Evaluating Morphological Growth, Yield, and Postharvest Fruit Quality of Cucumber (Cucumis Sativus L.) Grafted on Cucurbitaceous Rootstocks
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Morphological Growth
2.2. Fruit Yield Characteristics
2.3. Postharvest Fruit Quality
2.4. Economic Analysis
2.5. Data Processing and Experimental Design
3. Results and Discussion
3.1. Plant Morphological Growth
3.2. Fruit Yield Characteristics
3.3. Postharvest Fruit Quality
3.4. Economic Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Statistical Database. 2011. Available online: www.fao.org.com (accessed on 16 August 2011).
- Lee, J.M. Cultivation of grafted vegetables: Current status, grafting methods, and benefits. HortScience 1994, 29, 235–239. [Google Scholar] [CrossRef]
- Hartman, G.L.; Pawlowski, M.L.; Herman, T.K.; Eastburn, D. Organically Grown Soybean Production in the USA: Constraints and Management of Pathogens and Insect Pests. Agronomy 2016, 6, 16. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Fiore, A.; Montemurro, F.; Canali, S. Agro-Ecology for Potential Adaptation of Horticultural Systems to Climate Change: Agronomic and Energetic Performance Evaluation. Agronomy 2017, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- St Amand, P.C.; Wehner, T.C. Crop loss to 14 diseases in cucumber in the North Carolina for 1983 to 1988. Cucurbit Genet. Coop. Rep. 1991, 14, 15–17. [Google Scholar]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Principles of grafting and budding. In Plant 89 Propagation. Principles and Practices, 8th ed.; Pearson: London, UK, 2010. [Google Scholar]
- Yetisir, H.; Sarı, N. Effect of different rootstock on plant growth, yield and quality of watermelon. Aust. J. Exp. Agric. 2003, 43, 1269–1274. [Google Scholar] [CrossRef]
- Colla, G.; Suarez, C.M.C.; Cardarelli, M. Improving nitrogen use efficiency in melon by grafting. HortScience 2010, 45, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y.; Rea, E.; Cardarelli, M. Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci. Hortic. 2012, 135, 177–185. [Google Scholar] [CrossRef]
- Cansev, A.; Ozgur, M. Grafting cucumber seedlings on Cucurbita spp.: Comparison of different grafting methods, scions and their performance. J. Food Agric. Environ. 2010, 8, 804–809. [Google Scholar]
- Moradipour, F.; Dashti, F.; Zahedi, B. The effect of grafting on yield and some vegetative characteristics of two greenhouse cucumber cultivar. Iran. J. Hortic. Sci. 2010, 41, 291–300. [Google Scholar]
- Hoyos Echebarría, P. Influence of different rootstocks on the yield and quality of greenhouses grown cucumbers. Acta Hortic. 2001, 559, 139–144. [Google Scholar] [CrossRef]
- Lee, J.; Bang, H.; Ham, H. Quality of cucumber fruit as affected by rootstock. Acta Hortic. 1999, 483, 117–124. [Google Scholar] [CrossRef]
- Sakata, Y.; Ohara, T.; Sugiyama, M. The history and present state of the grafting of Cucurbitaceous vegetables in Japan. Acta Hortic. 2007, 731, 159–170. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Hassell, R.; Levi, A.; King, S.R.; Zhang, X. Grafting effects on vegetable quality. HortScience 2008, 43, 1670–1672. [Google Scholar] [CrossRef] [Green Version]
- Hasama, W.; Morita, S.; Kato, T. Resistance to Corynespora target leaf spot in cucumber grafted on a bloomless rootstock. Jpn. J. Phytopathol. 1993, 59, 243–248. [Google Scholar] [CrossRef]
- Morishita, M.; Sugiyama, K.; Saito, T.; Sakata, Y. Effect on rootstock on incidence of powdery mildew in cucumber. J. Jpn. Soc. Hortic. Sci. 1999, 68, 513. [Google Scholar]
- Uysal, N.; Tuzel, Y.; Oztekin, G.B.; Tuzel, I.H. Effects of different rootstocks on greenhouse cucumber production. Acta Hortic. 2012, 927, 281–289. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Agriculture Chemists, 12th ed.; A.O.A.C: Washington, DC, USA, 1975. [Google Scholar]
- Kanno, T.; Kamimura, S. Measuring textural characteristics and varietal differences of skin toughness and flesh firmness in the cucumber fruit. Bull. Veg. Ornam. Crop. Res. Stn. Jpn. 1978, 25–42. [Google Scholar]
- Morishita, M.; Sugiyama, K.; Saito, T.; Sakata, Y. An improved evaluation method for screening and selecting powdery mildew resistant cultivars and lines of cucumber (Cucumis sativus L.). J. Jpn. Soc. Hortic. Sci. 2002, 71, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Al-Debei, H.S.; Makhadmeh, I.; Abu-Al Ruz, I.; Al-Abdallat, A.M.; Ayad, J.Y.; Al-Amin, N. Influence of different rootstocks on growth and yield of cucumber (Cucumis sativus L.) under the impact of soil-borne pathogens in Jordan. J. Food Agric. Environ. 2012, 10, 343–349. [Google Scholar]
- Salam, M.A.; Masum, A.S.M.H.; Chowdhury, S.S.; Dhar, M.; Saddeque, M.A.; Islam, M.R. Growth and yield of watermelon as influenced by grafting. J. Biol. Sci. 2002, 2, 298–299. [Google Scholar]
- Zijlstra, S.; Groot, S.P.C.; Jansen, J. Genotypic variation of rootstocks for growth and production in cucumber: Possibilities for improving the root system by plant breeding. Sci. Hortic. 1994, 56, 185–196. [Google Scholar] [CrossRef]
- ShengPing, Z.; XingFang, G.; Ye, W. Effect of bur cucumber (Sicyos angulatus L.) as rootstock on growth physiology and stress resistance of cucumber plants. Acta Hortic. Sin. 2006, 33, 1231–1236. [Google Scholar]
- Özarslandan, A.; Sögüt, M.A.; Yetisir, H.; Elekcıo glu, I.H. Screening of bottle gourds (Lagenaria siceraria (Molina) Standley) genotypes with rootstock potential for watermelon production for resistance against Meloidogyne incognita (Kofoid & White, 1919) Chitwood and Meloidogyne javanica (Treub, 1885) Chitwood. Turk. Entomol. Derg. 2011, 35, 687–697. [Google Scholar]
- Giannakou, I.O.; Karpouzas, D.G. Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes in Greece. Pest Manag. Sci. 2003, 59, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Sigüenza, C.; Schochow, M.; Turini, T.; Ploeg, A. Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. J. Nematol. 2005, 37, 276–280. [Google Scholar] [PubMed]
- Bergmann, W. Nutritional Disorders of Plant: Development, Visual and Analytical Diagnosis; Gustav Fischer Verlag: Jena-New York, Germany, 1992. [Google Scholar]
- Tagliavani, M.; Bassi, D.; Marangoni, B. Growth and mineral nutrition of pear rootstocks in lime soils. Sci. Hortic. 1993, 54, 13–22. [Google Scholar] [CrossRef]
- Brown, P.H.; Zhang, Q.; Ferguson, L. Influence of rootstock on nutrient acquisition by pistachio. J. Plant Nutr. 1994, 17, 1137–1148. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Belakbir, A.; Lopez-Cantarero, I.; Romero, L. Leaf macronutrient content and yield in grafted melon plants: A model to evaluate the influence of rootstocks to genotype. Sci. Hortic. 1997, 71, 227–234. [Google Scholar] [CrossRef]
- Carmen Martínez-Ballesta, M.; Alcaraz-Lópeza, C.; Muriesa, B.; Mota-Cadenasa, C.; Carvajal, M. Physiological aspects of rootstock-scion interactions. Sci. Hortic. 2010, 127, 112–118. [Google Scholar] [CrossRef]
- Huang, Y.; Bie, Z.; Liu, Z.; Zhen, A.; Wang, W. Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci. Plant Nutr. 2009, 55, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Bie, Z.; He, S.; Hua, B.; Zhen, A.; Liu, Z. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ. Exp. Bot. 2010, 69, 32–38. [Google Scholar] [CrossRef]
- Zhu, J.; Bie, Z.; Huang, Y.; Han, X. Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 2008, 54, 895–902. [Google Scholar] [CrossRef]
- Zhong, Y.Q.; Bie, Z.L. Effects of grafting on the growth and quality of cucumber fruits. Acta Hortic. 2007, 761, 341–347. [Google Scholar] [CrossRef]
- Salata, A.C.; Bertolini, E.V.; Magro, F.O.; Cardoso, A.; Wilcken, S.R.S. Effect of grafting on cucumber production and reproduction of Meloidogyne javanica and M. incognita. Hortic. Bras. 2012, 30, 590–594. [Google Scholar] [CrossRef] [Green Version]
- ZhenDe, C.; PeiSheng, W.; Ying, Z.; YuLing, J.; ZongJun, W.; Ping, L. Effects of rootstock grafting on yield, quality and control of Meloidogyne incognita of cucumber (Cucumis sativus L.). China Veg. 2012, 8, 57–62. [Google Scholar]
- Netscher, C.; Sikora, R.A. Nematode parasites of vegetables. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture; Luc, M., Sikora, R.A., Bridge, J., Eds.; CAB International: Wallingford, UK, 1990. [Google Scholar]
- Lee, J.-M.; Oda, M. Grafting of herbaceous vegetable and ornamental crops. Hortic. Rev. 2003, 28, 61–124. [Google Scholar]
- Morishita, M. Origin and characteristics of the local cucumber variety ‘Kema’ in the Osaka district. Bull. Osaka Agric. Res. Ctr. 2001, 37, 27–34. [Google Scholar]
- Horie, H.; Ito, H.; Ippoushi, K.; Azuma, K.; Sakata, Y. Which is more palatable, bloomed cucumber or bloomless cucumber? Nippon Shokuhin Kogyo Gakkai 2004, 69. [Google Scholar]
- Ozer, M.H.; Akbudak, B.; Uylaser, V.; Tamer, E. The effect of controlled atmosphere storage on pickle production from pickling cucumbers cv. ‘Troy’. Eur. Food Res. Technol. 2006, 222, 118–129. [Google Scholar] [CrossRef]
- Nakamachi, A.; Yoshikawa, M.; Kasai, M.; Hatae, K. Change and distribution of taste components during the storage of cucumbers. J. Cook. Sci. Jpn. 2002, 35, 234–241. [Google Scholar]
- Yelmen, B.; Şahin, H.; Çakir, M. Energy Efficiency and Economic Analysis in Tomato Production: A Case Study of Mersin Province in the Mediterranean Region. Appl. Ecol. Environ. Res. 2019, 17, 7371–7379. [Google Scholar] [CrossRef]
- Pellegrini, P.; Fernández, R.J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2335–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sami, M.; Reyhani, H. Environmental assessment of cucumber farming using energy and greenhouse gas emission indexes. J. Inst. Integr. Omics Appl. Biotechnol. 2015, 6, 15–21. [Google Scholar]
- Taki, M.; Ajabshirchi, Y.; Mobtaker, H.G.; Abdi, R. Energy consumption, input–output relationship and cost analysis for greenhouse productions in Esfahan Province of Iran. J. Exp. Agric. Int. 2012, 2, 485–501. [Google Scholar] [CrossRef]
- Mirasi, A.; Samadi, M.; Rabiee, A.H. An analytical method to survey the energy input-output and emissions of greenhouse gases from wheat and tomato farms in Iran. Biol. Forum Int. J. 2015, 7, 52–58. [Google Scholar]
Grafting Materials | Scion/Rootstock Combination |
---|---|
Scion | K/Rid. gourd = Kalam F1/Ridge gourd |
Cucumber cv. Kalaam F1 | K/Bit. gourd = Kalam F1/Bitter gourd |
Rootstocks | K/Pumpkin = Kalam F1/Pumpkin |
Ridge gourd (Luffa Operculata) | K/Bot. gourd = Kalam F1/Bottle gourd |
Bitter gourd (Momordica Charantia) | Kalam F1 = Kalam F1 (real rooted) |
Pumpkin (Cucurbita Moschata) | Replications; R1, R2, R3 |
Bottle gourd (Lagrenaria Siceraria) |
Rootstock Cultivar (Treatment) | Year | Disease Index | ||
---|---|---|---|---|
First True Leaf | Seventh True Leaf | 15th True Leaf | ||
Ridge gourd | 2017 | 1.91 ± 0.20 (R) | 2.82 ± 0.20 (R) | 2.82 ± 0.40 (R) |
2018 | 1.25 ± 0.15 (R) | 2.75 ± 0.05 (R) | 2.15 ± 0.15 (R) | |
2019 | 2.55 ± 0.20 (R) | 2.81 ± 0.70 (R) | 2.60 ± 0.10 (R) | |
Bitter gourd | 2017 | 2.72 ± 0.10 (R) | 1.85 ± 0.85 (R) | 1.84 ± 0.20 (R) |
2018 | 2.05 ± 0.05 (R) | 2.92 ± 0.10 (M) | 2.95 ± 0.05 (M) | |
2019 | 2.65 ± 0.35 (R) | 2.70 ± 0.20 (R) | 2.97 ± 0.10 (M) | |
Pumpkin | 2017 | 3.35 ± 0.20 (M) | 4.45 ± 0.95 (M) | 5.50 ± 0.30 (S) |
2018 | 2.85 ± 0.15 (R) | 2.95 ± 0.35 (M) | 2.85 ± 0.35 (M) | |
2019 | 4.75 ± 0.15 (S) | 5.90 ± 0.10 (S) | 7.75 ± 0.05 (S) | |
Bottle gourd | 2017 | 0.85 ± 0.85 (R) | 1.05 ± 1.05 (R) | 2.25 ± 0.25 (R) |
2018 | 0.55 ± 0.55 (R) | 2.45 ± 0.15 (R) | 1.22 ± 0.50 (R) | |
2019 | 1.83 ± 0.20 (R) | 2.24 ± 0.10 (R) | 2.05 ± 0.05 (R) | |
Kalaam, F1 | 2017 | 2.85 ± 0.15 (R) | 4.33 ± 0.10 (M) | 5.80 ± 0.10 (S) |
2018 | 2.85 ± 0.15 (R) | 5.37 ± 0.10 (S) | 5.87 ± 0.10 (S) | |
2019 | 2.85 ± 0.15 (R) | 4.32 ± 0.10 (M) | 5.83 ± 0.10 (S) |
Rootstock Cultivar (Treatment) | Year | Number of Fruits/Plants | Fruit Weight/Fruit (g) | Fruit Length (cm) | Fruit Diameter (cm) | Shape Index | TSS (%) | Fruit Dry Matter (%) |
---|---|---|---|---|---|---|---|---|
Ridge gourd | 2017 | 12.86 ± 0.13 | 247.52 ± 2.57 | 28.51 ± 0.58 | 3.51 ± 0.03 | 8.12 ± 0.12 | 4.88 ± 0.03 | 4.34 ± 0.01 |
2018 | 13.63 ± 0.32 | 257.33 ± 3.93 | 30.26 ± 0.37 | 3.43 ± 0.03 | 8.82 ± 0.16 | 4.92 ± 0.01 | 4.42 ± 0.01 | |
2019 | 12.33 ± 0.33 | 255.33 ± 2.33 | 29.46 ± 0.75 | 3.44 ± 0.03 | 8.56 ± 0.24 | 4.77 ± 0.03 | 4.34 ± 0.03 | |
Bitter gourd | 2017 | 11.96 ± 0.33 | 239.52 ± 2.84 | 25.33 ± 0.33 | 3.44 ± 0.03 | 7.36 ± 0.18 | 4.69 ± 0.01 | 4.25 ± 0.03 |
2018 | 12.53 ± 0.29 | 248.66 ± 2.85 | 26.16 ± 0.44 | 3.53 ± 0.03 | 7.41 ± 0.15 | 4.72 ± 0.03 | 4.45 ± 0.03 | |
2019 | 11.63 ± 0.20 | 246.66 ± 1.45 | 23.83 ± 0.73 | 3.61 ± 0.05 | 6.60 ± 0.14 | 4.75 ± 0.04 | 4.25 ± 0.03 | |
Pumpkin | 2017 | 9.83 ± 0.44 | 218.51 ± 1.89 | 20.66 ± 0.33 | 3.12 ± 0.03 | 6.62 ± 0.13 | 4.65 ± 0.03 | 3.92 ± 0.01 |
2018 | 10.00 ± 0.40 | 230.66 ± 2.03 | 21.02 ± 0.58 | 3.21 ± 0.03 | 6.54 ± 0.19 | 4.61 ± 0.03 | 4.18 ± 0.04 | |
2019 | 10.33 ± 0.33 | 228.33 ± 0.88 | 20.44 ± 0.58 | 3.26 ± 0.04 | 6.27 ± 0.13 | 4.57 ± 0.03 | 4.00 ± 0.06 | |
Bottle gourd | 2017 | 14.03 ± 0.03 | 281.66 ± 0.88 | 30.13 ± 0.58 | 3.88 ± 0.06 | 7.77 ± 0.05 | 5.10 ± 0.01 | 4.55 ± 0.05 |
2018 | 15.66 ± 0.33 | 280.83 ± 1.48 | 31.33 ± 0.33 | 3.83 ± 0.04 | 8.18 ± 0.14 | 5.17 ± 0.03 | 4.62 ± 0.06 | |
2019 | 14.33 ± 0.33 | 277.33 ± 0.88 | 32.41 ± 0.33 | 3.93 ± 0.03 | 8.25 ± 0.04 | 4.96 ± 0.12 | 4.57 ± 0.22 | |
Kalaam, F1 | 2017 | 11.1 ± 0.03 | 222.51 ± 1.22 | 23.11 ± 0.52 | 3.11 ± 0.05 | 7.43 ± 0.04 | 4.61 ± 0.04 | 4.10 ± 0.04 |
2018 | 10.12 ± 0.10 | 231.7 ± 2.05 | 22.51 ± 0.41 | 3.12 ± 0.04 | 7.21 ± 0.04 | 4.65 ± 0.02 | 4.12 ± 0.03 | |
2019 | 10.33 ± 0.05 | 233.12 ± 2.62 | 20.65 ± 0.71 | 3.23 ± 0.05 | 6.39 ± 0.04 | 4.49 ± 0.03 | 4.13 ± 0.02 |
Rootstock Cultivar (Treatment) | Year | Flesh Firmness (N) | Crispness Index (%) | Placental Firmness (N) | Skin Toughness (N) |
---|---|---|---|---|---|
Ridge gourd | 2017 | 10.3 ± 0.03 | 86.2 ± 3.00 | 3.1 ± 0.06 | 10.2 ± 0.06 |
2018 | 10.5 ± 0.03 | 106.2 ± 0.72 | 3.4 ± 0.03 | 9.8 ± 0.03 | |
2019 | 10.4 ± 0.06 | 98.9 ± 1.10 | 3.3 ± 0.03 | 10.0 ± 0.03 | |
Bitter gourd | 2017 | 10.2 ± 0.03 | 93.4 ± 1.79 | 3.2 ± 0.02 | 10.0 ± 0.03 |
2018 | 10.2 ± 0.06 | 109.9 ± 0.06 | 3.6 ± 0.09 | 9.6 ± 0.09 | |
2019 | 10.2 ± 0.00 | 105.5 ± 0.87 | 3.1 ± 0.03 | 9.8 ± 0.03 | |
Pumpkin | 2017 | 10.1 ± 0.03 | 88.3 ± 2.51 | 3.1 ± 0.06 | 9.8 ± 0.03 |
2018 | 10.1 ± 0.03 | 101.4 ± 0.46 | 3.3 ± 0.03 | 9.9 ± 0.03 | |
2019 | 10.3 ± 0.03 | 111.9 ± 0.06 | 3.0 ± 0.03 | 9.7 ± 0.06 | |
Bottle gourd | 2017 | 10.4 ± 0.06 | 95.9 ± 3.15 | 3.3 ± 0.00 | 9.9 ± 0.06 |
2018 | 10.4 ± 0.03 | 113.5 ± 0.95 | 3.8 ± 0.03 | 10.0 ± 0.06 | |
2019 | 11.5 ± 0.01 | 109.5 ± 0.87 | 3.4 ± 0.03 | 10.2 ± 0.03 | |
Kalaam, F1 | 2017 | 10.1 ± 0.03 | 100.0 ± 0.02 | 3.2 ± 0.03 | 10.1 ± 0.03 |
2018 | 10.4 ± 0.03 | 100.0 ± 0.32 | 3.8 ± 0.03 | 9.9 ± 0.09 | |
2019 | 10.3 ± 0.03 | 100.0 ± 1.65 | 3.3 ± 0.03 | 10.1 ± 0.03 |
Cost Items ($ ha−1 ) | Hybrid (Non-Grafted) | Grafted |
---|---|---|
Human labor | 1200 | 1237 |
Diesel & lubrication | 82.50 | 81.00 |
Nursery | 215 | 237 |
Fertilizer and Pesticides | 400 | 300 |
Water and Electricity | 247.8 | 240 |
Farmyard manure | 300 | 300 |
Repair maintenance costs | 85 | 85 |
Total variable costs ($ ha−1) | 2530.68 | 2480.00 |
Greenhouse depreciation | 351 | 351 |
Machinery depreciation | 76 | 76 |
Interest on greenhouse | 510 | 510 |
Interest on machinery | 204 | 204 |
Land rent | 833 | 833 |
Machinery housing | 69 | 69 |
General overhead costs | 190 | 190 |
Total fixed costs ($ ha−1) | 2233 | 2233 |
Total production costs ($ ha−1) | 4763.68 | 4713.00 |
Total return ($ ha−1) | 29,641.50 | 39,192.50 |
Net return ($ ha−1) | 24,877.83 | 34,479.50 |
Benefit/Cost ratio (BCR) | 6.22 | 8.32 |
Profits | Hybrid (Non-Grafted) | Grafted |
---|---|---|
Gross profit ($ ha−1) | 27,110.83 | 36,712.50 |
Net profit ($ ha−1) | 24,877.83 | 34,479.50 |
Relative profit | 6.22 | 8.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, W.; Noor, R.S.; Hussain, F.; Ameen, M.; Ullah, S.; Chen, H. Evaluating Morphological Growth, Yield, and Postharvest Fruit Quality of Cucumber (Cucumis Sativus L.) Grafted on Cucurbitaceous Rootstocks. Agriculture 2020, 10, 101. https://doi.org/10.3390/agriculture10040101
Aslam W, Noor RS, Hussain F, Ameen M, Ullah S, Chen H. Evaluating Morphological Growth, Yield, and Postharvest Fruit Quality of Cucumber (Cucumis Sativus L.) Grafted on Cucurbitaceous Rootstocks. Agriculture. 2020; 10(4):101. https://doi.org/10.3390/agriculture10040101
Chicago/Turabian StyleAslam, Waqas, Rana Shahzad Noor, Fiaz Hussain, Muhammad Ameen, Saif Ullah, and Hong Chen. 2020. "Evaluating Morphological Growth, Yield, and Postharvest Fruit Quality of Cucumber (Cucumis Sativus L.) Grafted on Cucurbitaceous Rootstocks" Agriculture 10, no. 4: 101. https://doi.org/10.3390/agriculture10040101
APA StyleAslam, W., Noor, R. S., Hussain, F., Ameen, M., Ullah, S., & Chen, H. (2020). Evaluating Morphological Growth, Yield, and Postharvest Fruit Quality of Cucumber (Cucumis Sativus L.) Grafted on Cucurbitaceous Rootstocks. Agriculture, 10(4), 101. https://doi.org/10.3390/agriculture10040101