Farmers’ Perception and Evaluation of Brachiaria Grass (Brachiaria spp.) Genotypes for Smallholder Cereal-Livestock Production in East Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Demonstration Plots
2.3. Sampling Procedures
2.4. Data Collection
2.5. Data Analysis
3. Results
3.1. Farmer Socio-demographics and Farm Characteristics
3.2. Benefits of Brachiaria
3.3. Constraints to Production of Brachiaria
3.4. Farmer Evaluation and Selection of Brachiaria Genotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miles, J.W.; Do Valle, C.B.; Rao, I.M.; Euclides, V.P.B. Brachiariagrasses. In Warm-Season (C4) Grasses; Moser, L.E., Burson, B.L., Sollenberger, L.E., Eds.; Agronomy Monographs; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2004; Volume 45, pp. 745–783. [Google Scholar]
- Jank, L.; Alves, G. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 2014, 65, 1132–1137. [Google Scholar] [CrossRef]
- Boonman, G. East Africa’s Grasses and Fodders: Their Ecology and Husbandry; Springer: Heidelberg, Germany, 1993. [Google Scholar]
- Maass, B.L.; Midega, C.A.O.; Mutimura, M.; Rahetlah, V.B.; Salgado, P.; Kabirizi, J.M.; Khan, Z.R.; Ghimire, S.R.; Rao, I.M. Homecoming of Brachiaria: Improved hybrids prove useful for African animal agriculture. East Afr. Agric. For. J. 2015, 81, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Khan, Z.R.; James, D.G.; Midega, C.A.O.; Pickett, J.A. Chemical ecology and conservation biological control. Biol. Control. 2008, 45, 210–224. [Google Scholar] [CrossRef]
- Khan, Z.; Midega, C.; Pittchar, J.; Pickett, J.; Bruce, T. Push–pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int. J. Agric. Sustain. 2011, 9, 162–170. [Google Scholar] [CrossRef]
- Khan, Z.; Midega, C.A.O.; Hooper, A.; Pickett, J. Push–Pull: Chemical Ecology-Based Integrated Pest Management Technology. J. Chem. Ecol. 2016, 42, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.R.; Midega, C.A.O.; Pittchar, J.; Bruce, T.J.A.; Pickett, J.A. ‘Push–pull’ revisited: The process of successful deployment of a chemical ecology-based pest management tool. In Biodiversity and Insect Pests: Key Issues for Sustainable Management; Gurr, G.M., Wratten, S.D., Snyder, W.E., Read, D.M.Y., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012; pp. 259–275. [Google Scholar]
- Pickett, J.A.; Woodcock, C.M.; Midega, C.A.O.; Khan, Z.R. Push–pull farming systems. Curr. Opin. Biotechnol. 2014, 26, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.R.; Pickett, J.A.; Wadhams, L.; Muyekho, F. Habitat management strategies for the control of cereal stemborers and striga in maize in Kenya. Int. J. Trop. Insect Sci. 2001, 21, 375–380. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Bruce, T.J.A.; Hooper, A.M.; Pickett, J.A. Exploiting phytochemicals for developing a ‘push–pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 2010, 61, 4185–4196. [Google Scholar] [CrossRef] [Green Version]
- Pickett, J.A.; Khan, Z.R. Plant volatile-mediated signaling and its application in agriculture: Successes and challenges. New Phytol. 2016, 212, 856–870. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Hassanali, A.; Pickett, J. Managing polycropping to enhance soil system productivity: A case study from Africa. In Biological Approaches to Sustainable Soil Systems; Ball, A.S., Thies, J., Sanginga, N., Sanchez, P., Pretty, J., Palm, C., Laing, M., Herren, H., Fernandes, E., Uphoff, N., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 575–586. [Google Scholar]
- Midega, C.A.O.; Wasonga, C.J.; Hooper, A.M.; Pickett, J.A.; Khan, Z.R. Drought-tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya. Crop Prot. 2017, 98, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Mutimura, M.; Ebong, C.; Rao, I.M.; Nsahlai, I.V. Effects of supplementation of Brachiaria brizantha cultivar Piatá and Napier grass with Desmodium distortum on feed intake, digesta kinetics and milk production by crossbred dairy cows. Animal Nutr. 2018, 4, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.V.; Nakahara, K.; Hurtado, M.P.; Ono, H.; Moreta, D.E.; Salcedo, A.F.; Yoshihashi, A.T.; Ishikawa, T.; Ishitani, M.; Ohnishi-Kameyama, M.; et al. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Natl. Acad. Sci. USA 2009, 106, 17302–17307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreta, D.E.; Arango, J.; Sotelo, M.; Vergara, D.; Rincón, A.; Ishitani, M.; Castro, A.; Miles, J.; Peters, M.; Tohme, J.O.E.; et al. Biological nitrification inhibition (BNI) in Brachiaria pastures: A novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change. Trop. Grassl. 2014, 2, 88–91. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.M.; Wood, S.; Msangi, S.; Freeman, H.A.; Bossio, D.; Dixon, J.; Peters, M.; van de Steeg, J.; et al. Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science 2010, 12, 822–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, P.; Hallam, D.; Krivonos, E.; Morrison, J. Smallholder Integration in Changing Food Markets; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Thornton, P.K.; Jones, P.G.; Owiyo, T.; Kruska, R.L.; Herrero, M.; Orindi, V.; Bhadwal, S.; Kristjanson, P.; Notenbaert, A.; Bekele, N.; et al. Climate change and poverty in Africa: Mapping hotspots of vulnerability. Afr. J. Agric. Resour. Econ. 2008, 2, 24–44. [Google Scholar]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Khan, Z.R.; Pittchar, J.O.; Midega, C.A.; Pickett, J.A. Push-Pull Farming System Controls Fall Armyworm: Lessons from Africa. Outlooks Pest Manag. 2018, 29, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Kuwi, S.O.; Mutai, M.K.C.K.; Hanson, A.M.J.; Ghimire, A.D.S.R. Genetic diversity and population structure of Urochloa grass accessions from Tanzania using simple sequence repeat (SSR) markers. Braz. J. Bot. 2018, 41, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Cheruiyot, D.; Midega, C.A.O.; Van den Berg, J.; Pickett, J.A.; Khan, Z.R. Genotypic responses of brachiaria grass (Brachiaria spp.) accessions to drought stress. J. Agron. 2018, 17, 136–146. [Google Scholar] [CrossRef]
- Cheruiyot, D.; Midega, C.A.O.; Ueckermann, E.A.; Van den Berg, J.; Pickett, J.A.; Khan, Z.R. Genotypic response of brachiaria (Urochloa spp.) to spider mite (Oligonychus trichardti) (Acari: Tetranychidae) and adaptability to different environments. Field Crop. Res. 2018, 225, 163–169. [Google Scholar] [CrossRef]
- Cheruiyot, D.; Midega, C.A.O.; Van den Berg, J.; Pickett, J.A.; Khan, Z.R. Suitability of brachiaria grass as a trap crop for management of Chilo partellus. Entomol. Exp. Appl. 2018, 166, 139–148. [Google Scholar] [CrossRef]
- Jaetzold, R.; Schmidt, H. Farm Management Handbook of Kenya: Natural Conditions and Farm Management Information; Ministry of Agriculture: Nairobi, Kenya, 1983; Volume II, Part B. [Google Scholar]
- National Soil Service. Review of Fertilizer Recommendations in Tanzania. Part 2, Revised Fertilizer Recommendations for Tanzania; Mowo, J.G., Floor, J., Kaihura, F.B.S., Magoggo, J.P., Eds.; Ministry of Agriculture: Tanga, Tanzania, 1993.
- Whitehead, A.; Tsikata, D. Policy discourses on women’s land rights in Sub-Saharan Africa: The implications of the return to the Customary. J. Agr. Chang. 2003, 3, 67–112. [Google Scholar] [CrossRef]
- Bezu, S.; Holden, S. Are rural youth in Ethiopia abandoning agriculture? World Dev. 2014, 64, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Löwe, A.; Njambi-Szlapka, S.; Phiona, S. Youth Associations and Cooperatives: Getting Young People into Work; Youth Forward: Sacramento, CA, USA, 2019. [Google Scholar]
- Djikeng, A.; Rao, I.M.; Njarui, D.; Mutimura, M.; Caradus, J.; Ghimire, S.R.; Johnson, L.; Cardoso, J.A.; Ahonsi, M.; Kelemu, S. Climate-smart Brachiaria grasses for improving livestock production in East Africa. Trop. Grassl. 2014, 2, 38–39. [Google Scholar] [CrossRef] [Green Version]
- Gichangi, E.M.; Njarui, D.M.G.; Ghimire, S.R.; Gatheru, M.; Magiroi, K.W.N. Effects of cultivated Brachiaria grasses on soil aggregation and stability in the semi-arid tropics of Kenya. Trop. Subtrop. Agroecosystems 2016, 19, 205–217. [Google Scholar]
- Ghimire, S.; Njarui, D.; Mutimura, M.; Cardoso, J.; Johnson, L.; Gichangi, E.; Teasdale, S.; Odokonyero, K.; Caradus, J.; Rao, I.; et al. Climate-smart Brachiaria for improving livestock production in East Africa: Emerging opportunities. In Proceedings of 23rd International Grassland Congress 2015-Keynote Lectures, New Delhi, India, 20–24 November 2015; Roy, M.M., Malaviya, D.R., Yadav, V.K., Singh, T., Sah, R.P., Vijay, D., Radhakrishna, A., Eds.; Range Management Society of India: Jhansi, India, 2015; pp. 361–370. [Google Scholar]
- Fischer, G.; Shah, M.; Tubiello, F.N.; Van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 2005, 360, 2067–2083. [Google Scholar] [CrossRef]
- The Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; Royal Society: London, UK, 2009. [Google Scholar]
- Tittonel, P.; Giller, K. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crop. Res. 2012, 143, 76–90. [Google Scholar] [CrossRef] [Green Version]
Homabay | Mbita | Bondo | Siaya | Tanzania | Mean | |||
---|---|---|---|---|---|---|---|---|
Variable | (n = 38) | (n = 38) | (n = 67) | (n = 54) | (n = 26) | (n = 45) | F Value | χ2 value |
Gender (male) (%) | 53 | 45 | 46 | 37 | 62 | 48.6 | ||
Age category (%) | 32.842 ** | |||||||
20–30 | 18 | 8 | 3 | 6 | 4 | 7.8 | ||
31–40 | 13 | 24 | 16 | 15 | 8 | 15.2 | ||
41–50 | 24 | 37 | 30 | 24 | 42 | 31.4 | ||
51–60 | 18 | 13 | 21 | 31 | 27 | 22 | ||
>61 | 13 | 16 | 28 | 22 | 16 | 19 | ||
86 | 98 | 98 | 98 | 97 | 95.4 | |||
Education level (%) | 26.515 * | |||||||
None | 3 | 0 | 5 | 13 | 0 | 4.2 | ||
None-formal | 3 | 8 | 4 | 2 | 4 | 4.2 | ||
Primary | 50 | 42 | 43 | 50 | 69 | 50.8 | ||
Secondary | 34 | 42 | 34 | 20 | 27 | 31.4 | ||
Post-Secondary | 8 | 8 | 15 | 13 | 0 | 8.8 | ||
Average land size rented (acres) | 1.08 | 2.05 | 1.63 | 0.92 | 2 | 2.856 * | ||
Land size owned (acres) | 5.29 | 2.8 | 2.67 | 2.05 | 4.74 | 4.59 ** | ||
Size of brachiaria plots in push pull (m2) | 793 | 634 | 655 | 603 | 734 | 670 | 0.329ns | |
Brachiaria grown as pure stands | 32 | 3 | 19 | 39 | 11 | 22.5 | 21.159 *** | |
Keeping of livestock on farm | 95 | 100 | 84 | 94 | 100 | 93 | 13.963 ** | |
Improved dairy cattle | 0.42 | 0.97 | 0.49 | 0.79 | 1.23 | 0.72 | 1.738ns | |
Local cattle | 3.42 | 3.37 | 2.46 | 2.51 | 3.65 | 2.9 | 1.727ns | |
Improved dairy goats | 0.86 | 0.53 | 0.63 | 0.57 | 0 | 0.56 | 1.841ns | |
Local goats | 1.92 | 2.02 | 2.08 | 1.05 | 3.3 | 1.94 | 2.15ns | |
Sheep | 2.92 | 2.68 | 1.4 | 0.64 | 1.65 | 1.74 | 4.395 ** |
Variable | Response/Rating (%) | Homabay (n = 38) | Mbita (n = 38) | Bondo (n = 67) | Siaya (n = 54) | Tanzania (n = 26) | Mean (n = 45) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | Male | Female | ||
Access to planting materials | Do not know where to get seeds | 5 | 0 | 11.8 | 23.8 | 22.6 | 13.9 | 0 | 0 | 6.3 | 0 | 9.1 | 7.5 |
Planting materials are expensive | 15 | 0 | 0 | 0 | 0 | 2.8 | 20 | 5.9 | 0 | 0 | 7 | 1.7 | |
Unavailability of seeds in Agrovets | 30 | 33.3 | 0 | 0 | 0 | 2.8 | 25 | 23.5 | 25 | 0 | 16 | 11.9 | |
Planting | Time consuming | 0 | 5.6 | 0 | 0 | 3.2 | 0 | 10 | 8.8 | 6.3 | 0 | 3.9 | 2.9 |
Do not know planting procedure | 0 | 0 | 5.9 | 0 | 3.2 | 8.3 | 0 | 0 | 0 | 0 | 1.8 | 1.7 | |
Poor germination of seeds | 0 | 5.6 | 5.9 | 0 | 0 | 0 | 5 | 5.9 | 37.5 | 20 | 9.7 | 6.3 | |
Crop management | Difficulty in controlling weeds | 15 | 11.1 | 11.8 | 4.8 | 3.2 | 0 | 10 | 23.5 | 0 | 0 | 8 | 7.9 |
Difficulty in handling (it pricks) | 5 | 5.6 | 29.4 | 57.1 | 0 | 2.8 | 20 | 38.2 | 12.5 | 20 | 13.4 | 24.7 | |
Arthropod pest | Yes | 50 | 66.7 | 75 | 60 | 68.4 | 77.8 | 27.8 | 31.3 | 25 | 80 | 49.2 | 63.1 |
attacks | No | 50 | 33.3 | 25 | 40 | 31.6 | 22.2 | 72.2 | 68.8 | 75 | 20 | 50.8 | 36.9 |
Spider mites | Yes | 58 | 66.7 | 75 | 60 | 68.4 | 77.8 | 27.8 | 31.3 | 25 | 80 | 50.8 | 63.1 |
on own farm | No | 42 | 33.3 | 25 | 40 | 31.6 | 22.2 | 72.2 | 68.8 | 75 | 20 | 49.2 | 36.9 |
Seriousness of mites on own farms | No problem | 18.2 | 11.1 | 12.5 | 18.8 | 5.3 | 4.5 | 12.5 | 46.7 | 0 | 0 | 9.7 | 16.2 |
Moderate problem | 45.5 | 22.2 | 37.5 | 37.5 | 78.9 | 54.5 | 75 | 46.7 | 80 | 62.5 | 63.4 | 44.7 | |
Severe problem | 18.2 | 66.7 | 43.8 | 31.3 | 10.5 | 27.3 | 12.5 | 6.7 | 20 | 37.5 | 21 | 33.9 | |
Very severe problem | 9.1 | 0 | 6.3 | 12.5 | 5.3 | 13.6 | 0 | 0 | 0 | 0 | 4.1 | 5.2 | |
Spider mites seen on other farms | Yes | 46.7 | 57.1 | 68.8 | 52.9 | 94.7 | 91.7 | 27.8 | 34.5 | 40 | 80 | 55.6 | 63.2 |
No | 53.3 | 42.9 | 31.3 | 47.1 | 5.3 | 8.3 | 72.2 | 65.5 | 60 | 20 | 44.4 | 36.8 | |
Seen shoot flies on own farm | Yes | 57.1 | 66.7 | 81.3 | 61.9 | 93.3 | 100 | 5.6 | 21.9 | 53.3 | 88.9 | 58.1 | 67.9 |
No | 42.9 | 33.3 | 18.8 | 38.1 | 6.7 | 0 | 94.4 | 78.1 | 46.7 | 11.1 | 41.9 | 32.1 | |
Seriousness of shoot flies | No problem | 20 | 7.7 | 13.3 | 20 | 6.7 | 0 | 60 | 46.2 | 0 | 0 | 20 | 14.8 |
Moderate problem | 60 | 46.2 | 33.3 | 33.3 | 73.3 | 60 | 40 | 53.8 | 87.5 | 77.8 | 58.8 | 54.2 | |
Severe problem | 20 | 30.8 | 26.7 | 40 | 20 | 30 | 0 | 0 | 12.5 | 11.1 | 15.8 | 22.4 | |
Very severe problem | 0 | 15.4 | 26.7 | 6.7 | 0 | 10 | 0 | 0 | 0 | 11.1 | 5.3 | 8.6 | |
Seen shoot flies on other farms | Yes | 50 | 62.5 | 76.5 | 55.6 | 93.3 | 100 | 10 | 3.1 | 18.8 | 44.4 | 49.7 | 53.1 |
No | 50 | 37.5 | 23.5 | 44.4 | 6.7 | 0 | 90 | 93.8 | 81.3 | 55.6 | 50.3 | 46.3 | |
Disease infestation | Yes | 26.7 | 26.7 | 64.7 | 28.6 | 90.9 | 81.3 | 21.1 | 16.7 | 18.8 | 0 | 44.4 | 30.6 |
No | 73.3 | 73.3 | 35.3 | 71.4 | 9.1 | 18.8 | 78.9 | 83.3 | 81.3 | 100 | 55.6 | 69.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheruiyot, D.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Khan, Z.R. Farmers’ Perception and Evaluation of Brachiaria Grass (Brachiaria spp.) Genotypes for Smallholder Cereal-Livestock Production in East Africa. Agriculture 2020, 10, 268. https://doi.org/10.3390/agriculture10070268
Cheruiyot D, Midega CAO, Pittchar JO, Pickett JA, Khan ZR. Farmers’ Perception and Evaluation of Brachiaria Grass (Brachiaria spp.) Genotypes for Smallholder Cereal-Livestock Production in East Africa. Agriculture. 2020; 10(7):268. https://doi.org/10.3390/agriculture10070268
Chicago/Turabian StyleCheruiyot, Duncan, Charles A.O. Midega, Jimmy O. Pittchar, John A. Pickett, and Zeyaur R. Khan. 2020. "Farmers’ Perception and Evaluation of Brachiaria Grass (Brachiaria spp.) Genotypes for Smallholder Cereal-Livestock Production in East Africa" Agriculture 10, no. 7: 268. https://doi.org/10.3390/agriculture10070268
APA StyleCheruiyot, D., Midega, C. A. O., Pittchar, J. O., Pickett, J. A., & Khan, Z. R. (2020). Farmers’ Perception and Evaluation of Brachiaria Grass (Brachiaria spp.) Genotypes for Smallholder Cereal-Livestock Production in East Africa. Agriculture, 10(7), 268. https://doi.org/10.3390/agriculture10070268