Impact of Cover Crops on Insect Community Dynamics in Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Cover Crop Treatments and Experimental Design
2.3. Planting and Termination
2.4. Insect Community Collection
2.5. Cash Crop Planting & Pest Damage
3. Statistical Analysis
4. Results
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Herbivores | Order | Family |
---|---|---|
White fly (Bemisia argentifolii [Bellows & Perring]) | Hemiptera | Aleyrodidae |
Leaf hopper (Empoasca fabae (Harris]) | Hemiptera | Cicadellidae |
Lygus bugs (Lygus lineolaris) | Hemiptera | Miridae |
Flea beetle (Chaetocnema hortensis) | Coleoptera | Chrysomelidae |
Armyworm (Pseudaletia unipuncta [Haworth]) | Lepidoptera | Noctuidae |
Looper (Trichoplusia ni [Hübner]) | Lepidoptera | Noctuidae |
Predators | ||
Ladybug beetle (Hippodamia convergens [Guérin-Méneville]) | Coleoptera | Coccinellidae |
Minute pirate bug (Orius sp.) | Hemiptera | Anthocoridae |
Big eyed bug (Geocoris sp.) | Hemiptera | Geocoridae |
Spiders (multiple species) | Araneae | |
Green lacewing (Chrysoperla sp.) | Neuroptera | Chrysopidae |
Damsel bug (Nabis sp.) | Hemiptera | Nabidae |
Assassin bug (Zelus sp.) | Hemiptera | Reduviidae |
Parasitoids | ||
Parasitoid Wasps (Cotesia sp.) | Hymenoptera | Braconidae |
References
- Bale, J.; Van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 761–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Saona, C.; Blaauw, B.R.; Isaacs, R. Manipulation of natural enemies in agroecosystems: Habitat and semiochemicals for sustainable insect pest control. In Integrated Pest Management and Pest Control—Current and Future Tactics, 1st ed.; Larramendy, M.L., Soloneski, S., Eds.; InTech: Rijeka, Croatia, 2012; pp. 89–126. [Google Scholar]
- Kariyat, R.; Mauck, K.E.; De Moraes, C.M.; Stephenson, A.G.; Mescher, M.C. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L.). Ecol. Lett. 2012, 15, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Unsicker, S.B.; Kunert, G.; Gershenzon, J. Protective perfumes: The role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 2009, 12, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Reicosky, D.C.; Forcella, F. Cover crop and soil quality interactions in agroecosystems. J. Soil Water Conserv. 1998, 53, 224–229. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Watkins, K.B.; Teasdale, J.R.; Abdul-Baki, A.A. Cover crops in sustainable food production. Food Rev. Int. 2000, 16, 121–157. [Google Scholar] [CrossRef]
- Bugg, R.L.; Wäckers, F.L.; Brunson, K.E.; Dutcher, J.D.; Phatak, S.C. Cool-season cover crops relay intercropped with cantaloupe: Influence on a generalist predator, geocoris punctipes (Hemiptera: Lygaeidae). J. Econ. Èntomol. 1991, 84, 408–416. [Google Scholar] [CrossRef]
- Bugg, R.L.; Waddington, C. Using cover crops to manage arthropod pests of orchards: A review. Agric. Ecosyst. Environ. 1994, 50, 11–28. [Google Scholar] [CrossRef]
- Creamer, N.G.; Baldwin, K.R. An evaluation of summer cover crops for use in vegetable production systems in North Carolina. HortScience 2000, 35, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. USA 2004, 101, 10854–10861. [Google Scholar] [CrossRef] [Green Version]
- Lundgren, J.G.; Fergen, J.K. The effects of a winter cover crop on diabrotica virgifera (Coleoptera: Chrysomelidae) populations and beneficial arthropod communities in No-Till maize. Environ. Èntomol. 2010, 39, 1816–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, C.I.; Parrella, M.; Altieri, M.A. The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc. Ecol. 2001, 16, 133–146. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 2016, 36. [Google Scholar] [CrossRef] [Green Version]
- Long, R.F.; Lamb, C.; Reberg-Horton, S.C.; Chandler, J.; Stimmann, M.; Corbett, A. Beneficial insects move from flowering plants to nearby crops. Calif. Agric. 1998, 52, 23–26. [Google Scholar] [CrossRef]
- Hoffman, M.L.; Weston, L.A.; Snyder, J.C.; Regnier, E.E. Allelopathic influence of germinating seeds and seedlings of cover crops on weed species. Weed Sci. 1996, 44, 579–584. [Google Scholar] [CrossRef]
- Asmah, S.; Ghazali, A.; Syafiq, M.; Yahya, M.S.; Peng, T.L.; Norhisham, A.R.; Puan, C.L.; Lindenmayer, D.; Azhar, B. Effects of polyculture and monoculture farming in oil palm smallholdings on tropical fruit-feeding butterfly diversity. Agric. For. Èntomol. 2016, 19, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Stamps, W.T.; Linit, M.J. Plant diversity and arthropod communities: Implications for temperate agroforestry. Agrofor. Syst. 1997, 39, 73–89. [Google Scholar] [CrossRef]
- E Crews, T.; Carton, W.; Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Costello, M. Abundance, growth rate and parasitism of Brevicoryne brassicae and Myzus persicae (Homoptera: Aphididae) on broccoli grown in living mulches. Agric. Ecosyst. Environ. 1995, 52, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Bryant, A.; Brainard, D.C.; Haramoto, E.R.; Szendrei, Z. Cover crop mulch and weed management influence arthropod communities in strip-tilled cabbage. Environ. Èntomol. 2013, 42, 293–306. [Google Scholar] [CrossRef]
- Legrand, A.; Barbosa, P. Plant morphological complexity impacts foraging efficiency of adult coccinella septempunctata L. (Coleoptera: Coccinellidae). Environ. Èntomol. 2003, 32, 1219–1226. [Google Scholar] [CrossRef] [Green Version]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37. [Google Scholar] [CrossRef]
- Kariyat, R.; Hardison, S.; Ryan, A.B.; Stephenson, A.G.; De Moraes, C.M.; Mescher, M.C. Leaf trichomes affect caterpillar feeding in an instar-specific manner. Commun. Integr. Biol. 2018, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Chavana, J.; Soti, P.; Racelis, A.; Kariyat, R. Arbuscular mycorrhizal fungi (AMF) influences growth and insect community dynamics in Sorghum-sudangrass (Sorghum × drummondii). Arthropod-Plant Interact. 2020, 14, 301–315. [Google Scholar] [CrossRef]
- Pare, P.W. Plant volatiles as a defense against insect herbivores. Plant Physiol. 1999, 121, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Kariyat, R.; Scanlon, S.R.; Moraski, R.P.; Stephenson, A.G.; Mescher, M.C.; De Moraes, C.M. Plant inbreeding and prior herbivory influence the attraction of caterpillars (Manduca sexta) to odors of the host plant Solanum carolinense (Solanaceae). Am. J. Bot. 2014, 101, 376–380. [Google Scholar] [CrossRef]
- Dicke, M.; Baldwin, I.T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends Plant Sci. 2010, 15, 167–175. [Google Scholar] [CrossRef]
- Cover Cropping for Pollinators and Beneficial Insects. Available online: https://www.sare.org/Learning-Center/Bulletins/Cover-Cropping-for-Pollinators-and-Beneficial-Insects/Text-Version (accessed on 30 March 2020).
- Grasela, J.J.; McIntosh, A.H.; Shelby, K.S.; Long, S. Isolation and characterization of a baculovirus associated with the insect parasitoid wasp, cotesiamarginiventris, or its host, Trichoplusia ni. J. Insect Sci. 2008, 8, 1–19. [Google Scholar] [CrossRef]
- Capinera, J.L. Armyworm, Pseudaletia Unipuncta (Haworth) (Insecta: Lepidoptera: Noctuidae); University of Florida: Gainesville, FL, USA, 2012; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.512.757&rep=rep1&type=pdf (accessed on 29 March 2020).
- Legaspi, J.; Nordlund, D.; Legaspi, B. Tri-trophic interactions and predation rates in Chrysoperla spp. Attacking the silverleaf whitefly. Southwest. Entomol. 1996, 21, 33–42. [Google Scholar]
- Inbar, M.; Gerling, D. Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu. Rev. Èntomol. 2008, 53, 431–448. [Google Scholar] [CrossRef] [Green Version]
- Mansion-Vaquié, A.; Ferrer, A.; Ramon-Portugal, F.; Wezel, A.; Magro, A. Intercropping impacts the host location behaviour and population growth of aphids. Èntomol. Exp. Appl. 2019, 168, 41–52. [Google Scholar] [CrossRef] [Green Version]
- War, A.R.; Sharma, H.C.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Herbivore induced plant volatiles: Their role in plant defense for pest management. Plant Signal. Behav. 2011, 6, 1973–1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himanen, S.J.; Bui, T.N.T.; Maja, M.M.; Holopainen, J.K. Utilizing associational resistance for biocontrol: Impacted by temperature, supported by indirect defence. BMC Ecol. 2015, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, A.W.; Hamby, K.A.; McCluen, S.R.; Hooks, C.R.R. Evaluating a Push-Pull Tactic for Management of Epilachna Varivestis Mulsant and Enhancement of Beneficial Arthropods in Phaseolus lunatus L. Available online: https://www.sciencedirect.com/science/article/pii/S0925857419303842 (accessed on 1 April 2020).
- Ninkovic, V.; Dahlin, I.; Vucetic, A.; Petrovič-Obradovič, O.; Glinwood, R.; Webster, B. Volatile exchange between undamaged plants—A new mechanism affecting insect orientation in intercropping. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansoer, Z.; Reeves, D.; Wood, C.W. Suitability of sunn hemp as an alternative late-summer legume cover crop. Soil Sci. Soc. Am. J. 1997, 61, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Taiwo, M.A.; Akinjogunla, O.J. Cowpea viruses: Quantitative and qualitative effects of single and mixed viral infections. Afr. J. Biotechnol. 2006, 5, 1749–1756. [Google Scholar]
- Hickman, P.L. Cover Crops as an Integrated Approach for Pest Suppression and Pollinator Promotion in Arkansas. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2019. [Google Scholar]
- Khan, Z.R.; Midega, C.A.O.; Bruce, T.J.A.; Hooper, A.; Pickett, J. Exploiting phytochemicals for developing a ‘push-pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 2010, 61, 4185–4196. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, S.M.; Jeevanandam, J.; Egbuna, C.; Merghany, R.M.; Akram, M.; Daniyal, M.; Nisar, J.; Sharif, A. Semiochemicals: A green approach to pest and disease control. In Natural Remedies for Pest, Disease and Weed Control; Egbuna, C., Sawicka, B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 81–89. [Google Scholar]
- Soti, P.G.; Racelis, A. Cover crops for weed suppression in organic vegetable systems in semiarid subtropical Texas. Org. Agric. 2020, 1–8. [Google Scholar] [CrossRef]
- Murrell, E.G.; Ray, S.; Lemmon, M.E.; Luthe, D.; Kaye, J.P. Cover crop species affect mycorrhizae-mediated nutrient uptake and pest resistance in maize. Renew. Agric. Food Syst. 2019, 1–8. [Google Scholar] [CrossRef]
- Bewick, T.A.; Shilling, D.G.; Dusky, J.A.; Williams, D. Effects of celery (apium graveolens) root residue on growth of various crops and weeds. Weed Technol. 1994, 8, 625–629. [Google Scholar] [CrossRef]
- Saha, B.; Devi, C.; Khwairakpam, M.; Kalamdhad, A.S. Vermicomposting and anaerobic digestion-viable alternative options for terrestrial weed management—A review. Biotechnol. Rep. 2018, 17, 70–76. [Google Scholar] [CrossRef] [PubMed]
Cover Crop Treatment | Crop Type | Seeding Rate (kg/ha) |
---|---|---|
Sudangrass (SG) | Grass | 45 |
Cowpea (CP) | Legume | 28 |
Sunn hemp (SH) | Legume | 45 |
Mix (Sudangrass + Cowpea + Sunn hemp) | - | 16 + 10 + 16 |
Control (C) | - | - |
Year | Season | Crop | Frequency | Data Collected |
---|---|---|---|---|
1 | Summer | Cover crops: CP, SH, SG, Mix | Early and late in season | Herbivores and Beneficial insects |
Fall | Cash crop: Squash | Early and late in season | Herbivore damage | |
2 | Summer | Cover crops: CP and SH | Early and late in season | Plant height, Herbivore damage, Biomass |
Fall | Cash crop: Cabbage | Early and late in season | Herbivores and Beneficial insects |
Time | Trait | Test Statistic | P Value |
---|---|---|---|
2017 Cover crop | Total insects (Time) | F = 0.53, df = 2 | 0.598 |
Total insects (Crop) | F = 1.41, df = 4 | 0.286 | |
Beneficial insects (Time) | F = 4.98, df = 2 | 0.025 | |
Beneficial insects (Crop) | F = 1.13, df = 4 | 0.387 | |
Herbivores (Time) | F = 1.83, df = 2 | 0.199 | |
Herbivores (Crop) | F = 3.93, df= 4 | 0.026 | |
2017 Cash crop | Damage (Early season) | F = 4.36, df = 4 | 0.015 |
Damage (Mid season) | F = 1.58, df = 4 | 0.230 | |
Damage (Late season) | F = 0.26, df = 4 | 0.896 | |
2018 Cover crop | Height (Time) | F =117.51, df =1 | 0.000 |
Height (Crop) | F =617.74, df = 1 | 0.000 | |
Height (Time* Crop) | F =53.73, df =1 | 0.000 | |
Damage (Crop) | F = 0.09, df = 1 | 0.762 | |
Damage (Time* Crop) | F = 225.83, df = 1 | 0.000 | |
Biomass | t = 3.96, df = 31 | 0.000 | |
2018 Cash crop | Biomass | F = 4.6, df = 2 | 0.013 |
Total insects (Time) | F = 0.37, df = 1 | 0.548 | |
Total insects (Cover crop) | F = 8.59, df = 2 | 0.002 | |
Cash crop | F =1.14, df = 2 | 0.337 | |
Beneficial’s (Time) | F = 0.74, df = 1 | 0.397 | |
Cover crop | F = 2.6, df = 2 | 0.095 | |
Cash crop | F = 0.31, df = 2 | 0.735 | |
Herbivores (Time) | F = 0.92, df = 1 | 0.348 | |
Herbivores (Cover crops) | F = 9.17, df = 2 | 0.001 | |
Herbivores (Cash crop) | F = 1.98, df = 2 | 0.160 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, L.; Soti, P.; Kaur, J.; Racelis, A.; Kariyat, R.R. Impact of Cover Crops on Insect Community Dynamics in Organic Farming. Agriculture 2020, 10, 209. https://doi.org/10.3390/agriculture10060209
Martinez L, Soti P, Kaur J, Racelis A, Kariyat RR. Impact of Cover Crops on Insect Community Dynamics in Organic Farming. Agriculture. 2020; 10(6):209. https://doi.org/10.3390/agriculture10060209
Chicago/Turabian StyleMartinez, Lili, Pushpa Soti, Jasleen Kaur, Alexis Racelis, and Rupesh R. Kariyat. 2020. "Impact of Cover Crops on Insect Community Dynamics in Organic Farming" Agriculture 10, no. 6: 209. https://doi.org/10.3390/agriculture10060209
APA StyleMartinez, L., Soti, P., Kaur, J., Racelis, A., & Kariyat, R. R. (2020). Impact of Cover Crops on Insect Community Dynamics in Organic Farming. Agriculture, 10(6), 209. https://doi.org/10.3390/agriculture10060209