deployed to forge a unified national identity in these regions. The findings reveal significant disparities in the effectiveness of these strategies. In KP, historical factors, cultural alignment, and geopolitical influences—particularly the Afghan conflict—largely facilitated the integration of Pashtun identity into Pakistan’s broader Islamic-national framework. Tools such as madrassa networks, education reforms, religious slogans, and state-backed Islamist parties effectively promoted religious nationalism. In contrast, religious assimilation efforts in Balochistan largely failed due to entrenched ethnic nationalism, economic exclusion, and political marginalization. Attempts to expand madrassas, delegitimize nationalist leaders as “anti-Islamic,” and support religious movements have been met with resistance, deepening distrust between the Baloch population and the state. The study found that religion alone cannot sustain national cohesion, particularly in regions with longstanding grievances and systemic inequalities. This research emphasizes the limitations of top-down, coercive assimilationist policies and underscores the necessity for more inclusive approaches, such as addressing economic disparities, recognizing regional identities, and promoting political participation as essential components for building a sustainable and unified nation. The study provides critical insights for policymakers, advocating for a shift from religious assimilation to strategies that prioritize justice, equity, and cultural accommodation, particularly in KPK and Balochistan. Full article
(This article belongs to the Special Issue Religion as a Political Instrument)
Show Figures

Figure 1

16 pages, 550 KB  
Article
Evaluating the Use of Alternative Fuels in Cement Production for Environmental Sustainability
by Taj Wali, Azmat Qayum, Fahad Algarni, Fazle Malik and Saeed Ullah Jan
Sustainability 2025, 17(13), 5924; https://doi.org/10.3390/su17135924 - 27 Jun 2025
Viewed by 1074
Abstract
This study empirically examines the impact of 30% alternative fuel (AF) adoption on the emission of CO2 to the environment in the UAE cement industry. The researchers employed a quantitative method to robustly analyze secondary data obtained from the 12 cement manufacturing [...] Read more.
This study empirically examines the impact of 30% alternative fuel (AF) adoption on the emission of CO2 to the environment in the UAE cement industry. The researchers employed a quantitative method to robustly analyze secondary data obtained from the 12 cement manufacturing units of the UAE, the International Energy Agency (IEA), the United States Geological Survey (USGS), and peer-reviewed published papers. The researcher’s main focus was on data from 2018 to 2024 and aligned that with the UAE Green Agenda 2030. The data analysis was conducted through a well-known software, the Statistical Package for Social Sciences (SPSS), and tests like descriptive statistics, correlation, and regression were employed. The correlation analysis showed that there is a strong negative relationship between AF adoption and CO2 emissions. The test also showed that the relationship is inverse, that is, increasing the adoption rate of AF lowers CO2 emissions and thus positively impacts the environment. The Pearson correlation analysis (r = −0.82) showed a strong inverse relationship between the independent and dependent variables. This strong relationship was further revealed and confirmed by the regression analysis, and AF as an individual independent variable explained a 67% reduction in CO2 emission (R2 = 0.67), while a combination with mediating variables, such as economic incentives and the integration of advanced technologies, further increased the impact to 83%, where the explanatory power jumped to R2 = 0.83 (p < 0.001). As the relationship is strongly inverse between the independent and dependent variables, this reinforces the hypothesis that AF adoption is a good strategy to decarbonize the production of cement and make the operations sustainable. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

26 pages, 5676 KB  
Article
GIS-Based Evaluation of Mining-Induced Water-Related Hazards in Pakistan and Integrated Risk Mitigation Strategies
by Jiang Li, Zhuoying Tan, Aboubakar Siddique, Hilal Ahmad, Wajid Rashid, Jianshu Liu and Yinglin Yang
Water 2025, 17(13), 1914; https://doi.org/10.3390/w17131914 - 27 Jun 2025
Viewed by 1095
Abstract
Mining activities in Pakistan’s mineral-rich provinces threaten freshwater security through groundwater depletion, contamination, and flood-induced pollution. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework integrating governance, social, environmental, and technical (GSET) dimensions to holistically assess mining-induced water hazards across Balochistan, Khyber [...] Read more.
Mining activities in Pakistan’s mineral-rich provinces threaten freshwater security through groundwater depletion, contamination, and flood-induced pollution. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework integrating governance, social, environmental, and technical (GSET) dimensions to holistically assess mining-induced water hazards across Balochistan, Khyber Pakhtunkhwa, and Punjab. Using GIS-based spatial risk mapping with multi-layer hydrological modeling, we combine computational analysis and participatory validation to identify vulnerability hotspots and prioritize high-risk mines. Community workshops involving women water collectors, indigenous leaders, and local experts enhanced map accuracy by translating indigenous knowledge into spatially referenced mitigation plans and integrating gender-sensitive metrics to address gendered water access disparities. Key findings reveal severe groundwater depletion, acid mine drainage, and gendered burdens near Saindak and Cherat mines. Multi-sectoral engagements secured corporate commitments for water stewardship and policy advances in inclusive governance. The framework employs four priority-ranked risk categories (Governance-Economic 15%, Social-Community 30%, Environmental 40%, Technical-Geological 15%) derived via local stakeholder collaboration, enabling context-specific interventions. Despite data limitations, the GIS-driven methodology provides a scalable model for regions facing socio-environmental vulnerabilities. The results demonstrate how community participation directly shaped village-level water management alongside GSET analysis to craft equitable risk reduction strategies. Spatially explicit risk maps guided infrastructure upgrades and zoning regulations, advancing SDG 6 and 13 progress in Pakistan. This work underscores the value of inclusive, weighted frameworks for sustainable mining–water nexus management in Pakistan and analogous contexts. Full article
Show Figures

Figure 1

20 pages, 3108 KB  
Article
Energy-Efficient MAC Protocol for Underwater Sensor Networks Using CSMA/CA, TDMA, and Actor–Critic Reinforcement Learning (AC-RL) Fusion
by Wazir Ur Rahman, Qiao Gang, Feng Zhou, Muhammad Tahir, Wasiq Ali, Muhammad Adil, Sun Zong Xin and Muhammad Ilyas Khattak
Acoustics 2025, 7(3), 39; https://doi.org/10.3390/acoustics7030039 - 25 Jun 2025
Viewed by 834
Abstract
Due to the dynamic and harsh underwater environment, which involves a long propagation delay, high bit error rate, and limited bandwidth, it is challenging to achieve reliable communication in underwater wireless sensor networks (UWSNs) and network support applications, like environmental monitoring and natural [...] Read more.
Due to the dynamic and harsh underwater environment, which involves a long propagation delay, high bit error rate, and limited bandwidth, it is challenging to achieve reliable communication in underwater wireless sensor networks (UWSNs) and network support applications, like environmental monitoring and natural disaster prediction, which require energy efficiency and low latency. To tackle these challenges, we introduce AC-RL-based power control (ACRLPC), a novel hybrid MAC protocol that can efficiently integrate Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)-based MAC and Time Division Multiple Access (TDMA) with Actor–Critic Reinforcement Learning (AC-RL). The proposed framework employs adaptive strategies, utilizing adaptive power control and intelligent access methods, which adjust to fluctuating conditions on the network. Harsh and dynamic underwater environment performance evaluations of the proposed scheme confirm a significant outperformance of ACRLPC compared to the current protocols of FDU-MAC, TCH-MAC, and UW-ALOHA-QM in all major performance measures, like energy consumption, throughput, accuracy, latency, and computational complexity. The ACRLPC is an ultra-energy-efficient protocol since it provides higher-grade power efficiency by maximizing the throughput and limiting the latency. Its overcoming of computational complexity makes it an approach that greatly relaxes the processing requirement, especially in the case of large, scalable underwater deployments. The unique hybrid architecture that is proposed effectively combines the best of both worlds, leveraging TDMA for reliable access, and the flexibility of CSMA/CA serves as a robust and holistic mechanism that meets the desired enablers of the system. Full article
Show Figures

Figure 1

17 pages, 666 KB  
Article
Kinds of Matchings Extending to Hamiltonian Cycles in Hypercube Networks
by Abid Ali, Weihua Yang, Gohar Ali, Ioan-Lucian Popa and Dilara Akter Mitu
Symmetry 2025, 17(7), 995; https://doi.org/10.3390/sym17070995 - 24 Jun 2025
Viewed by 518
Abstract
The hypercube Qn is a well-known and efficient interconnection network. Ruskey and Savage posed the following question: does every matching in a hypercube Qn for n2 extend to a Hamiltonian cycle? Fink addressed this by proving that every perfect [...] Read more.
The hypercube Qn is a well-known and efficient interconnection network. Ruskey and Savage posed the following question: does every matching in a hypercube Qn for n2 extend to a Hamiltonian cycle? Fink addressed this by proving that every perfect matching extends to a Hamiltonian cycle in Qn, thereby resolving Kreweras’ conjecture. Ruskey and Savage’s problem is still open and has been proven only for small matchings. An edge of Qn is an i-edge when the binary representations of its endpoints differ at the ith coordinate. In this paper, we consider Qn for n3 and show that any matching consisting of edges of at most six types, which does not cover every pair of vertices at a distance of 3, extends to a Hamiltonian cycle. Full article
(This article belongs to the Special Issue Advances in Graph Theory Ⅱ)
Show Figures

Figure 1

11 pages, 243 KB  
Article
Evaluation of Social and Clinical Factors Associated with Adverse Drug Reactions Among Children with Drug-Resistant Tuberculosis in Pakistan
by Muhammad Soaib Said, Razia Fatima, Rabbiya Ahmad, Mahmood Basil A. Al Rawi, Faheem Jan, Sobia Faisal, Irfanullah Khan and Amer Hayat Khan
Trop. Med. Infect. Dis. 2025, 10(7), 176; https://doi.org/10.3390/tropicalmed10070176 - 20 Jun 2025
Viewed by 756
Abstract
(1) Background: The occurrence, intensity, and characteristics of adverse drug reactions (ADRs) caused by anti-tuberculosis (TB) drugs have consistently been a subject of worry. There is a lack of published research from Pakistan regarding the negative effects of anti-TB treatment on children, specifically [...] Read more.
(1) Background: The occurrence, intensity, and characteristics of adverse drug reactions (ADRs) caused by anti-tuberculosis (TB) drugs have consistently been a subject of worry. There is a lack of published research from Pakistan regarding the negative effects of anti-TB treatment on children, specifically about ADRs. In this study, we aimed to investigate the ADR associated with anti-DR-TB treatment in children. (2) Methods: A prospective longitudinal study was conducted in the multicenter setting of Khyber Pakhtunkhwa, Pakistan. A total of 450 TB children in multicenter hospitals under ATT were assessed for ADRs. Naranjo Causality Assessment and Hartwig’s Severity Assessment Scale were used to evaluate the causality and severity. (3) Results: A total of 300 (66.66%) ADRs were reported in 450 people with DRTB. Anemia was the most frequently observed ADR (37.6%) followed by nausea and vomiting (18.6%). On multivariate analysis, the independent variables that had a statistically significant positive association with ADRs were participants aged, 5–14 years (AOR, 0.3 (0.1–0.5), p ≤ 0.001), normal weight (1.1 (2.0–1.9), p < 0.001), and children having comorbidities (AOR, 0.5 (0.1–0.8), p ≤ 0.001). (4) Conclusions: Our findings advocate for personalized treatment approaches, incorporating nutritional support, comprehensive comorbidity management, and vigilant monitoring to mitigate ADRs and improve treatment outcomes. Full article
33 pages, 3435 KB  
Article
Investigation of General Sombor Index for Optimal Values in Bicyclic Graphs, Trees, and Unicyclic Graphs Using Well-Known Transformations
by Miraj Khan, Muhammad Yasin Khan, Gohar Ali and Ioan-Lucian Popa
Symmetry 2025, 17(6), 968; https://doi.org/10.3390/sym17060968 - 18 Jun 2025
Viewed by 735
Abstract
The field related to indices was developed by researchers for various purposes. Optimization is one of the purposes used by researchers in different situations. In this article, a generalized Sombor index is considered. This work is related to the idea of optimization in [...] Read more.
The field related to indices was developed by researchers for various purposes. Optimization is one of the purposes used by researchers in different situations. In this article, a generalized Sombor index is considered. This work is related to the idea of optimization in the families of bicyclic graphs, trees, and unicyclic graphs. We investigated optimal values in the stated families by means of well-known transformations. The transformations include the following: Transformation A, Transformation B, Transformation C, and Transformation D. Transformation A and Transformation B increase the value of the generalized Sombor index, while Transformation C and Transformation D are used for minimal values. Full article
(This article belongs to the Special Issue Symmetry and Graph Theory, 2nd Edition)
Show Figures

Figure 1

14 pages, 782 KB  
Article
Thermal Investigation of the Magnetised Porous Triangular Fins and Comparative Analysis of Magnetised and Non-Magnetised Triangular Fins
by Sharif Ullah, Mdi Begum Jeelani and Ghaliah Alhamzi
Mathematics 2025, 13(12), 1990; https://doi.org/10.3390/math13121990 - 16 Jun 2025
Viewed by 405
Abstract
Fins are extended surfaces designed to increase heat dissipation from hot sources to their surroundings. Heat transfer is improved by utilising fins of different geometrical shapes. Fins are extensively used in automobile parts, solar panels, electrical equipment, computer CPUs, refrigeration systems, and superheaters. [...] Read more.
Fins are extended surfaces designed to increase heat dissipation from hot sources to their surroundings. Heat transfer is improved by utilising fins of different geometrical shapes. Fins are extensively used in automobile parts, solar panels, electrical equipment, computer CPUs, refrigeration systems, and superheaters. Motivated by these applications, this study investigates the incorporation of magnetic fields and porosity into a convective–radiative triangular fin to enhance heat transfer performance. The shooting technique is applied to study thermal profile and efficiency of the fin. It is found that the magnetic number (Hartmann number), porosity, convective, and radiative parameters reduce the thermal profile, while the Peclet number and ambient temperature increase it. Moreover, the efficiency increases with an increase in the magnetic number, porosity, convective, and radiative parameters, whereas it declines with an increase in the Peclet number and ambient temperature. Increasing the magnetic number from 0.1 to 0.7 leads to a 4% reduction in the temperature profile. Similarly, raising the porosity parameter within the same range results in an approximate 3% decrease in the thermal profile. An increase in the convective parameter from 0.1 to 0.7 causes about an 8% decline in the thermal profile, while an elevation in the radiative parameter within the same range reduces it by approximately 2%. In contrast, enhancing the Peclet number from 0.1 to 0.7 increases the thermal profile by nearly 2%, and a rise in the ambient temperature within this range leads to an approximate 4% enhancement in the thermal profile. Magnetised triangular fins are observed to have higher thermal transfer ability and efficiency than non-magnetised triangular fins. It is found that the incorporation of a magnetic field into a triangular fin, in conjunction with the porosity, improves the performance and efficiency of the triangular fin. Full article
(This article belongs to the Special Issue Computational Methods in Electromagnetics)
Show Figures

Figure 1

Back to TopTop