Development of Functional High-Protein Organic Bars with the Addition of Whey Protein Concentrate and Bioactive Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Physicochemical Quality of Newly Developed High-Protein Bars
Proximate Composition Analysis and Determining Caloric Value
Amino Acid Composition
Fatty Acid Composition
Antioxidant Activity
Measurement of pH
Water Activity
2.2.2. Microbiological Quality
2.2.3. Sensory Quality and Consumer Acceptance
Sensory Quality
Consumer Assessment
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Quality of Newly Developed High-Protein Bars
3.1.1. Proximate Composition, Amino Acids, and Fatty Acids Analysis
3.1.2. Antioxidant Activity
3.1.3. Water Activity and pH Value
3.2. Microbiological Quality
3.3. Sensory Quality and Consumer Acceptance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Miraballes, M.; Fiszman, S.; Gámbaro, A.; Varela, P. Consumer perceptions of satiating and meal replacement bars, built up from cues in packaging information, health claims and nutritional claims. Food Res. Int. 2014, 64, 456–464. [Google Scholar] [CrossRef] [PubMed]
- The World’s Largest Market Research Store. Available online: www.researchandmarkets.com (accessed on 21 June 2020).
- Commission Directive 96/8/EC of 26 February 1996 on Foods Intended for use in Energy Restricted Diets for Weight Reduction; European Union: Brussels, Belgium, 1996.
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; European Union: Brussels, Belgium, 2006.
- Brown, E.C.; DiSilvestro, R.A.; Babaknia, A.; Devor, S.T. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status. Nutr. J. 2004, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Harwood, W.S.; Drake, M. Understanding implicit and explicit consumer desires for protein bars, powders, and beverages. J. Sens. 2019, 34, 12493. [Google Scholar] [CrossRef]
- Gulati, S.; Misra, A.; Tiwari, R.; Sharma, M.; Pandey, R.M.; Yadav, C.P. Effect of high-protein meal replacement on weight and cardiometabolic profile in overweight/obese Asian Indians in North India. Br. J. Nutr. 2017, 117, 1531–1540. [Google Scholar] [CrossRef]
- Parn, O.J.; Bhat, R.; Yeoh, T.K.; Al-Hassan, A.A. Development of novel fruit bars by utilizing date paste. Food Biosci. 2015, 9, 20–27. [Google Scholar] [CrossRef]
- Luik, A.; Pehme, S.; Matt, D.; Peetsmann, E.; Rembialkowska, E. Quality of Organic vs. Conventional Food and Effects on Health: Report; Estonian University of Life Sciences: Tartu, Estonian, 2011. [Google Scholar]
- Huber, M.; Rembiałkowska, E.; Średnicka, D.; Bügel, S.; Van De Vijver, L.P.L. Organic food and impact on human health: Assessing the status quo and prospects of research. NJAS-Wagening. J. Life Sci. 2011, 58, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 2019, 84, 15–18. [Google Scholar] [CrossRef]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C.A. Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Baudry, J.; Péneau, S.; Allès, B.; Touvier, M.; Hercberg, S.; Galan, P.; Amiot, M.J.; Lairon, D.; Mejean, C.; Kesse-Guyot, E. Food choice motives when purchasing in organic and conventional consumer clusters: Focus on sustainable concerns (The NutriNet-Santé Cohort Study). Nutrients 2017, 9, 88. [Google Scholar] [CrossRef]
- Giudici, K.V.; Baudry, J.; Méjean, C.; Lairon, D.; Bénard, M.; Hercberg, S.; Bellisle, F.; Kesse-Guyot, E.; Péneau, S. Cognitive Restraint and History of Dieting Are Negatively Associated with Organic Food Consumption in a Large Population-Based Sample of Organic Food Consumers. Nutrients 2019, 11, 2468. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Determination of Protein Content in Food, Method 945.18-B. In Official Methods of Analysis; AOAC International Publisher: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC International. 994.12 Official Methods of Analysis Amino Acids Analysis Feed (OPA Post Column)—Item 81 (4.1.11); 985.28 Official Method Sul fur Amino Acids in Food, Feed Ingredients, and Processed Foods. (45.4.05); 934.06 Official Methods of Analysis Proximate Analysis and Calculations Moisture (M) Fruits, Vegetables, and Their Products—Item 107. (37.1.10); 923.03 Official Methods of Analysis Proximate Analysis and Calculations Ash Determination (Ash) Flour—Item 49. (32.1.05 or 14.006); 985.29 Official Methods of analysis Proximate Analysis and Calculations Total Dietary Fiber (TDF) in Foods—Item 7. Reference Data: Method (45.4.07); 920.39 Official Methods of Analysis Proximate Analysis and Calculations Crude Fat (CF)—Item 17; Association of Analytical Communities: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Provision of Food Information to Consumers. Commission Regulation (EU) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011; European Union: Brussels, Belgium, 2011. [Google Scholar]
- International Organization for Standarization. ISO 12966-2: Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standarization. ISO 12966-1:2014/AC: Animal and Vegetable fats and oils - Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern gas Chromatography of Fatty Acid Methyl Esters; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2009, 10, 512–516. [Google Scholar] [CrossRef]
- Polish Committee for Standardization (Polski Komitet Normalizacyjny). PN-79/A-88024 Hard Confection Products—Determination of Acidity; PKN: Warsaw, Poland, 1979. [Google Scholar]
- International Organization for Standarization. ISO 18787:2017 Foodstuffs—Determination of Water Activity; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standarization. ISO 4833-2:2013 Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 Degrees C by the Surface Plating Technique; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- International Organization for Standarization. ISO 21528-2:2017 Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standarization. ISO 21527-1:2008 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- International Organization for Standarization. ISO 21527-2:2008 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of yeasts and moulds—Part 2: Colony Count Technique in products with Water Activity Less Than or Equal to 0.95; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- International Organization for Standarization. ISO 16649-2:2001 Microbiology of food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-bromo-4-chloro-3-Indolyl beta-D-Glucuronide; ISO: Geneva, Switzerland, 2001. [Google Scholar]
- International Organization for Standarization. ISO 21871:2006 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Determination of Low Numbers of Presumptive Bacillus cereus—Most Probable Number Technique and Detection Method; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standarization. ISO 6579-1:2017 Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standarization. ISO 13299:2016 Sensory analysis—Methodology—General Guidance for Establishing a Sensory Profile; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- U.S. Department of Agricultural, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 28; USDA: Washington, DC, USA, 2016.
- Riccardi, G.; Giacco, R.; Rivellese, A.A. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 2004, 23, 447–456. [Google Scholar] [CrossRef]
- Rodrigues, H.G.; Vinolo, M.A.; Magdalon, J.; Fujiwara, H.; Cavalcanti, D.M.; Farsky, S.H.; Calder, P.C.; Hatanaka, E.; Curi, R. Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. Lipids 2010, 45, 809–819. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance: A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Hogan, S.A.; Chaurin, V.; O’Kennedy, B.T.; Kelly, P.M. Influence of dairy proteins on textural changes in high-protein bars. Int. Dairy J. 2012, 26, 58–65. [Google Scholar] [CrossRef]
- McMahon, D.J.; Adams, S.L.; McManus, W.R. Hardening of High-Protein Nutrition Bars and Sugar/Polyol–Protein Phase Separation. J. Food Sci. 2009, 74, E312–E321. [Google Scholar] [CrossRef]
- Veggi, N.; Voltarelli, F.A.; Pereira, J.M.N.; Silva, W.C.; Navalta, J.W.; Cavenaghi, D.F.L.D.C.; Barros, W.M.D. Quality of high-protein diet bar plus chia (Salvia hispanica L.) grain evaluated sensorially by untrained tasters. Food Sci. Technol. 2018, 38, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Ha, E.; Zemel, M.B. Functional properties of whey, whey components, and essential amino acids: Mechanisms underlying health benefits for active people. J. Nutr. Biochem. 2003, 14, 251–258. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Khatchadourian, H.A.; Khalil, J.K.; Mashadi, A.S. Processing of three major Saudi Arabian date cultivars into Jam. J. Food Sci. Technol. 1983, 20, 149–152. [Google Scholar]
- Maurer, G.; Fukuda, G.; Nielsen, S. Development of bean-based granola bars and cereal. Cereal Foods World 2005, 50, 27–32. [Google Scholar]
- O’Keefe, S.; Bianch, L.; Sharman, J. Soybean Nutrition. SM J. Nutr. Metabol. 2015, 1, 1006. [Google Scholar]
- Spotti, M.J.; Campanella, O.H. Functional Modifications by Physical Treatments of Dietary Fibers used in Food Formulations. Curr. Opin. Food Sci. 2017, 15, 70–78. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Loveday, S.M.; Hindmarsh, J.P.; Creamer, L.K.; Singh, H. Physicochemical changes in intermediate-moisture protein bars made with whey protein or calcium caseinate. Food Res. Int. 2010, 43, 1321–1328. [Google Scholar] [CrossRef]
- Rocha, G.A.; Trindade, M.A.; Netto, F.M.; Fávaro-Trindade, C.S. Microcapsules of a casein hydrolysate: Production, characterization, and application in protein bars. Food Sci. Technol. Int. 2009, 15, 407–413. [Google Scholar] [CrossRef]
- Johannessen, G.S.; Froseth, R.B.; Solemdal, L.; Jarp, J.; Wasteson, Y.; Rorvik, L.M. Influence of bovine manure as fertilizer on the bacteriological quality of organic Iceberg lettuce. J. Appl. Microbiol. 2004, 96, 787–794. [Google Scholar] [CrossRef]
- Maffei, D.F.; de ArrudaSilveira, N.F.; Catanozi, M.D.P.L.M. Microbiological quality of organic and conventional vegetables sold in Brazil. Food Control 2013, 29, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Munshi, R.; Kochhar, A.; Kaur, A. Nutrient selection and optimization to formulate a nutrient bar stable on storage and specific to women at risk of osteoporosis. J. Food Sci. Technol. 2020, 57, 3099–3107. [Google Scholar] [CrossRef]
- Iurlina, M.O.; Saiz, A.I.; Fuseli, S.R.; Fritz, R. Prevalence of Bacillus spp. in different food products collected in Argentina. LWT Food Sci. Technol. 2006, 39, 105–110. [Google Scholar] [CrossRef]
- TeGiffel, M.C.; Beumer, R.R.; Leijendekkers, S.; Rombouts, F.M. Incidence of Bacillus cereus and Bacillus subtilis in foods in the Netherlands. Food Microbiol. 1996, 13, 53–58. [Google Scholar] [CrossRef]
- Becker, H.; Schaller, G.; von Wiese, W.; Terplan, G. Bacillus cereus in infant foods and dried milk products. Int. J. Food Microbiol. 1994, 23, 1–15. [Google Scholar] [CrossRef]
- Sarrıas, J.A.; Valero, M.; Salmerón, M.C. Enumeration, isolation and characterization of Bacillus cereus strains from Spanish raw rice. Food Microbiol. 2002, 19, 589–595. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chai, L.C.; Tang, S.Y.; Jinap, S.; Ghazali, F.M.; Nakaguchi, Y.; Son, R. Application of MPN-PCR in biosafety of Bacillus cereussl for ready-to-eat cereals. Food Control 2009, 20, 1068–1071. [Google Scholar] [CrossRef]
- Jha, S.N. Food Safety and Quality. In Rapid Detection of Food Adulterants and Contaminants—Theory and Practice; Jha, S.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Loveday, S.M.; Hindmarsh, J.P.; Creamer, L.K.; Singh, H. Physicochemical changes in a model protein bar during storage. Food Res. Int. 2009, 42, 798–806. [Google Scholar] [CrossRef]
- GMA/Deloitte. Finding the Green in Today’s Shoppers: Sustainability Trends and New Shopper Insights; Grocery Manufacturers Association and Deloitte: Washington, DC, USA, 2009; Available online: http://www.gmaonline.org/downloads/research-and-reports/greenshopper09.pdf (accessed on 25 April 2020).
- Aschemann-Witzel, J.; Zielke, S. Can’t buy me green? A review of consumer perceptions of and behavior toward the price of organic food. J. Consum. Aff. 2017, 51, 211–251. [Google Scholar] [CrossRef]
- Thøgersen, J. Green Shopping: For Selfish Reasons or the Common Good? Am. Behav. Sci. 2011, 55, 1052–1076. [Google Scholar] [CrossRef]
- Hughner, R.S.; McDonagh, P.; Prothero, A.; Shultz, C.J.; Stanton, J. Who Are Organic Food Consumers? A Compilation and Review of Why People Purchase Organic Food. J. Consum. Behav. 2007, 62, 94–110. [Google Scholar] [CrossRef]
Ingredients | Bar Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | P1 | P2 | P3 | C1 | C2 | C3 | |
The Amount of Ingredient [g] | |||||||||
Whey protein concentrate | 15.6 | 15.6 | 15.6 | 12.0 | 12.0 | 12.0 | 24.7 | 24.7 | 24.7 |
Coconut flakes | 4.0 | 4.0 | 4.0 | 4.9 | 5.2 | 2.9 | 8.2 | 8.2 | 8.2 |
Coconut flour | - | - | - | - | - | - | 11.0 | 11.0 | 11.0 |
Coconut oil | 7.0 | 7.0 | 6.8 | 3.9 | 3.9 | 3.9 | 8.2 | 8.2 | 8.2 |
Pumpkin seeds | - | - | - | 19.4 | 10.1 | 19.4 | - | - | - |
Oat flakes | 21.4 | 21.4 | 20.3 | - | - | - | - | - | - |
Spelt flakes | - | - | - | 19.1 | 10.1 | 19.1 | - | - | - |
Sesame | 7.0 | 5.6 | 6.1 | - | - | - | - | - | - |
Dried dates | 14.0 | 14.0 | 13.5 | 19.4 | 20.3 | 19.4 | - | - | - |
Raisins | 10.0 | - | - | - | - | - | - | - | - |
Goji berries | - | - | 6.7 | - | - | - | - | - | - |
Dried cherries | - | - | 6.7 | - | - | - | - | - | - |
Hazelnuts | - | 5.7 | - | - | 20.3 | - | - | - | - |
Walnuts | - | 5.7 | - | - | - | - | - | - | - |
Peanut butter | 14.0 | 14.0 | 13.3 | - | - | - | - | - | - |
Currant jam | - | - | - | - | - | - | 12.3 | - | - |
Cherry jam | - | - | - | - | - | - | - | 12.3 | - |
Chokeberry jam | - | - | - | - | - | - | - | - | 12.3 |
Cocoa | - | - | - | - | - | 1.9 | - | - | - |
Chocolate | - | - | - | 9.7 | 10.0 | 9.8 | 13.7 | 13.7 | 13.7 |
Inulin | - | - | - | 1.9 | 2.0 | 1.9 | - | - | - |
Sugar cane | - | - | - | - | - | - | 8.2 | 8.2 | 8.2 |
Water | 7.0 | 7.0 | 7.0 | 9.7 | 6.1 | 9.7 | 13.7 | 13.7 | 13.7 |
Summary | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Fractions | Bar Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | P1 | P2 | P3 | C1 | C2 | C3 | |
Total caloric value (kcal per 100 g) | 388 ± 0.12 A | 386 ± 0.07 A | 396 ± 0.05 AB | 410 ± 0.05 D | 415 ± 0.11 D | 405 ± 0.05 C | 394 ± 0.06 AB | 388 ± 0.05 A | 403 ± 0.11 C |
* Crude lipids(g) | 19.1 ± 0.03 A | 19.9 ± 0.01 A | 19.7 ± 0.01 A | 23.0 ± 0.01 C | 22.4 ± 0.10 C | 22.6 ± 0.01 C | 22.0 ± 0.01 C | 21.6 ± 0.01 BC | 21.1 ± 0.01 B |
* Available carbohydrates (g) | 26.0 ± 0.32 B | 24.6 ± 0.21 AB | 26.9 ± 0.11 BC | 28.8 ± 0.14 D | 28.8 ± 0.08 D | 27.3 ± 0.23 C | 23.4 ± 0.05 A | 23.4 ± 0.11 A | 24.3 ± 0.1 AB |
* Crude fiber (g) | 12.9 ± 0.22 D | 13.2 ± 0.09 D | 11.2 ± 0.13 C | 8.9 ± 0.11 B | 8.1 ± 0.07 AB | 10.6 ± 0.05 BC | 7.3 ± 0.51 A | 8.0 ± 0.13 AB | 7.4 ± 0.09 A |
* Total Protein (g) | 21.3 ± 0.38 D | 20.4 ± 0.14 C | 20.7 ± 0.40 C | 17.3 ± 0.68 A | 19.1 ± 0.85 B | 18.9 ± 0.32 B | 21.1 ± 0.11 D | 20.9 ± 0.06 CD | 21.3 ± 0.57 D |
* Ash (%) | 2.1 ± 0.05 A | 2.3 ± 0.09 AB | 2.1 ± 0.11 A | 2.3 ± 0.04 AB | 2.4 ± 0.05 B | 2.2 ± 0.05 AB | 2.2 ± 0.06 AB | 2.2 ± 0.05 AB | 2.2 ± 0.13 AB |
* Moisture (%) | 18.6 ± 0.22 AB | 19.5 ± 0.15 B | 18.0 ± 0.08 A | 19.7 ± 0.11 B | 17.8 ± 0.08 A | 19.4 ± 0.21 B | 23.8 ± 0.12 C | 25.8 ± 0.09 CD | 19.7 ± 0.12 B |
Fatty Acids [%] | Bar Symbol | ||||||||
---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | P1 | P2 | P3 | C1 | C2 | C3 | |
MUFA | 5.1 ± 0.25 B | 4.9 ± 0.12 B | 5.1 ± 0.15 B | 5.1 ± 0.10 B | 6.2 ± 0.10 C | 6.2 ± 0.13 C | 3.2 ± 0.09 A | 2.4 ± 0.11 A | 2.4 ± 0.21 A |
PUFA | 4.1 ± 0.06 B | 4.3 ± 0.11 B | 4.4 ± 0.23 B | 4.4 ± 0.15 B | 5.0 ± 0.13 B | 4.6 ± 0.10 B | 0.4 ± 0.09 A | 0.3 ± 0.22 A | 0.3 ± 0.12 A |
SFA | 9.0 ± 0.12 A | 10.8 ± 0.09 AB | 10.2 ± 0.17 AB | 10.2 ± 0.12 AB | 11.2 ± 0.24 B | 11.8 ± 0.10 B | 18.8 ± 0.18 C | 19.0 ± 0.13 C | 18.4 ± 0.11 C |
Omega-3 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Omega-6 | 4.1 ± 0.16 B | 4.2 ± 0.11 B | 4.3 ± 0.08 B | 5.0 ± 0.34 C | 5.0 ± 0.27 C | 4.6 ± 0.15 BC | 0.4 ± 0.14 A | 0.3 ± 0.13 A | 0.3 ± 0.10 A |
Omega-9 | 5.0 ± 0.23 B | 4.8 ± 0.10 B | 5.0 ± 0.10 B | 5.7 ± 0.14 BC | 6.0 ± 0.09 BC | 6.0 ± 0.11 BC | 3.2 ± 0.21 A | 2.4 ± 0.11 A | 2.4 ± 0.15 A |
TFA | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Bar Symbol | Production Yield [%] | pH Value | Water Activity (aw) | Antioxidant Activity [% Inhibition of DPPH] |
---|---|---|---|---|
M1 | 96.19 ± 1.76 A | 6.793 ± 0.036 A | 0.65 ± 0.02 A | 61.0 ± 0.8 A |
M2 | 98.99 ± 3.94 A | 7.013 ± 0.015 B | 0.63 ± 0.03 A | 63.9 ± 1.0 B |
M3 | 99.87 ± 2.46 A | 6.334 ± 0.022 C | 0.69 ± 0.01 B | 69.3 ± 1.2 C |
P1 | 53.82 ± 4.02 D | 6.948 ± 0.061 B | 0.63 ± 0.00 A | 54.1 ± 1.1 D |
P2 | 59.38 ± 3.26 CD | 6.994 ± 0.017 B | 0.74 ± 0.02 C | 56.6 ± 0.5 D |
P3 | 62.74 ± 2.93 C | 6.905 ± 0.003 B | 0.63 ± 0.01 A | 69.3 ± 1.0 C |
C1 | 81.90 ± 3.08 B | 6.897 ± 0.025 B | 0.73 ± 0.02 C | 77.1 ± 0.6 E |
C2 | 80.08 ± 2.86 B | 6.926 ± 0.011 B | 0.71 ± 0.01 B | 76.1 ± 1.1 E |
C3 | 81.52 ± 2.44 B | 6.945 ± 0.014 B | 0.73 ± 0.01 C | 75.2 ± 0.9 E |
Ingredients | Count of Microorganisms [log10CFU/g] | Presence of Microorganisms | Antioxidant Activity [% Inhibition of DPPH] | ||||
---|---|---|---|---|---|---|---|
TVC | ENT | EC | TYMC | SALM | BAC | ||
Whey protein concentrate | <1.0 | <1.0 | <1.0 | 1.48 ± 0.14 B | − | − | 20.6 ± 2.20 B |
Coconut flakes | 2.49 ± 0.19 A | 1.85 ± 0.22 A | <1.0 | 1.20 ± 0.93 B | − | + | 44.8 ± 3.19 A |
Coconut flour | 2.49 ± 0.27 A | 2.66 ± 0.36 B | <1.0 | 1.58 ± 0.31 B | − | + | 44.5 ± 2.67 A |
Coconut oil | 1.93 ± 0.04 B | <1.0 | <1.0 | 1.40 ± 0.05 B | − | − | 32.5 ± 3.08 B |
Pumpkin seeds | 3.60 ± 0.83 C | 2.11 ± 0.06 AB | <1.0 | 2.10 ± 0.73 A | − | − | 28.5 ± 1.16 B |
Oat flakes | 1.74 ± 0.20 B | 1.18 ± 0.04A | <1.0 | 1.80 ± 0.11 AB | − | − | 67.3 ± 4.14 C |
Spelt flakes | 1.60 ± 0.56 B | 2.92 ± 0.11 B | <1.0 | 2.10 ± 0.30 A | − | + | 59.3 ± 2.49 C |
Sesame | 3.41 ± 1.08 AC | 1.30 ± 0.67 A | <1.0 | 1.91 ± 0.02 A | − | − | 70.9 ± 2.95 C |
Dried dates | 1.72 ± 0.45 B | 1.33 ± 0.14 A | <1.0 | 1.04 ± 0.18 B | − | − | 88.1 ± 4.14 D |
Raisins | 1.50 ± 0.01 D | <1.0 | <1.0 | 1.60 ± 1.07 AB | − | − | 73.9 ± 1.67 C |
Goji berries | 2.41 ± 0.72 AB | 3.00 ± 0.32 B | <1.0 | 2.14 ± 0.12 A | − | + | 98.1 ± 3.75 D |
Dried cherries | 1.54 ± 0.15 BD | <1.0 | <1.0 | 1.48 ± 0.04 B | − | − | 97.6 ± 4.22 D |
Hazelnuts | 1.54 ± 0.43 BD | 2.53 ± 0.79 AB | <1.0 | 1.54 ± 0.74 AB | − | + | 85.8 ± 1.54 CD |
Walnuts | 2.41 ± 1.07 AB | 1.87 ± 0.36 A | <1.0 | 1.74 ± 0.03 B | − | − | 74.9 ± 3.15 C |
Peanut butter | <1.0 | <1.0 | <1.0 | 1.18 ± 0.05 B | − | − | 65.4 ± 2.96 C |
Currant jam | <1.0 | <1.0 | <1.0 | <1.0 | − | − | 75.9 ± 3.49 C |
Cherry jam | <1.0 | <1.0 | <1.0 | <1.0 | − | − | 84.1 ± 1.16 CD |
Chokeberry jam | <1.0 | <1.0 | <1.0 | <1.0 | − | − | 77.8 ± 3.55 C |
Cocoa | 1.15 ± 0.06 B | <1.0 | <1.0 | <1.0 | − | − | 89.8 ± 4.06 D |
Chocolate | 1.29 ± 0.09 B | <1.0 | <1.0 | 1.66 ± 0.14 B | − | − | 88.4 ± 3.82 D |
Inulin | 1.0 ± 0.02 B | <1.0 | <1.0 | 1.41 ± 0.29 B | − | − | 40.1 ± 1.46 A |
Sugar cane | <1.0 | <1.0 | <1.0 | <1.0 | − | − | 25.8 ± 3.01 B |
Bar Symbol | Count of Microorganisms [log10CFU/g] | Presence of Microorganisms | ||||
---|---|---|---|---|---|---|
TVC | ENT | EC | TYMC | SALM | BAC | |
Fresh Samples—After Production Process (0 time) | ||||||
M1 | 3.60 ± 1.02 A | <1.0 | <1.0 | <1.0 | − | + |
M2 | 3.48 ± 0.89 A | <1.0 | <1.0 | <1.0 | − | + |
M3 | 4.00 ± 0.25 A | <1.0 | <1.0 | <1.0 | − | + |
P1 | 4.48 ± 0.27 AB | 3.15 ± 0.45 A | 2.60 ± 0.29 A | <1.0 | − | + |
P2 | 4.85 ± 0.43 B | 2.60 ± 0.92 A | 2.00 ± 0.33 A | <1.0 | − | + |
P3 | 4.48 ± 0.68 AB | 2.78 ± 0.84 A | <1.0 | <1.0 | − | + |
C1 | 3.90 ± 0.75 A | <1.0 | <1.0 | <1.0 | − | − |
C2 | 3.57 ± 1.06 A | <1.0 | <1.0 | <1.0 | − | − |
C3 | 3.26 ± 1.11 A | <1.0 | <1.0 | <1.0 | − | − |
Chilled (4 °C) Samples (4 weeks) | ||||||
M1 | 3.78 ± 0.81 A | <1.00 | <1.00 | 2.30 ± 0.09 A | − | + |
M2 | 5.11 ± 1.19 B | <1.00 | <1.00 | 2.30 ± 0.15 A | − | + |
M3 | 3.70 ± 0.62 A | <1.00 | <1.00 | 2.48 ± 0.21 A | − | + |
P1 | 3.85 ± 0.84 A | <1.00 | <1.00 | 4.11 ± 0.69 B | − | + |
P2 | 6.30 ± 1.22 C | 2.00 ± 0.54 A | <1.00 | 7.31 ± 1.51 C | − | − |
P3 | 6.58 ± 0.73 C | 2.70 ± 0.19 A | <1.00 | 5.30 ± 0.48 BC | − | − |
C1 | 3.00 ± 0.39 A | <1.00 | <1.00 | 2.00 ± 0.27 A | − | − |
C2 | 3.60 ± 0.92 A | <1.00 | <1.00 | <1.00 | − | − |
C3 | 4.85 ± 0.54 B | <1.00 | <1.00 | <1.00 | − | − |
Thermostat (37 °C) Samples (4 weeks) | ||||||
M1 | 4.00 ± 1.04 AB | <1.00 | <1.00 | <1.00 | − | − |
M2 | 4.51 ± 0.68 AB | <1.00 | <1.00 | <1.00 | − | + |
M3 | 3.30 ± 0.51 A | <1.00 | <1.00 | <1.00 | − | + |
P1 | 3.85 ± 0.47 A | <1.00 | <1.00 | 2.60 ± 0.57 A | − | + |
P2 | 4.30 ± 0.81 AB | <1.00 | <1.00 | 2.70 ± 1.08 A | − | − |
P3 | 5.34 ± 0.29 BC | <1.00 | <1.00 | 4.48 ± 1.16 B | − | − |
C1 | 4.52 ± 0.93 AB | <1.00 | <1.00 | 2.60 ± 0.95 A | − | − |
C2 | 3.70 ± 0.72 A | <1.00 | <1.00 | <1.00 | − | − |
C3 | 3.90 ± 0.63 A | <1.00 | <1.00 | 2.00 ± 0.88 A | − | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szydłowska, A.; Zielińska, D.; Łepecka, A.; Trząskowska, M.; Neffe-Skocińska, K.; Kołożyn-Krajewska, D. Development of Functional High-Protein Organic Bars with the Addition of Whey Protein Concentrate and Bioactive Ingredients. Agriculture 2020, 10, 390. https://doi.org/10.3390/agriculture10090390
Szydłowska A, Zielińska D, Łepecka A, Trząskowska M, Neffe-Skocińska K, Kołożyn-Krajewska D. Development of Functional High-Protein Organic Bars with the Addition of Whey Protein Concentrate and Bioactive Ingredients. Agriculture. 2020; 10(9):390. https://doi.org/10.3390/agriculture10090390
Chicago/Turabian StyleSzydłowska, Aleksandra, Dorota Zielińska, Anna Łepecka, Monika Trząskowska, Katarzyna Neffe-Skocińska, and Danuta Kołożyn-Krajewska. 2020. "Development of Functional High-Protein Organic Bars with the Addition of Whey Protein Concentrate and Bioactive Ingredients" Agriculture 10, no. 9: 390. https://doi.org/10.3390/agriculture10090390
APA StyleSzydłowska, A., Zielińska, D., Łepecka, A., Trząskowska, M., Neffe-Skocińska, K., & Kołożyn-Krajewska, D. (2020). Development of Functional High-Protein Organic Bars with the Addition of Whey Protein Concentrate and Bioactive Ingredients. Agriculture, 10(9), 390. https://doi.org/10.3390/agriculture10090390