Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design
- − conventional (CT): plough—20 cm deep, pre-sowing mineral fertilisation on the whole surface, seedbed preparation, sowing,
- − reduced (RT): ploughless tillage—20 cm deep loosening, pre-sowing mineral fertilisation on the whole surface, seedbed preparation, and sowing with the combined aggregate,
- − strip-till (ST): strip tillage, fertiliser application into loosened strip and two-row sowing with one pass.
- − crushed straw, shallow tillage (TS),
- − no post-harvest tillage, mulch—crushed previous crop straw (MS).
2.3. Elements of Agrotechnical Practices
2.4. Samples and Measurements
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kertesz, A.; Madarasz, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2014, 2, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Busari, A.M.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2014, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fando, C.; Dorado, J.; Pardo, M.T. Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain. Soil Tillage Res. 2007, 95, 266–276. [Google Scholar] [CrossRef]
- Cox, W.J.; Cherney, J.H.; Hanchar, J. Zone tillage depth affects yield and economics of corn silage production. Agron. J. 2009, 101, 1093–1098. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of noninversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Townsend, T.J.; Ramsden, S.J.; Wilson, P. How do we cultivate in England? Tillage practices in crop production systems. Soil Use Manag. 2016, 32, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, P.; Zorzi, A.; Panella, F.; Tosti, G.; Trevini, M. Strip tillage and sowing: Is precision planting indispensable in silage maize? Int. J. Plant Prod. 2017, 11, 577–588. [Google Scholar]
- Laufer, D.; Loibl, B.; Märländer, B.; Koch, H.-J. Soil erosion and surface runoff under strip tillage for sugar beet (Beta vulgaris L.) in Central Europe. Soil Tillage Res. 2016, 162, 1–7. [Google Scholar] [CrossRef]
- Williams, A.; Kane, D.A.; Ewing, P.M.; Atwood, L.W.; Jilling, A.; Li, M.; Lou, Y.; Davis, A.S.; Grandy, A.S.; Huerd, S.C.; et al. Soil functional zone management: A vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems. Front. Plant Sci. 2016, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Iverson, W.M.; Evans, R.G.; Allen, B.L. Crop water productivity of sugarbeet as affected by tillage. Agron. J. 2014, 106, 2280–2286. [Google Scholar] [CrossRef]
- Hasan, M.; Mahmud, K.; Islam, M.N.; Sarkar, P.K.; Shariot-Ullah, M. Water productivity and yield performances of wheat under different irrigation and tillage treatments. Fundam. Appl. Agric. 2017, 2, 196–201. [Google Scholar]
- Alhajj Ali, S.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat response to no-tillage and nitrogen fertilization in a long-term faba bean-based rotation. Agronomy 2019, 9, 50. [Google Scholar]
- Trevini, M.; Benincasa, P.; Guiducci, M. Strip tillage effect on seedbed tilth and maize production in Northern Italy as case-study for the Southern Europe environment. Eur. J. Agron. 2013, 48, 50–56. [Google Scholar] [CrossRef]
- Idowu, O.J.; Sultana, S.; Darapuneni, M.; Beck, L.; Steiner, R. Short-term conservation tillage effects on corn silage yield and soil quality in an irrigated, arid agroecosystem. Agronomy 2019, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Celik, A.; Altikat, S.; Way, T.R. Strip tillage width effects on sunflower seed emergence and yield. Soil Tillage Res. 2013, 131, 20–27. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. Soil disturbed using a strip tillage implement on a range of soil types and the effects on sugar beet establishment. Soil Use Manag. 2007, 23, 428–436. [Google Scholar] [CrossRef]
- Leskovar, D.; Othman, Y.; Dong, X. Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Tillage Res. 2016, 163, 266–273. [Google Scholar] [CrossRef]
- Lekavičienė, K.; Šarauskis, E.; Naujokienė, V.; Kriaučiūnienė, Z. Effect of row cleaner operational settings on crop residue translocation in strip-tillage. Agronomy 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Mzuri. 2017. Available online: http://mzuri.eu/wp-content/uploads/Mzuri-Brochure-2017.pdf (accessed on 28 September 2019).
- WRB. World Reference Base for Soil Resources 2014—International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; IUSS Working Group WRB, World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Kuśmierek-Tomaszewska, R.; Dudek, S.; Żarski, J.; Januszewska-Klapa, K. Temporal variability of drought in field crops in the region of Kujawsko-Pomorskie, Poland. Res. Rural Dev. 2018, 2, 62–68. [Google Scholar]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S. Impact of irrigation and fertigation on the yield and quality of sugar beet (Beta vulgaris L.) in a moderate climate. Agronomy 2020, 10, 166. [Google Scholar]
- Available online: https://upload.wikimedia.org/wikipedia/commons/b/bd/Poland_in_Europe.svg (accessed on 29 January 2019).
- Available online: https://en.wikipedia.org/wiki/Voivodeship (accessed on 29 January 2019).
- TIBCO Software Inc. Statistica Data Analysis Software System, Version 12. Available online: http://statistica.io (accessed on 1 June 2017).
- Piao, L.; Li, M.; Xiao, J.; Gu, W.; Zhan, M.; Cao, C.; Zhao, M.; Li, C. Effects of soil tillage and canopy optimization on grain yield, root growth, and water use efficiency of rainfed maize in Northeast China. Agronomy 2019, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Zibilske, L.M.; Bradford, J.M. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage. Soil Sci. Soc. Am. J. 2007, 71, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Davis, A.S.; Ewing, P.M.; Grandy, A.S.; Kane, D.A.; Koide, R.T.; Mortensen, D.A.; Smith, R.G.; Snapp, S.S.; Spokas, K.A.; et al. A comparison of soil hydrothermal properties in zonal and uniform tillage systems across the US corn belt. Geoderma 2016, 273, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaisi, M.M.; Douelle, A.; Kwaw-Mensah, D. Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J. Soil Water Conserv. 2014, 69, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Fernández, F.G.; Sorensenb, B.A.; Villamil, M.B. A comparison of soil properties after five years of no-till and strip-till. Agron. J. 2015, 107, 1339–1346. [Google Scholar] [CrossRef]
- Hossain, M.I.; Gathala, M.K.; Tiwari, T.P.; Hossain, M.S. Strip tillage seeding technique: A better option for utilizing residual soil moisture in rainfed moisture stress environments of North-West Bangladesh. Int. J. Recent Dev. Eng. Technol. 2014, 2, 132–136. [Google Scholar]
- Diacono, M.; Castrignanò, A.; Troccoli, A.; De Benedetto, D.; Basso, B.; Rubino, P. Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multi-variate geostatistical approach. Field Crops Res. 2012, 131, 49–62. [Google Scholar] [CrossRef]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Evans, R.G.; Stevens, W.B.; Iversen, W.M. Development of strip tillage on sprinkler irrigated sugarbeet. Appl. Eng. Agric. 2010, 26, 59–69. [Google Scholar] [CrossRef]
- Choudhary, V.P.; Singh, B. Effect of zero, strip and conventional till system on performance of wheat. J. Agric. Eng. 2002, 39, 27–31. [Google Scholar]
- Hossain, M.I.; Haque, M.E.; Meisner, C.A.; Sufian, M.A.; Rahman, M.M. Strip tillage planting method for better wheat establishment. J. Sci. Technol. 2005, 3, 91–95. [Google Scholar]
- Hoque, M.; Miah, M.S. Evaluation of different tillage methods to assess BARI inclined plate planter. Agric. Eng. Int. 2015, 17, 128–137. [Google Scholar]
- Kahlon, M.S.; Khurana, K. Effect of land management practices on physical properties of soil and water productivity in wheat-maize system of North West India. Appl. Ecol. Environ. Res. 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Lamm, F.R.; Aiken, R.M.; Abou Kheira, A.A. Corn yield and water use characteristics as affected by tillage, plant density, and irrigation. Trans. ASABE 2009, 52, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Temesgen, M.; Savenije, H.H.G.; Rockstrom, J.; Hoogmoed, W.B. Assessment of strip tillage systems for maize production in semi-arid Ethiopia: Effects on grain yield, water balance and water productivity. Phys. Chem. Earth Parts A/B/C 2012, 47–48, 156–165. [Google Scholar] [CrossRef]
- Jaskulska, I.; Gałązka, A.; Jaskulski, D. Strip-till as a means of decreasing spatial variability of winter barley within a field scale. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 516–527. [Google Scholar] [CrossRef]
Feature | Research Year | ||||||||
---|---|---|---|---|---|---|---|---|---|
2013/2014 | 2014/2015 | 2015/2016 | |||||||
I | II | I × II | I | II | I × II | I | II | I × II | |
Plant density | * | ns | ns | * | ns | ns | * | ns | ns |
Ear density | ns | ns | ns | * | ns | ns | * | ns | ns |
No of grains per ear | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Grain weight per ear | ns | ns | ns | ns | ns | ns | * | ns | ns |
Thousand grain weight | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Grain yield | ns | ns | ns | * | ns | ns | * | ns | ns |
Technology | Research Year | ||
---|---|---|---|
2013/2014 | 2014/2015 | 2015/2016 | |
Plant density after emergence (no m−2) | |||
Conventional (CT) | 229 ab | 191 c | 193 ab |
Reduced (RT) | 230 a | 198 b | 173 b |
Strip-till (ST) | 218 b | 210 a | 213 a |
Ear density (no m−2) | |||
Conventional (CT) | 685 a | 641 ab | 472 a |
Reduced (RT) | 684 a | 630 b | 451 b |
Strip-till (ST) | 676 a | 663 a | 481 a |
Grain weight per ear (g) | |||
Conventional (CT) | 1.61 a | 1.49 a | 1.65 a |
Reduced (RT) | 1.57 a | 1.49 a | 1.58 b |
Strip-till (ST) | 1.60 a | 1.52 a | 1.65 a |
Grain yield (t ha−1) | |||
Conventional (CT) | 10.35 a | 9.22 b | 7.56 a |
Reduced (RT) | 10.29 a | 9.01 b | 6.70 b |
Strip-till (ST) | 10.12 a | 9.56 a | 7.40 a |
Yield Component | Yield Component | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Conventional (CT) | ||||
Ear density (1) | − | −0.723 | −0.719 | ns |
No of grains per ear (2) | - | 0.630 | −0.487 | |
Grain weight per ear (3) Thousand grain weight (4) | − | ns − | ||
Reduced (RT) | ||||
Ear density (1) | − | −0.769 | −0.805 | ns |
No of grains per ear (2) Grain weight per ear (3) Thousand grain weight (4) | - | 0.684 − | −0.516 −0.386 − | |
Strip-till (ST) | ||||
Ear density (1) | − | −0.512 | −0.489 | ns |
No of grains per ear (2) Grain weight per ear (3) Thousand grain weight (4) | − | 0.713 − | ns ns − |
Yield Component | Year | ||
---|---|---|---|
2013/2014 | 2014/2015 | 2015/2016 | |
Conventional (CT) | |||
Ear density | 0.586 | 0.811 | 0.740 |
No of grains per ear | 0.567 | 0.733 | 0.632 |
Grain weight per ear | 0.612 | 0.713 | 0.567 |
Thousand grain weight | 0.608 | 0.663 | ns |
Reduced (RT) | |||
Ear density | 0.629 | 0.798 | 0.675 |
No of grains per ear | 0.517 | 0.748 | 0.655 |
Grain weight per ear | 0.571 | 0.730 | 0.533 |
Thousand grain weight | 0.619 | 0.665 | ns |
Strip-till (ST) | |||
Ear density | ns | 0.577 | 0.491 |
No of grains per ear | ns | 0.630 | 0.526 |
Grain weight per ear | 0.495 | 0.524 | ns |
Thousand grain weight | 0.547 | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions. Agriculture 2020, 10, 105. https://doi.org/10.3390/agriculture10040105
Jaskulska I, Jaskulski D, Różniak M, Radziemska M, Gałęzewski L. Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions. Agriculture. 2020; 10(4):105. https://doi.org/10.3390/agriculture10040105
Chicago/Turabian StyleJaskulska, Iwona, Dariusz Jaskulski, Marek Różniak, Maja Radziemska, and Lech Gałęzewski. 2020. "Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions" Agriculture 10, no. 4: 105. https://doi.org/10.3390/agriculture10040105
APA StyleJaskulska, I., Jaskulski, D., Różniak, M., Radziemska, M., & Gałęzewski, L. (2020). Zonal Tillage as Innovative Element of the Technology of Growing Winter Wheat: A Field Experiment under Low Rainfall Conditions. Agriculture, 10(4), 105. https://doi.org/10.3390/agriculture10040105