Effect of Climate and Roasting on Polyphenols and Tocopherols in the Kernels and Skin of Six Hazelnut Cultivars (Corylus avellana L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phenolic Acid and Flavonol Separation and Identification
2.3. Tocopherol Analysis
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Chemical Characteristics
3.2.1. Polyphenol Content
3.2.2. Tocopherol Content
3.3. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- FAOSTAT. Food and Agricultural Organization of the United Nations. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 10 August 2019).
- Gantner, M. Susceptibility of large-fruited hazel cultivars grown in Poland to major pest and their crop productivity. Acta Hortic. 2005, 686, 377–384. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability. and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Caimari, A.; Puiggròs, F.; Suárez, M.; Crescenti, A.; Laos, S.; Ruiz, J.A.; Alonso, V.; Moragas, J.; del Bas, J.M.; Arola, L. The intake of a hazelnut skin extract improves the plasma lipid profile and reduces the lithocholic/deoxycholic bile acid faecal ratio, a risk factor for colon cancer, in hamsters fed a high-fat diet. Food Chem. 2015, 167, 138–144. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.O.; Mckay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Kornsteriner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Alasalvar, C.; Shahidi, F.; Ohshima, T.; Wanasundara, U.; Yurttas, H.C.; Liyanapathirana, C.M.; Rodrigues, F.B. Turkish Tombul Hazelnut (Corylus avellana L.). 2. Lipid Characteristics and Oxidative Stability. J. Agric. Food Chem. 2003, 51, 3797–3805. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Citová, I.; Santos, A.; Seabra, R.M.; Oliveira, B.P.P. Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. Eur. Food Res. Technol. 2006, 222, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jung, J.; McGorrin, R.J.; Traber, M.G.; Leonard, S.W.; Cherian, G.; Zhao, Y. Investigation of drying conditions on bioactive compounds. lipid oxidation. and enzyme activity of Oregon hazelnuts (Corylus avellana L.). LWT 2018, 90, 526–534. [Google Scholar] [CrossRef]
- Chandrasekara, N.; Shahidi, F. Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef]
- Köksal, A.I.; Artik, N.; Şimşek, A.; Güneş, N. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Mellano, G.M.; Prima, S.D.; Cavicchioli, M.; Cerutti, A.K.; Bounous, G. Setting a protocol for hazelnut roasting using sensory and colorimetric analysis: Influence of the roasting temperature on the quality of Tonda Gentile delle Langhe cv. Hazelnut. Czech J. Food Sci. 2013, 31, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Lainas, K.; Alasalvar, C.; Bolling, B.W. Effects of roasting on proanthocyanidin contents of Turkish Tombul hazelnut and its skin. J. Funct. Foods 2016, 23, 647–653. [Google Scholar] [CrossRef]
- Montella, R.; Coïsson, J.D.; Travaglia, F.; Locatelli, M.; Malfa, P.; Martelli, A.; Arlorio, M. Bioactive compounds from hazelnut skin (Corylus avellana L.): Effects on Lactobacillus plantarum P17630 and Lactobacillus crispatus P17631. J. Funct. Foods 2013, 5, 306–315. [Google Scholar] [CrossRef]
- Zeppa, G.; Belviso, S.; Bertolino, M.; Cavallero, M.C.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Giorgis, M.; Grosso, A.; Rolle, L.; et al. The effect of hazelnut roasted skin from different cultivars on the quality attributes. polyphenol content and texture of fresh egg pasta. J. Sci. Food Agric. 2015, 95, 1678–1688. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, K.S.; Yılmaz, C.; Durmaz, G.; Gökmen, V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res. Int. 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Cikrikci, S.; Demirkesen, I.; Mert, B. Production of hazelnut skin fibres and utilisation in a model bakery product. Qual. Assur. Saf. Crop. Foods 2016, 8, 195–206. [Google Scholar] [CrossRef]
- Jakopic, J.; Petkovsek, M.M.; Likozar, A.; Solar, A.; Stampar, F.; Veberic, R. HPLC–MS identification of phenols in hazelnut (Corylus avellana L.) kernels. Food Chem. 2011, 124, 1100–1106. [Google Scholar] [CrossRef]
- Pelvan, E.; Olgun, E.Ö.; Karadağ, A.; Alasalvar, C. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 2018, 244, 102–108. [Google Scholar] [CrossRef]
- Meteorological station of Polish Institute of Meteorology and Water Management. Available online: https://danepubliczne.imgw.pl/#dane-synoptyczne (accessed on 11 November 2019).
- Polish National List of Fruit Plant Varieties. Available online: http://www.coboru.pl/Polska/Rejestr/odm_w_rej.aspx?kodgatunku=LEDO (accessed on 28 October 2019).
- Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography PN-EN ISO 9936:2016-05 (ISO 9936:2016). Available online: https://www.iso.org/standard/69595.html (accessed on 1 August 2019).
- Coğrafya, M.; Sayi, D. The effect of climatic conditions on hazelnut (Corylus avellana) yield in Giresun (Turkey). Marmara Coğrafya Derg. Sayi. 2012, 26, 302–323. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Tolić, M.T.; Krbavčić, I.P.; Vujević, P.; Milinović, B.; Jurčević, I.L.; Vahčić, N. Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Pol. J. Food Nutr. Sci. 2017, 67, 67–74. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.S.; Karathanos, V.T. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int. J. Food Sci. Nutr. 2013, 64, 757–767. [Google Scholar] [CrossRef]
- Gültekin-Özgüven, M.; Davarci, F.; Pasli, A.A.; Demir, N.; Özçelik, B. Determination of phenolic compounds by ultra high liquid chromatography-tandem mass spectrometry: Applications in nuts. LWT Food Sci. Technol. 2015, 64, 42–49. [Google Scholar] [CrossRef]
- Ciemniewska-Zytkiewicz, H.; Verardo, V.; Pasini, F.; Bryś, J.; Koczoń, P.; Caboni, M.F. Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivars grown in Poland. Food Chem. 2015, 168, 615–622. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. HPLC-MSn identification and quantification of phenolic compounds in hazelnut kernels, oil and bagasse pellets. Food Res. Int. 2014, 64, 783–789. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P.; Koundal, R.; Agnihotri, V.K. Antioxidant properties and UPLC–MS/MS profiling of phenolics in jacquemont’s hazelnut kernels (Corylus jacquemontii) and its byproducts from western Himalaya. J. Food Sci. Technol. 2016, 53, 3522–3531. [Google Scholar] [CrossRef] [Green Version]
- Kilic, I.H.; Sarikurkcu, C.; Karagoz, I.D.; Uren, M.C.; Kocak, M.S.; Cilkiz, M.; Tepe, B. A significant by-product of the industrial processing of pistachios: Shell skin-RP-HPLC analysis, and antioxidant and enzyme inhibitory activities of the methanol extracts of Pistacia vera L. shell skins cultivated in Gaziantep, Turkey. RSC Adv. 2016, 6, 1203–1209. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Lee, S.-C.; Kim, J.-H.; Jeong, S.-M.; Kim, D.-R.; Ha, J.-U.; Nam, K.C.; Ahn, D.U. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 2003, 51, 4400–4403. [Google Scholar] [CrossRef]
- Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Martelli, A.; Stévigny, C.; Arlorio, M. Total antioxidant activity of hazelnut skin (Nocciola Piemonte PGI): Impact of different roasting conditions. Food Chem. 2010, 119, 1647–1655. [Google Scholar] [CrossRef]
- Marzocchi, S.; Pasini, F.; Verardo, V.; Ciemniewska-Żytkiewicz, H.; Caboni, M.F.; Romani, S. Effects of different roasting conditions on physical-chemical properties of Polish hazelnuts (Corylus avellana L. var. Kataloński). LWT 2017, 77, 440–448. [Google Scholar] [CrossRef]
- Lucchetti, S.; Ambra, R.; Pastore, G. Effects of peeling and/or toasting on the presence of tocopherols and phenolic compounds in four Italian hazelnut cultivars. Eur. Food Res. Technol. 2018, 244, 1057–1064. [Google Scholar] [CrossRef]
- Schmitzer, V.; Slatnar, A.; Veberic, R.; Stampar, F.; Solar, A. Roasting affects phenolic composition and antioxidative activity of hazelnuts (Corylus avellana L.). J. Food Sci. 2011, 76, S14–S19. [Google Scholar] [CrossRef]
- Açar, Ö.C.; Gökmen, V.; Pellegrini, N.; Fogliano, V. Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. Eur. Food Res. Technol. 2009, 229, 961–969. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M.; Piotrowska, A. Morphological traits, kernel composition and sensory evaluation of hazelnut (Corylus avellana L.) cultivars grown in Poland. Agronomy 2019, 9, 703. [Google Scholar] [CrossRef] [Green Version]
- Blomhoff, R.; Carlsen, M.H.; Andersen, L.F.; Jacobs, D.R., Jr. Health benefits of nuts: Potential role of antioxidants. Brit. J. 2006, 96, 52–t60. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Alasalvar, C.; Liyanapathirana, C.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef]
- Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic composition of hazelnut skin. J. Agric. Food Chem. 2011, 59, 9935–9941. [Google Scholar] [CrossRef] [PubMed]
- Schlörmann, W.; Birringer, M.; Böhm, V.; Löber, K.; Jahreis, G.; Lorkowski, S.; Müller, A.K.; Schöne, F.; Glei, M. Influence of roasting conditions on health-related compounds in different nuts. Food Chem. 2015, 180, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Alamprese, C.; Ratti, S.; Rossi, M. Effects of roasting conditions on hazelnut characteristics in a two-step process. J. Food Eng. 2009, 95, 272–279. [Google Scholar] [CrossRef]
Total Polyphenols | Total Phenolic Acid | Gallic Acid | Caffeic Acid | p-Coumarc Acid | Ferulic Acid | Total Flavonoids | Quercetin-3-ORutinoside | Catechin | Epigallo-catechin | Kaempferol-3-O-Glucoside | Quercetin | Apigenin | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAW | 2016 | 34.97 ± 2.43 a* | 22.00 ± 1.51 a | 3.99 ± 0.15 a | 4.82 ± 0.32 a | 10.35 ± 0.56 b | 2.23 ± 0.19 a | 13.40 ± 0.04 b | 0.47 ± 0.11 ab | 1.57 ± 0.03 a | 0.62 ± 0.06 b | 2.49 ± 0.04 b | 2.16 ± 0.03 a | 6.09 ± 0.01 a |
2017 | 36.62 ± 1.12 a | 21.56 ± 2.10 a | 4.06 ± 0.24 a | 4.97 ± 0.46 a | 11.02 ± 1.38 ab | 2.07 ± 0.12 ab | 14.61 ± 0.05 a | 1.23 ± 0.16 a | 1.60 ± 0.05 a | 0.93 ± 0.05 a | 2.87 ± 0.05 a | 1.88 ± 0.05 a | 6.09 ± 0.00 a | |
2018 | 37.21 ± 3.14 a | 23.29 ± 3.21 a | 4.73 ± 1.32 a | 4.29 ± 0.27 a | 12.24 ± 3.21 a | 2.02 ± 0.23 b | 13.91 ± 0.03 ab | 0.37 ± 0.06 b | 1.58 ± 0.05 a | 0.91 ± 0.04 a | 2.91 ± 0.06 a | 2.04 ± 0.05 a | 6.08 ± 0.01 a | |
p-value year | N.S ** | N.S | N.S | N.S | <0.0001 | 0.062 | <0.0001 | <0.0001 | N.S | <0.0001 | 0.052 | <0.0001 | N.S | |
ROASTED | 2016 | 35.56 ± 2.50 a | 22.24 ± 2.15 a | 3.48 ± 0.27 a | 5.28 ± 0.28 a | 11.04 ± 0.43 a | 2.44 ± 0.42 a | 13.31 ± 0.80 b | 0.32 ± 0.17 ab | 1.57 ± 0.02 a | 0.60 ± 0.12 b | 2.49 ± 0.59 b | 2.25 ± 0.01 a | 6.07 ± 0.03 a |
2017 | 37.04 ± 4.10 a | 22.61 ± 2.54 a | 3.38 ± 0.23 a | 4.95 ± 0.43 a | 12.06 ± 2.11 a | 2.20 ± 0.17 b | 14.42 ± 1.91 a | 1.00 ± 0.21 a | 1.60 ± 0.04 a | 0.91 ± 0.20 a | 2.84 ± 0.50 a | 1.97 ± 0.09 a | 6.08 ± 0.01 a | |
2018 | 36.90 ± 3.20 a | 23.07 ± 2.99 a | 3.80 ± 0.94 a | 4.38 ± 0.21 a | 12.83 ± 3.21 a | 2.04 ± 0.15 b | 13.83 ± 0.83 ab | 0.29 ± 0.14 b | 1.58 ± 0.04 a | 0.87 ± 0.26 a | 2.87 ± 0.84 a | 2.11 ± 0.18 a | 6.08 ± 0.05 a | |
p-value year | N.S | N.S | N.S | N.S | N.S | 0.029 | <0.0001 | <0.0001 | 0.048 | 0.033 | 0.036 | <0.0001 | N.S | |
p-value roasting | N.S | N.S | <0.0001 | N.S | N.S | 0.035 | N.S | N.S | N.S | N.S | N.S | N.S | N.S | |
SKIN | 2016 | 9718.12 ± 1329 a | 9421.83 ± 1357 a | 9239.23 ± 399 a | 142.64 ± 13.2 a | 23.63 ± 2.43 a | 15.63 ± 3.73 a | 296.29 ± 24.61 b | 20.94 ± 1.28 ab | 151.34 ± 10.83 b | 10.96 ± 2.48 b | 3.85 ± 0.34 b | 23.24 ± 9.27 a | 85.95 ± 6.59 a |
2017 | 9304.34 ± 1693 a | 8889.44 ± 1687 a | 9051.88 ± 1357 a | 122.94 ± 15.3 a | 28.02 ± 2.08 a | 13.28 ± 4.01 b | 414.32 ± 102.79 a | 30.19 ± 6.43 a | 235.67 ± 114.85 a | 18.44 ± 4.20 a | 16.33 ± 7.81 a | 17.77 ± 11.67 a | 95.90 ± 7.29 a | |
2018 | 9487.94 ± 484 a | 9183.33 ± 469 a | 8725.63 ± 1705 a | 88.51 ± 23.56 b | 31.32 ± 8.77 a | 11.60 ± 2.02 b | 304.05 ± 96.6 b | 20.31 ± 3.07 b | 142.79 ± 88.45 b | 18.08 ± 3.59 a | 17.36 ± 2.10 a | 20.59 ± 2.89 a | 84.89 ± 8.74 a | |
p-value year | N.S | N.S | N.S | <0.0001 | N.S | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | N.S | N.S |
Total Polyphenols | Total Phenolic Acid | Gallic Acid | Caffeic Acid | p-Coumarc Acid | Ferulic Acid | Total Flavonoids | Quercetin-3-O-Rutinoside | Catechin | Epigallo-Catechin | Kaempferol-3-O-Glucoside | Quercetin | Apigenin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | |||||||||||||
Barceloński | 36.21 ± 0.51 b* | 21.31 ± 0.79 bc | 4.55 ± 0.07 a | 4.40 ± 0.03 b | 10.47 ± 0.27 a | 1.89 ± 0.03 c | 14.91 ± 0.02 a | 1.24 ± 0.07 a | 1.55 ± 0.03 a | 0.78 ± 0.02 a | 2.48 ± 0.09 c | 2.75 ± 0.00 a | 6.11 ± 0.00 a |
Cosford | 35.33 ± 0.46 bc | 21.54 ± 0.45 b | 3.88 ± 0.01 b | 4.17 ± 0.10 bc | 10.77 ± 0.07 a | 2.72 ± 0.01 a | 13.79 ± 0.08 b | 0.26 ± 0.05 b | 1.55 ± 0.02 a | 0.68 ± 0.08 ab | 2.50 ± 0.02 b | 2.68 ± 0.04 a | 6.11 ± 0.00 a |
Webba Cenny | 34.71 ± 0.43 c | 21.59 ± 0.32 b | 4.90 ± 0.02 a | 4.28 ± 0.07 b | 10.30 ± 0.03 a | 2.03 ± 0.02 bc | 12.95 ± 0.09 c | 0.27 ± 0.03 b | 1.61 ± 0.02 a | 0.71 ± 0.09 ab | 2.50 ± 0.04 a | 1.76 ± 0.00 b | 6.09 ± 0.00 a |
Olbrzym z Halle | 39.08 ± 0.15 a | 25.47 ± 0.11 a | 3.67 ± 0.15 bc | 9.13 ± 0.08 a | 10.44 ± 0.20 a | 2.74 ± 0.00 a | 13.61 ± 0.06 b | 0.29 ± 0.02 b | 1.55 ± 0.00 a | 0.45 ± 0.06 d | 2.49 ± 0.08 c | 2.72 ± 0.01 a | 6.11 ± 0.01 a |
Kataloński | 32.53 ± 0.50 d | 19.90 ± 0.58 cd | 3.39 ± 0.08 c | 3.93 ± 0.01 c | 10.47 ± 0.12 a | 2.13 ± 0.08 b | 12.63 ± 0.07 c | 0.40 ± 0.20 b | 1.56 ± 0.02 a | 0.55 ± 0.07 cd | 2.49 ± 0.04 c | 1.57 ± 0.06 bc | 6.04 ± 0.00 a |
Notthingamski | 32.15 ± 0.26 d | 19.58 ± 0.15 d | 3.50 ± 0.03 bc | 3.95 ± 0.01 c | 10.22 ± 0.08 a | 1.91 ± 0.07 c | 12.57 ± 0.04 c | 0.38 ± 0.08 b | 1.65 ± 0.07 a | 0.59 ± 0.04 bc | 2.51 ± 0.01 a | 1.48 ± 0.09 c | 6.04 ± 0.00 a |
2017 | |||||||||||||
Barceloński | 39.85 ± 0.69 bc | 22.90 ± 0.61 abc | 5.22 ± 0.16 a | 5.06 ± 0.07 a | 11.09 ± 0.12 ab | 2.47 ± 0.06 a | 14.19 ± 0.05 b | 0.30 ± 0.12 c | 1.56 ± 0.06 b | 1.03 ± 0.05 a | 2.75 ± 0.02 c | 2.45 ± 0.07 a | 6.08 ± 0.00 a |
Cosford | 39.23 ± 1.37 a | 23.86 ± 1.29 ab | 4.71 ± 0.33 b | 5.13 ± 0.19 a | 12.79 ± 0.23 a | 2.11 ± 0.14 b | 18.89 ± 0.09 a | 4.87 ± 0.23 a | 1.56 ± 0.14 b | 1.00 ± 0.09 a | 2.84 ± 0.08 bc | 2.52 ± 0.03 a | 6.09 ± 0.00 a |
Webba Cenny | 37.95 ± 1.66 b | 24.22 ± 1.68 a | 5.24 ± 0.05 a | 5.30 ± 0.02 a | 12.59 ± 0.12 a | 1.96 ± 0.03 b | 13.72 ± 0.09 bc | 0.38 ± 0.12 c | 1.56 ± 0.03 b | 1.13 ± 0.09 a | 2.85 ± 0.09 bc | 1.71 ± 0.03 b | 6.09 ± 0.00 a |
Olbrzym z Halle | 34.11 ± 0.33 d | 19.99 ± 0.15 c | 4.53 ± 0.02 b | 4.32 ± 0.11 b | 9.88 ± 0.06 b | 1.95 ± 0.01 b | 13.82 ± 0.02 bc | 1.01 ± 0.06 b | 1.66 ± 0.01 a | 0.75 ± 0.02 b | 2.85 ± 0.02 bc | 1.43 ± 0.08 | 6.11 ± 0.00 a |
Kataloński | 34.00 ± 0.17 cd | 21.11 ± 0.10 bc | 4.71 ± 0.03 b | 5.02 ± 0.08 a | 9.89 ± 0.19 b | 2.00 ± 0.01 b | 13.61 ± 0.01 bc | 0.38 ± 0.19 c | 1.63 ± 0.01 a | 1.00 ± 0.01 a | 2.95 ± 0.09 ab | 1.57 ± 0.03 | 6.07 ± 0.01 a |
Notthingamski | 33.93 ± 0.53 d | 19.93 ± 0.27 c | 4.27 ± 0.16 c | 4.20 ± 0.07 b | 9.90 ± 0.25 b | 1.92 ± 0.05 b | 13.46 ± 0.04 c | 0.44 ± 0.25 c | 1.63 ± 0.05 a | 0.68 ± 0.04 b | 3.01 ± 0.01 a | 1.61 ± 0.04 | 6.09 ± 0.02 a |
2018 | |||||||||||||
Barceloński | 36.37 ± 0.36 c | 22.15 ± 0.21 c | 4.35 ± 0.10 b | 4.10 ± 0.06 d | 11.82 ± 0.03 b | 1.90 ± 0.15 b | 14.36 ± 0.03 b | 0.30 ± 0.03 ab | 1.55 ± 0.02 c | 1.45 ± 0.02 a | 3.25 ± 0.01 a | 1.61 ± 0.02 c | 6.08 ± 0.01 a |
Cosford | 33.62 ± 0.29 e | 20.29 ± 0.31 e | 4.38 ± 0.02 b | 4.25 ± 0.01 cd | 9.73 ± 0.00 c | 2.07 ± 0.03 ab | 13.48 ± 0.05 c | 0.48 ± 0.00 a | 1.59 ± 0.03 b | 0.84 ± 0.05 b | 3.04 ± 0.01 b | 1.50 ± 0.05 cd | 6.03 ± 0.01 a |
Webba Cenny | 43.30 ± 0.23 a | 29.26 ± 0.31 a | 3.96 ± 0.05 c | 3.89 ± 0.14 e | 19.62 ± 0.17 a | 2.07 ± 0.04 ab | 14.44 ± 0.06 b | 0.49 ± 0.17 a | 1.55 ± 0.04 c | 0.76 ± 0.06 b | 2.79 ± 0.14 c | 2.69 ± 0.06 b | 6.06 ± 0.00 a |
Olbrzym z Halle | 36.13 ± 0.14 cd | 21.11 ± 0.17 d | 4.52 ± 0.02 b | 4.59 ± 0.03 a | 10.12 ± 0.04 c | 2.02 ± 0.01 ab | 15.02 ± 0.09 a | 0.21 ± 0.04 b | 1.57 ± 0.01 bc | 0.87 ± 0.09 b | 2.84 ± 0.08 c | 3.50 ± 0.09 a | 6.03 ± 0.00 a |
Kataloński | 37.03 ± 0.34 b | 24.75 ± 0.12 b | 8.43 ± 0.04 a | 4.38 ± 0.05 bc | 10.10 ± 0.06 c | 1.87 ± 0.02 b | 12.88 ± 0.00 d | 0.30 ± 0.06 b | 1.56 ± 0.02 bc | 0.75 ± 0.00 b | 2.76 ± 0.02 c | 1.44 ± 0.00 d | 6.07 ± 0.07 a |
Notthingamski | 35.60 ± 0.11 d | 22.18 ± 0.16 c | 3.812 ± 0.03 c | 4.55 ± 0.03 ab | 12.06 ± 0.03 b | 2.20 ± 0.01 a | 13.33 ± 0.03 c | 0.44 ± 0.03 ab | 1.68 ± 0.01 a | 0.81 ± 0.03 b | 2.80 ± 0.01 c | 1.51 ± 0.07 cd | 6.08 ± 0.07 a |
p-Value cultivar 2016 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | N.S | <0.0001 | <0.0001 | <0.0001 | N.S | <0.0001 | 0.0028 | <0.0001 | N.S |
p-Value cultivar 2017 | <0.0001 | 0.001 | <0.0001 | <0.0001 | 0.005 | 0.002 | <0.0001 | <0.0001 | 0.003 | <0.0001 | <0.0001 | <0.0001 | N.S |
p-Value cultivar 2018 | <0.0001 | <0.0001 | <0.0001 | 0.0132 | <0.0001 | 0.003 | <0.0001 | 0.016 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | N.S |
p-Value year | N.S ** | N.S | N.S | N.S | N.S | <0.0001 | 0.043 | 0.029 | 0.042 | <0.0001 | <0.0001 | N.S | N.S |
Interactions year * cultivar | <0.0001 | <0.0001 | <0.0001 | N.S | 0.004 | <0.0001 | <0.0001 | 0.003 | N.S | 0.0052 | N.S | <0.0001 | N.S |
RAW | ROASTED | ||||||||
---|---|---|---|---|---|---|---|---|---|
β + ƴ-Tocopherol | δ-Tocopherol | α-Tocopherol | Total | β + ƴ-Tocopherol | δ-Tocopherol | α-Tocopherol | Total | p-Value Roasting | |
Barceloński | 2.68 ± 0.38 b* | 0.27 ± 0.05 a | 28.67 ± 3.99 ab | 31.62 ± 4.10 ab | 2.70 ± 0.23 ab | 0.27 ± 0.05 ab | 28.60 ± 3.41 b | 31.57 ± 2.32 b | N.S |
Cosford | 3.17 ± 0.43 a | 0.27 ± 0.05 a | 25.77 ± 3.60 c | 29.21 ± 3.71 c | 3.16 ± 0.21 a | 0.26 ± 0.06 b | 25.41 ± 2.40 c | 28.83 ± 2.81 c | N.S |
Kataloński | 2.41 ± 0.33 b | 0.22 ± 0.05 a | 29.60 ± 4.16 a | 32.23 ± 4.21 ab | 2.40 ± 0.21 b | 0.22 ± 0.05 b | 29.01 ± 4.12 ab | 31.63 ± 1.56 b | N.S |
Nottinghamski | 3.10 ± 0.44 a | 0.32 ± 0.06 a | 31.90 ± 4.49 a | 35.32 ± 4.55 a | 3.11 ± 0.44 a | 0.29 ± 0.06 a | 31.99 ± 3.52 a | 35.39± 3.56 a | N.S |
Olbrzym z Halle | 2.27 ± 0.31 b | 0.31 ± 0.06 a | 26.90 ± 3.78 b | 29.48 ± 3.84 c | 2.23 ± 0.11 b | 0.31 ± 0.04 a | 25.92 ± 3.32 c | 28.46 ± 4.14 d | N.S |
Webba Cenny | 3.86 ± 0.53 a | 0.36 ± 0.06 a | 26.41 ± 3.68 b | 30.63 ± 3.80 b | 3.82 ± 0.33 a | 0.37 ± 0.05 a | 25.40 ± 3.60 c | 29.59 ± 2.82 d | N.S |
p-value cultivar | 0.039 | N.S ** | <0.0001 | <0.0001 | 0.045 | 0.001 | <0.0001 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król, K.; Gantner, M.; Piotrowska, A.; Hallmann, E. Effect of Climate and Roasting on Polyphenols and Tocopherols in the Kernels and Skin of Six Hazelnut Cultivars (Corylus avellana L.). Agriculture 2020, 10, 36. https://doi.org/10.3390/agriculture10020036
Król K, Gantner M, Piotrowska A, Hallmann E. Effect of Climate and Roasting on Polyphenols and Tocopherols in the Kernels and Skin of Six Hazelnut Cultivars (Corylus avellana L.). Agriculture. 2020; 10(2):36. https://doi.org/10.3390/agriculture10020036
Chicago/Turabian StyleKról, Katarzyna, Magdalena Gantner, Anna Piotrowska, and Ewelina Hallmann. 2020. "Effect of Climate and Roasting on Polyphenols and Tocopherols in the Kernels and Skin of Six Hazelnut Cultivars (Corylus avellana L.)" Agriculture 10, no. 2: 36. https://doi.org/10.3390/agriculture10020036
APA StyleKról, K., Gantner, M., Piotrowska, A., & Hallmann, E. (2020). Effect of Climate and Roasting on Polyphenols and Tocopherols in the Kernels and Skin of Six Hazelnut Cultivars (Corylus avellana L.). Agriculture, 10(2), 36. https://doi.org/10.3390/agriculture10020036