Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review
Abstract
:1. Introduction
2. Effect of Legume CCs on Weed Control
3. Effect of Legume CCs Cultivation Systems on Weed Control
4. Effect of Legume CCs on the Soil Environment
4.1. Effect of Legume CCs on the Content of Organic Matter and Nitrogen in Soil
4.2. Effect of Legume CCs on Soil Fauna and Microflora
4.3. Effect of Legume CCs on the Physical Properties of Soil
4.3.1. Effect of Legume CCs on Soil Structure and Aggregation
4.3.2. Effect of Legume CCs on Soil Water Management
4.3.3. Effect of Legume CCs on Soil Temperature and Light Availability
4.4. Effect of Legume CCs on Wind and Water Soil Erosion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meena, M.S.; Singh, K.M. Conservation Agriculture: Innovations, Constraints and Strategies for Adoption. Munich Pers. RePEc Arch. 2013, 49380. Available online: https://mpra.ub.uni-muenchen.de/49380/ (accessed on 31 July 2020). [CrossRef] [Green Version]
- Oliveira, M.C.; Butts, L.; Werle, R. Assessment of Cover Crop Management Strategies in Nebraska, US. Agriculture 2019, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Melander, B.; Rasmussen, I.A.; Bàrberi, P. Integrating physical and cultural methods of weed control-examples from European research. Weed Sci. 2005, 53, 369–381. [Google Scholar] [CrossRef]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- Sarrantonio, M.; Gallandt, E. The role of cover crops in North American cropping systems. J. Crop Prod. 2003, 8, 53–74. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Moyer, J.R.; Huang, H.C. Beneficial effects of cover crops on soil health and crop management. Rec. Res. Dev. Soil Sci. 2005, 1, 15–35. [Google Scholar]
- Bàrberi, P.; Mazzoncini, M. Changes in weed community composition as influenced by cover crop and management system in continuous corn. Weed Sci. 2001, 49, 491–499. [Google Scholar] [CrossRef]
- Shennan, C. Cover crops, nitrogen cycling and soil properties in semi-irrigated vegetable production systems. HortScience 1992, 27, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Wyland, L.J.; Jackson, L.E.; Chaney, W.E.; Klonsky, K.; Koike, S.T.; Kimple, B. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management. Agric. Ecosyst. Environ. 1996, 59, 1–17. [Google Scholar] [CrossRef]
- Ritter, W.F.; Scarborough, R.W.; Chirniside, A.E.M. Winter cover crops as a best management practice for reducing nitrogen leaching. J. Contam. Hydrol. 1998, 34, 1–15. [Google Scholar] [CrossRef]
- Shrestha, A.; Knezevic, S.Z.; Roy, R.C.; Ball-Coelho, B.R.; Swanton, C.J. Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Res. 2002, 42, 76–87. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Jabran, K.; Tursum, N.; Isik, D.; Demir, Z. Use of Living, Mowed, and Soil-Incorporated Cover Crops for Weed Control in Apricot Orchards. Agronomy 2018, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Cutti, L.; Lamego, F.P.; de Aguiar, A.D.M.; Kaspary, T.E.; Gonsiorkiewicz-Rigon, C.A. Winter cover crops on weed infestation and maize yield. Rev. Caatinga 2016, 29, 885–891. [Google Scholar] [CrossRef]
- Wallace, J.M.; Williams, A.; Liebert, J.A.; Ackroyd, V.J.; Vann, R.A.; Curran, W.S.; Keene, C.L.; VanGessel, M.J.; Ryan, M.R.; Mirsky, S.B. Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States. Agriculture 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Rizzardi, M.A.; Silva, L.F. Influence of Black Oats and Rape as Cover Crops on Chemical Weed Control Timing in No-till Corn. Planta Daninha 2006, 24, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Lemessa, F.; Wakjira, M. Cover Crops as a Means of Ecological Weed Management in Agroecosystems. J. Crop Sci. Biotechnol. 2015, 18, 133–145. [Google Scholar] [CrossRef]
- Amossé, C.; Jeuffroyb, M.H.; Celettea, F.; Davida, C. Relay-intercropped forage legumes help to control weeds in organic grain production. Eur. J. Agron. 2013, 49, 158–167. [Google Scholar] [CrossRef]
- Uchino, H.; Iwama, K.; Jitsuyama, Y.; Ichiyama, K.; Sugiura, E.; Yudate, T. Stable characteristics of cover crops for weed suppression in organic farming systems. Plant Prod. Sci. 2011, 14, 75–85. [Google Scholar] [CrossRef]
- Elsalahy, H.; Döring, T.; Bellingrath-Kimura, S.; Arends, D. Weed Suppression in Only-Legume Cover Crop Mixtures. Agronomy 2019, 9, 648. [Google Scholar] [CrossRef] [Green Version]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plan. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Somenahally, A.; DuPont, J.I.; Brady, J.; McLawrence, J.; Northup, B.; Gowda, P. Microbial communities in soil profile are more responsive to legacy effects ofwheat-cover crop rotations than tillage systems. Soil Biol. Biochem. 2018, 123, 126–135. [Google Scholar] [CrossRef]
- Villamil, M.B.; Bollero, G.A.; Darmody, R.G.; Simmons, F.W.; Bullock, D.G. No-till corn/soybean systems including winter cover crops: Effects on soil properties. Soil Sci. Soc. Am. J. 2006, 70, 1936–1944. [Google Scholar] [CrossRef]
- Hubbard, R.K.; Strickland, T.C.; Phatak, S. Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the Coastal Plain of southeastern USA. Soil Tillage Res. 2013, 126, 276–283. [Google Scholar] [CrossRef]
- Gupta, Y.P. Anti-nutritional and toxic factors in food legumes: A review. Plant Food Hum. Nutr. 1987, 37, 201–228. [Google Scholar] [CrossRef] [PubMed]
- Balbinot, A.A., Jr.; Fleck, N.G. Weed management in the corn crop through plant spatial arrangement and characteristics of genotypes. Cienc. Rural 2005, 35, 245–252. [Google Scholar] [CrossRef]
- Smith, R.G.; Warren, N.D.; Cordeau, S. Are cover crop mixtures better at suppressing weeds than cover crop monocultures? Weed Sci. 2020, 68, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, M.; McClure, M.; Hayes, R.; Steckel, L. Integrating Cover Crops and POST Herbicides for Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) Control in Corn. Weed Technol. 2015, 29, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- den Hollander, N.G. Growth Characteristics of Several Clover Species and Their Suitability for Weed Suppression in a Mixed Cropping Design. Ph.D Thesis, Wageningen University, Wageningen, The Netherlands, 2012. [Google Scholar]
- Tollenaar, M.; Dibo, A.A.; Aqilera, A.; Weise, S.F.; Swanton, C.J. Effect of crop density on weed interference in maize. Agron. J. 1994, 86, 591–595. [Google Scholar] [CrossRef]
- Phatak, S.C. An integrated sustainable vegetable production system. HortScience 1992, 27, 738–741. [Google Scholar] [CrossRef] [Green Version]
- Bastiaans, L.; Paolini, R.; Baumann, D.T. Integrated Crop Management: Opportunities and Limitations for Prevention of Weed Problems. In Proceedings of the 12th EWRS (European Weed Research Society) Symposium 2002, Wageningen, The Netherlands, 24–27 June 2002; pp. 8–9. [Google Scholar]
- Bilalis, D.; Karkanis, A.; Efthimiadou, A. Effects of two legume crops, for organic green manure, on weed flora, under Mediterranean conditions: Competitive ability of five winter season weed species. Afr. J. Agric. Res. 2009, 4, 1431–1441. [Google Scholar]
- Efthimiadou, A.P.; Karkanis, A.C.; Bilalis, D.J.; Efthimiadis, P. Review: The phenomenon of crop-weed competition; a problem or a key for sustainable weed management. J. Food Agric. Environ. 2009, 7, 861–868. [Google Scholar]
- Lemerle, D.; Verbeek, B.; Orchard, B. Ranking the ability of wheat varietes to compete with Lolium rigidum. Weed Res. 2001, 41, 197–209. [Google Scholar] [CrossRef]
- Pester, T.A.; Burnside, O.C.; Orf, J.H. Increasing crop competitiveness to weeds through crop breeding. J. Crop Prod. 2011, 2, 59–76. [Google Scholar] [CrossRef]
- Korres, N.E.; Froud-Williams, R.J. Effects of winter wheat cultivars and seed rate on the biological characteristics of naturally occurring weed flora. Weed Res. 2002, 42, 417–428. [Google Scholar] [CrossRef]
- Seavers, G.P.; Wright, K.J. Crop canopy development and structure influence weed suppression. Weed Res. 2002, 39, 319–328. [Google Scholar] [CrossRef]
- Ross, S.M.; King, J.R.; Izaurralde, R.C.; O’Donovan, J.T. Weed suppression by seven clover species. Agron. J. 2001, 93, 820–827. [Google Scholar] [CrossRef]
- Mennan, H.; Ngouajio, M.; Kaya, E.; Isık, D. Weed Management in Organically Grown Kale Using Alternative Cover Cropping Systems. Weed Technol. 2009, 23, 81–88. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J. Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Res. 2008, 48, 492–502. [Google Scholar] [CrossRef]
- Khanh, T.D.; Chung, M.I.; Xuan, T.D.; Tawata, S. The exploitation of crop allelopathy in sustainable Agricultural production. J. Agron. Crop Sci. 2005, 191, 172–184. [Google Scholar] [CrossRef]
- Weston, L.A. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 1996, 88, 860–866. [Google Scholar] [CrossRef]
- Mohler, C.L.; Teasdale, J.R. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 1993, 33, 487–499. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Teasdale, J.R. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Crop residue removal for bioenergy reducessoil carbon pools: How can we offset carbon losses? Bioenergy Res. 2013, 6, 358–371. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Brunetti, P.; Mancinelli, R. Do cover crop species and residue management play a leading role in pepper productivity? Sci. Hortic. 2014, 166, 97–104. [Google Scholar] [CrossRef]
- Davis, A.S. Cover-Crop Roller—Crimper Contributes to Weed Management in No-Till Soybean. Weed Sci. 2010, 58, 300–309. [Google Scholar] [CrossRef]
- Caamal-Maldonado, J.A.; Jiménez-Osornio, J.J.; Torres-Barragán, A.; Anaya, A.L. The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron. J. 2001, 93, 27–36. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Molnar, L.J.; Moyer, J.R. Suitability of legume cover crop winter wheat intercrops on the semi-arid Canadian prairies. Can. J. Plant Sci. 2010, 90, 479–488. [Google Scholar] [CrossRef]
- Blaser, B.C.; Singer, J.W.; Gibson, L.R. Winter cereal canopy effect on cereal and interseeded legume productivity. Agron. J. 2011, 103, 1180–1185. [Google Scholar] [CrossRef]
- Hartl, W. Influence of undersown clovers on weeds and on the yield of winter wheat in organic farming. Agric. Ecosyst. Environ. 1989, 27, 389–396. [Google Scholar] [CrossRef]
- Fisk, J.W.; Hesterman, O.B.; Shrestha, A.; Kells, J.J.; Harwood, R.R.; Squire, J.M.; Sheaffer, C.C. Weed Suppression by Annual Legume Cover Crops in No-Tillage Corn. Agron. J. 2001, 93, 319–325. [Google Scholar] [CrossRef]
- Reimer, M.; Ringselle, B.; Bergkvist, G.; Westaway, S.; Wittwer, R.; Baresel, J.P.; van der Heijden, M.G.A.; Mangerud, K.; Finckh, M.R.; Brandsæter, L.O. Interactive Effects of Subsidiary Crops and Weed Pressure in the Transition Period to Non-Inversion Tillage, A Case Study of Six Sites Across Northernand Central Europe. Agronomy 2019, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Salonen, J.; Ketoja, E. Undersown cover crops have limited weed suppression potential when reducing tillage intensity in organically grown cereals. Org. Agric. 2019. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.R.; Paolini, G.C.; Mancunelli, R. The effects of cover cropping on yield and weed control of potato in a transitional system. Field Crop. Res. 2009, 112, 16–23. [Google Scholar] [CrossRef]
- Buraczyńska, D.; Ceglarek, C. The role of green manures, in form of undersown cover crops, and straw in sugar beet cultivation Part I. Sugar beet plantations infestation with weeds. Biul. IHAR 2004, 234, 171–180. [Google Scholar]
- Brandsæter, L.O.; Netland, J. Winter Annual Legumes for Use as Cover Crops in Row Crops in Northern Regions: I. Field Experiments. Crop Sci. 1999, 39, 1369–1379. [Google Scholar] [CrossRef]
- Döring, T.F.; Storkey, J.; Baddeley, J.A.; Collins, R.P.; Crowley, O.; Howlett, S.A.; Jones, H.E.; McCalman, H.; Measures, M.; Pearce, H.; et al. Weeds in organic fertility-building leys: Aspects of species richness and weed management. Org. Farming 2017, 3, 51–65. [Google Scholar] [CrossRef]
- Blaser, B.C.; Gibson, L.R.; Singer, J.W.; Jannink, J.L. Optimizing seeding rates for winter cereal grains and frost-seeded red clover intercrops. Agron. J. 2006, 98, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Mutch, D.R.; Martin, T.E.; Kosola, K.R. Red clover (Trifolium pratense) suppression of common ragweed (Ambrosia artemisiifolia) in winter wheat (Triticum aestivum). Weed Technol. 2003, 17, 181–185. [Google Scholar] [CrossRef]
- Sjursen, H.; Brandsæter, L.O.; Netland, J. Effects of repeated clover undersowing, green manure ley and weed harrowing on weeds and yields in organic cereals. Acta Agric. Scand. Sect. B Soil Plant Sci. 2012, 62, 138–150. [Google Scholar] [CrossRef]
- Yeganehpoor, F.; Salmasi, S.Z.; Abedi, G.; Samadiyan, F.; Beyginiya, V. Effects of cover crops and weed management on corn yield. J. Saudi Soc. Agric. Sci. 2015, 14, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Brennan, E.B.; Boyd, N.S.; Smith, R.F.; Foster, P. Seeding Rate and Planting Arrangement Effects on Growth and Weed Suppression of a Legume-Oat Cover Crop for Organic Vegetable Systems. Agron. J. 2009, 101, 979–988. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Muchaonyerwa, P. Biomass accumulation, weed dynamics and nitrogen uptake by winter cover crops in a warm-temperate region of South Africa. Afr. J. Agric. Res. 2010, 5, 1632–1642. [Google Scholar]
- Ranaldo, M.; Carlesi, S.; Costanzo, A.; Barberi, P. Functional diversity of cover crop mixtures enhances biomass yield and weed suppression in a Mediterranean agroecosystem. Weed Res. 2019, 60, 96–108. [Google Scholar] [CrossRef]
- Charles, K.S.; Ngouajio, M.; Warncke, D.D.; Poff, K.L.; Hausbeck, M.K. Integration of cover crops and fertilizer rates for weed management in celery. Weed Sci. 2006, 54, 326–334. [Google Scholar] [CrossRef]
- Campiglia, E.; Caporali, F.; Radicetti, E.; Mancinelli, R. Hairy vetch (Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production. Eur. J. Agron. 2010, 33, 94–102. [Google Scholar] [CrossRef]
- Seman-Varner, R.; Varco, J.J.; O’Rourke, M.E. Winter Cover Crop and Fall-Applied Poultry Litter Effects on Winter Cover and Soil Nitrogen. Agron. J. 2019, 111, 3301–3309. [Google Scholar] [CrossRef] [Green Version]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.M.; Ryan, M.R.; Shumway, D.L. Timing of Cover-Crop Management Effects on Weed Suppression in No-Till Planted Soybean using a Roller-Crimper. Weed Sci. 2011, 59, 380–389. [Google Scholar] [CrossRef]
- Golian, J.; Anyszka, Z.; Kosson, R.; Grzegorzewska, M. Effectiveness of selected methods of weed management and their effect on nutrition value and storage ability of red head cabbage. J. Res. Appl. Agric. Eng. 2016, 61, 144–150. [Google Scholar]
- Kohut, M.; Anyszka, Z.; Golian, J. Changes in infestation and yielding of selected vegetable species depending on weed management method. J. Res. Appl. Agric. Eng. 2013, 58, 255–260. [Google Scholar]
- Leavitt, M.J.; Sheaffer, C.C.; Wyse, D.L.; Allan, D.L. Rolled Winter Rye and Hairy Vetch Cover Crops Lower Weed Density but Reduce Vegetable Yields in No-tillage Organic Production. HortScience 2011, 46, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.C.; Hirata, E.K.; Monquero, P.A. Straw yield and cover crop weed suppression in a no tillage system for processing tomato. Pesq. Agropec. Bras. 2009, 44, 22–28. [Google Scholar]
- Teasdale, J.R.; Brandsæter, L.O.; Calegari, A.; Skora Neto, F. Cover Crops and Weed Management. In Non-Chemical Weed Management: Principles, Concepts and Technology; Upadhyaya, M.K., Blackshaw, R.E., Eds.; CABI: Wallingford, UK, 2007; pp. 49–64. [Google Scholar]
- Carof, M.; de Tourdonnet, S.; Saulas, P.; le Floch, D.; Roger-Estrade, J. Undersowing wheat with different living mulches in a no-till system. II. Competition for light and nitrogen. Agron. Sustain. Dev. 2007, 27, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Fradgley, N.S.; Creissen, H.E.; Pearce, H.; Howlett, S.A.; Pearce, B.D.; Döring, T.F.; Girling, R.D. Weed Suppression and Tolerance in Winter Oats. Weed Technol. 2017, 31, 740–751. [Google Scholar] [CrossRef] [Green Version]
- Weidlich, E.W.A.; von Gillhaussen, P.; Delory, B.M.; Blossfeld, S.; Poorter, H.; Temperton, V.M. The Importance of Being First: Exploring Priority and Diversity Effects in a Grassland Field Experiment. Front. Plant Sci. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mediene, S.; Valantin-Morison, M.; Sarthou, J.P.; Tourdonnet, S.; Gosme, M.; Bertrand, M.; Roger-Estrade, J.; Aubertot, J.N.; Rusch, A.; Motisi, N.; et al. Agroecosystem management and biotic interactions: A review. Agron. Sustain. Dev. 2011, 31, 491–514. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, J.R.; Beste, C.E.; Potts, W.E. Response of weeds to tillage and cover crop residue. Weed Sci. 1991, 39, 195–199. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000, 48, 385–392. [Google Scholar] [CrossRef]
- Weston, L.A.; Duke, S.O. Weed and crop allelopathy. Crit. Rev. Plant Sci. 2003, 22, 367–389. [Google Scholar] [CrossRef]
- Wells, M.S.; Reberg-Horton, S.C.; Mirsky, S.B. Planting Date Impacts on Soil Water Management, Plant Growth, and Weeds in Cover-Crop-Based No-Till Corn Production. Agron. J. 2016, 108, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Diyanat, M. Weed Management in Organic Horticulture by Cover Crop in Iran. Int. J. Adv. Biol. Biom. Res. 2015, 3, 153–162. [Google Scholar]
- Bhowmik, P.C. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 2003, 22, 661–671. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar] [CrossRef]
- Mischler, R.; Duiker, S.; Curran, W.S.; Wilson, D. Hairy Vetch Management for No-Till Organic Corn Production. Agron. J. 2010, 120, 355–362. [Google Scholar] [CrossRef]
- Moonen, A.C.; Bàrberi, P. Size and composition of the weed seedbank after 7 years of different cover crop-maize management systems. Weed Res. 2004, 44, 163–177. [Google Scholar] [CrossRef]
- Wallace, J.M.; Curran, W.S.; Mortensen, D.A. Cover crop effects on horseweed (Erigeron canadensis) density and size inequality at the time of herbicide exposure. Weed Sci. 2019, 67, 327–338. [Google Scholar] [CrossRef]
- Wiggins, M.S.; Hayes, R.M.; Steckel, L.E. Evaluating cover crops and herbicides for glyphosate-resistant Palmer amaranth (Amaranthus palmeri) control in cotton. Weed Technol. 2016, 30, 415–422. [Google Scholar] [CrossRef]
- Brainard, D.C.; Bellinder, R.R.; Kumar, V. Grass-legume mixtures and soil fertility affect cover crop performance and weed seed production. Weed Technol. 2011, 35, 473–479. [Google Scholar] [CrossRef]
- Lu, Y.; Watkins, K.; Teasdale, J.R.; Abdul-Baki, A. Cover crops in sustainable food production. Food Rev. Int. 2000, 16, 121–157. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Holman, J.D.; Schlegel, A.J.; Tatarko, J.; Shaver, T. Replacing fallow with cover crops in a semiarid soil: Effects on soil properties. Soil Sci. Soc. Am. J. 2013, 77, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, J.R. Principles and Practices for Using Cover Crops in Weed Management Systems. In Weed Management for Developing Countries; Add. 1, FAO Paper 120; Labrada, R., Ed.; Fao: Rome, Italy, 2003. [Google Scholar]
- Kalinova, J. Allelopathy and Organic Farming. In Sociology, Organic Farming, Climate Change and Soil Science, Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer Science+Business Media BV.: Dordrecht, The Netherlands, 2010; Volume 3, pp. 379–418. [Google Scholar]
- Wang, R.; Yang, X.; Song, Y.; Zhang, M.; Hu, L.; Su, Y.; Zeng, R. Allelopathic potential of Tephrosia vogelii Hook. f.: Laboratory and field evaluation. Allelopathy J. 2011, 28, 53–62. [Google Scholar]
- Xuan, T.D.; Shinkichi, T.; Khanh, T.D.; Min, C.I. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An overview. Crop Prot. 2005, 24, 197–206. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tawata, S.; Khanh, T.D.; Chung, I.M. Decomposition of allelopathic plants in soil. J. Agron. Crop Sci. 2005, 191, 162–171. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Andersen, M.K.; Jørnsgaard, B.; Jensen, E.S. Density and relative frequency effects on competitive interactions and resource use in pea-barley intercrops. Field Crop. Res. 2006, 95, 256–267. [Google Scholar] [CrossRef]
- Exner, D.N.; Cruse, R.M. Interseeded forage legume potential as winter ground cover, nitrogen source, and competitor. J. Prod. Agric. 1993, 6, 226–231. [Google Scholar] [CrossRef]
- Schlegel, A.J.; Havlin, J.L. Green fallow for the central great plains. Agron. J. 1997, 89, 762–767. [Google Scholar] [CrossRef]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Bybee-Finley, K.; Mirsky, S.B.; Ryan, M.R. Crop Biomass Not Species Richness Drives Weed Suppression in Warm-Season Annual Grass–Legume Intercrops in the Northeast. Weed Sci. 2017, 65, 669–680. [Google Scholar] [CrossRef]
- Hiltbrunner, J.; Liedgens, M.; Bloch, L.; Stamp, P.; Streit, B. Legume cover crops as living mulches for winter wheat: Components of biomass and the control of weeds. Eur. J. Agron. 2007, 26, 21–29. [Google Scholar] [CrossRef]
- Weston, L.; Inderjit, S. Allelopathy: A Potential Tool in the Development of Strategies for Biorational Weed Management. In Non-Chemical Weed Management: Principles, Concepts and Technology; Upadhyaya, M.K., Blackshaw, R.E., Eds.; CABI: Wallingford, UK, 2007; pp. 65–76. [Google Scholar]
- Xuan, T.D.; Tsuzuki, E.; Uematsu, H.; Terao, H. Weed control with alfalfa pellets in transplanting rice. Weed Biol. Manag. 2001, 1, 231–235. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tsuzuki, E.; Terao, H.; Matsuo, M.; Khanh, T.D. Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L.). Plant Prod. Sci. 2003, 6, 165–171. [Google Scholar] [CrossRef]
- Elsalahy, H.; Bellingrath-Kimura, S.; Döring, T. Allelopathic effects in species mixtures of legumes. In Improving Sown Grasslands through Breeding and Management, Proceedings of the Joint 20th Symposium of the European Grassland Federation and the 33rd Meeting of the EUCARPIA, Zurich, Switzerland, 24–27 June 2019; Huguenin-Elie, O., Studer, B., Kölliker, R., Reheul, D., Probo, M., Barre, P., Feuerstein, U., Roldán-Ruiz, I., Mariotte, P., Hopkins, A., Eds.; Organising Committee: Zurich, Switzerland, 2019; p. 128. [Google Scholar]
- White, R.H.; Worsham, A.D.; Blum, U. Allelopathic potential of legume debris and aqueous extracts. Weed Sci. 1989, 37, 674–679. [Google Scholar] [CrossRef]
- Kamo, T.; Hiradate, S.; Fujii, Y. First isolation of natural cyanamide as a possible allelochemical from hairy vetch Vicia Villosa. J. Chem. Ecol. 2003, 29, 275–283. [Google Scholar] [CrossRef]
- Bradow, J.M.; Connick, W.J., Jr. Volatile Seed Germination Inhibitors from Plant Residues. J. Chem. Ecol. 1990, 16, 645–666. [Google Scholar] [CrossRef]
- Ohno, T.; Doolan, K.; Zibilske, L.M.; Liebman, M.; Gallandt, E.R.; Berube, C. Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agric. Ecosyst. Environ. 2000, 78, 187–192. [Google Scholar] [CrossRef]
- Ohno, T.; Doolan, K.L. Effects of red clover decomposition on phytotoxicity to wild mustard seedling growth. Appl. Soil Ecol. 2001, 16, 187–192. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J. Cover crop residue management for optimizing weed control. Plant Soil 2009, 318, 169–184. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Knezevic, S.Z. Cover Crop for Early Season Weed Suppression in Crops: Systematic Review and Meta-Analysis. Agron. J. 2018, 110, 2211–2221. [Google Scholar] [CrossRef] [Green Version]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-Chemical Weed Management in Vegetables by Using Cover Crops: A Review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.R.; Mortensen, D.A.; Bastiaans, L.; Teasdale, J.R.; Mirsky, S.B.; Curran, W.S.; Seidel, R.; Wilson, D.O.; Hepperly, P.R. Elucidating the apparent maize tolerance to weed competition in long-term organically managed systems. Weed Res. 2010, 50, 25–36. [Google Scholar] [CrossRef]
- Meiss, H.; le Lagadec, L.; Munier-Jolain, N.; Waldhardt, R.; Petit, S. Weed seed predation increases with vegetation cover in perennial forage crops. Agric. Ecosyst. Environ. 2010, 138, 10–16. [Google Scholar] [CrossRef]
- Medd, R.W.; Ridings, H.I. Relevance of Seed Kill for the Control of Annual Grass Weeds in Crops. In Proceedings of the VII International Symposium on the Biological Control of Weeds, Rome, Italy, 6–11 March 1989; pp. 645–650. [Google Scholar]
- Youngerman, C.Z.; di Tommaso, A.; Losey, J.E.; Ryan, M.R. Cover crop seed preference of four common weed seed predators. Renew. Agric. Food Syst. 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Blubaugh, C.K.; Hagler, J.R.; Machtley, S.A.; Kaplan, I. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric. Ecosyst. Environ. 2016, 231, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, J.R.; Mirsky, S.B.; Cavigelli, M.A. Weed species and traits associated with organic grain crop rotations in the mid-Atlantic region. Weed Sci. 2019, 67, 595–604. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Daughtry, C.S.T. Weed Suppression by Live and Dessicated Hairy Vetch. Weed Sci. 1993, 41, 207–212. [Google Scholar] [CrossRef]
- Masiunas, J.B.; Eastburn, D.M.; Mwaja, V.N.; Estman, C.E. The Impact of Living and Cover Crop Mulch System on Pests and Yield of Snap Beans and Cabbage. J. Sustain. Agric. 1997, 9, 61–89. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mangum, R.W.; Radhakrishnan, J.; Cavigelli, M.A. Weed seedbank dynamics in three organic farming crop rotations. Agron. J. 2004, 96, 1429–1435. [Google Scholar] [CrossRef]
- Hoffman, M.L.; Regnier, E.E. Contributions to Weed Suppression from Cover Crops. In Sustainable Weed Management; Singh, P., Batish, D.R., Kohli, R.K., Eds.; Food Products Press: New York, NY, USA, 2006; pp. 51–75. [Google Scholar]
- Blackshaw, R.E.; Semach, G.; Li, X.; O’donovan, J.T.; Neil Harker, K. An integrated weed management approach to managing foxtail barley (Hordeum jubatum) in conservation tillage systems. Weed Technol. 1999, 13, 347–353. [Google Scholar] [CrossRef]
- Streit, B.; Rieger, S.B.; Stamp, P.; Richner, W. The effect of tillage intensity and time of herbicide application on weed communities and populations in maize in Central Europe. Agric. Ecosyst. Environ. 2002, 92, 211–224. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Brink, G.; Stout, R.; Ruth, L. Grass-Legume proportions in forage seed mixtures and effects on herbage yield and weed abundance. Agron. J. 2013, 105, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Blum, U.; King, L.D.; Gerig, T.M.; Lehman, M.E.; Worsham, A.D. Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. Am. J. Altern. Agric. 1997, 4, 146–161. [Google Scholar] [CrossRef]
- Singer, J.W.; Kohler, K.A.; McDonald, P.B. Self-seeding winter cereal cover crops in soybean. Agron. J. 2007, 99, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Creamer, N.G.; Dabney, S.M. Killing cover crops mechanically: Review of recent literature and assessment of new research results. Am. J. Alt. Agric. 2002, 17, 32–40. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Rosecrance, R.C. Mechanical versus herbicidal strategies for killing a hairy vetch cover crop and controlling weeds in minimum-tillage corn production. Am. J. Altern. Agric. 2003, 18, 95–102. [Google Scholar] [CrossRef]
- Ashford, D.L.; Reeves, D.W. Use of a mechanical roller–crimper as an alternative kill method for cover crops. Am. J. Altern. Agric. 2003, 18, 37–45. [Google Scholar] [CrossRef]
- Judice, W.E.; Griffin, J.L.; Etheredge, L.M.; Jones, C.A. Effects of Crop Residue Management and Tillage on Weed Control and Sugarcane Production. Weed Technol. 2007, 21, 606–611. [Google Scholar] [CrossRef]
- Mahmood, A.; Ihsan, M.Z.; Khaliq, A.; Hussain, S.; Cheema, Z.A.; Naeem, M.; Daur, I.; Hussain, H.A.; Alghabari, F. Crop Residues Mulch as Organic Weed Management Strategy in Maize. Clean Soil Air Water 2015, 43, 1–8. [Google Scholar] [CrossRef]
- Khaliq, A.; Matloob, A.; Hussain, A.; Hussain, S.; Aslam, F.; Zamir, S.I.; Chattha, M.U. Wheat Residue Management Options Affect Productivity, Weed Growth and Soil Properties in Direct-Seeded Fine Aromatic Rice. Clean Soil Air Water 2015, 43, 1259–1265. [Google Scholar] [CrossRef]
- Gallandt, E.R.; Molloy, T.; Lynch, R.P.; Drummond, F.A. Effect of cover-cropping systems on invertebrate seed predation. Weed Sci. 2005, 53, 69–76. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Chauhan, B.S.; Saud, S.; Wu, C.; Hassan, S.; Tanveer, M.; Jan, A.; Huang, J. Weed Growth and Crop Yield Loss in Wheat as Influenced by Row Spacing and Weed Emergence Times. Crop Prot. 2015, 71, 101–108. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-Ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.N. Effect of Cereal and Legume Cover Crop Residues on Weeds, Yield and Net Return in Soybean (Glycine max L.). Weed Technol. 2001, 15, 660–668. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Liebl, R.; Simmons, F.W.; Wax, L.M.; Stoller, E.W. Effect of rye (Secale cereale) mulch on weed control and soil moisture in soybean (Glycine max). Weed Technol. 1992, 6, 838–846. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Pillai, P. Contribution of ammonium to stimulation of smooth pigweed (Amaranthus hybridus L.) germination by extracts of hairy vetch (Vicia villosa Roth) residue. Weed Biol. Manag. 2005, 5, 19–25. [Google Scholar] [CrossRef]
- Thorsted, M.D.; Weiner, J.; Olesen, J.E. Above- and below-ground competition between intercropped winter wheat Triticum aestivum and white clover Trifolium repens. J. Appl. Ecol. 2006, 43, 237–245. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein concentration of a durum wheat-winter pea intercrop. Plant Soil 2010, 330, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Dreccer, M.; Schapendonk, A.; Slafer, G.; Rabbinge, R. Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil 2000, 220, 189–205. [Google Scholar] [CrossRef]
- Poggio, S.L. Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agric. Ecosyst. Environ. 2005, 109, 48–58. [Google Scholar] [CrossRef]
- Banik, P.; Midya, A.; Sarkar, B.K.; Ghose, S.S. Wheat and chickpea intercropping systems in an additive experiment. Advantages and weed smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Dibet, A.; Hauggaard-Nielsen, H.; Crozat, Y.; Gooding, M.; Ambus, P.; Dahlmann, C.; von Fragstein, P.; Pristeri, A.; Monti, M.; et al. The competitive ability of pea-barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crop. Res. 2011, 122, 264–272. [Google Scholar] [CrossRef] [Green Version]
- McDonald, G.K. Competitiveness against grass weeds in field pea genotypes. Weed Res. 2003, 43, 48–58. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Crozat, Y. N2 fixation and N supply in organic pea (Pisum sativum L.) cropping systems as affected by weeds and peaweevil (Sitona lineatus L.). Eur. J. Agron. 2005, 22, 449–458. [Google Scholar] [CrossRef]
- Bojarszczuk, J.; Księżak, J.; Staniak, M. Evaluation of weed infestation of triticale and pea mixtures grown for fodder seeds. J. Res. Appl. Agric. Eng. 2017, 62, 42–48. [Google Scholar]
- Staniak, M.; Bojarszczuk, J.; Księżak, J. Undersown serradella (Ornithopus sativus L.) as an element of weed control in triticale crops. J. Res. Appl. Agric. Eng. 2017, 62, 144–148. [Google Scholar]
- Księżak, J.; Staniak, M.; Bojarszczuk, J. Evaluation of mixtures of yellow lupine (Lupinus luteus L.) with spring cereals grown for seeds. Appl. Ecol. Environ. Res. 2018, 16, 1683–1696. [Google Scholar] [CrossRef]
- Bergkvist, G.; Stenberg, M.; Wetterlind, J.; Båth, B.; Elfstrand, S. Clover cover crops under-sown in winter wheat increase yield of subsequent spring barley—Effect of N dose and companion grass. Field Crop. Res. 2011, 120, 292–298. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Gallandt, E.R.; Mortensen, D.A.; Curran, W.S.; Shumway, D.L. Reducing the germinable weed seedbank with soil disturbance and cover crops. Weed Res. 2010, 50, 341–352. [Google Scholar] [CrossRef]
- Saucke, H.; Ackermann, K. Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Res. 2006, 46, 453–461. [Google Scholar] [CrossRef]
- Smith, R.G.; Mortensen, D.A.; Ryan, M.R. A new hypothesis for the functional role of diversity in mediating resource pools and weed-crop competition in agroecosystems. Weed Res. 2010, 50, 37–48. [Google Scholar] [CrossRef]
- Döring, T.F.; Baddeley, J.A.; Brown, R.; Collins, R.; Crowley, O.; Cuttle, S.; Howlett, S.A.; Jones, H.E.; Mccalman, H.; Measures, M.; et al. Using Legume-Based Mixtures to Enhance the Nitrogen Use Effciency and Economic Viability of Cropping Systems: Final Report (LK09106/HGCA3447); Project Report 513; HGCA/Agriculture and Horticulture Development Board: Kenilworth, UK, 2013; Available online: https://orgprints.org/24662/1/PR513.pdf (accessed on 2 August 2020).
- Suter, M.; Hofer, D.; Luscher, A. Weed suppression enhanced by increasing functional trait dispersion and resource capture in forage ley mixtures. Agric. Ecosyst. Environ. 2017, 240, 329–339. [Google Scholar] [CrossRef]
- Weiner, J.; Andersen, S.B.; Wille, W.K.M.; Griepentrog, H.W.; Olsen, J.M. Evolutionary Agroecology: The potential for cooperative, high density, weed-suppressing cereals. Evol. Appl. 2010, 3, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy 2020, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Fenollosa, E.; Ibáñez-Gual, M.V.; Pascual-Ruiz, S.; Hurtado, M.; Jacas, J.A. Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (I): Bottom-up regulation. Biol. Control 2011, 59, 158–170. [Google Scholar] [CrossRef]
- Bowers, C.; Toews, M.; Liu, Y.; Schmidt, J.M. Cover crops improve early season natural enemy recruitment and pest management in cotton production. Biol. Control 2020, 141, 104–149. [Google Scholar] [CrossRef]
- Aguilar-Fenollosa, E.; Pascual-Ruiz, S.; Hurtado, M.A.; Jacas, J.A. Efficacy and economics of ground cover management as a conservation biological control strategy against Tetranychus urticae in clementine mandarin orchards. Crop Prot. 2011, 30, 1328–1333. [Google Scholar] [CrossRef]
- Lapointe, S.L. Leguminous cover crops and their interactions with citrus and Diaprepes abbreviatus (Coleoptera: Curculionidae). Fla. Entomol. 2003, 86, 80–85. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Ponti, L. Crop Diversification Strategies for Pest Regulation in IPM Systems. In Integrated Pest Management; Radcliffe, E.B., Hutchinson, W.D., Cancelado, R.E., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 116–130. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I. Vegetational Designs to Enhance Biological Control of Insect Pests in Agroecosystems. In Natural Enemies of Insect Pests in Neotropical Agroecosystems; Souza, B., Vázquez, L., Marucci, R., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Mailloux, J.; le Bellec, F.; Kreiter, S.; Tixier, M.S.; Dubois, P. Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp. Appl. Acarol. 2010, 52, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Damien, M.; le Lann, C.; Desneux, N.; Alford, L.; al Hassan, D.; Georges, R.; van Baaren, J. Flowering cover crops in winter increase pest control but not trophic link diversity. Agric. Ecosyst. Environ. 2017, 247, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.E.; Barbercheck, M.E. Management of Overwintering Cover Crops Influences Floral Resources and Visitation by Native Bees. Environ. Entomol. 2015, 44, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M.E.; Luck, G.W.; Mayfield, M.M. Almond orchards with living ground cover host more wild insect pollinators. J. Insect Conserv. 2013, 17, 1011–1025. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Brookes, P.C.; Cayuela, M.L.; Contin, M.; de Nobili, M.; Kemmitt, S.J.; Mondini, C. The mineralization of fresh and humified soil organic matter by the soil microbial biomass. Waste Manag. 2008, 28, 716–722. [Google Scholar] [CrossRef]
- Peralta, A.L.; Sun, Y.; McDaniel, M.D.; Lennon, J.T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018, 9, e02235. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [Green Version]
- Venter, Z.S.; Jacobs, C.; Hawkins, H.J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiol. J. Soil Ecol. 2016, 59, 215–223. [Google Scholar] [CrossRef]
- D’Acunto, L.; Andrade, J.F.; Poggio, S.L.; Semmartin, M. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agric. Ecosyst. Environ. 2018, 257, 159–164. [Google Scholar] [CrossRef]
- Battany, M.; Grismer, M.E. Rainfall runoff and erosion in Napa Valley vineyards: Effects of slope, cover and surface roughness. Hydrol. Process. 2000, 14, 1289–1304. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.; Ebelhar, S.A.; Lang, J.M. Long-term effects of cover crops on crop yields, soil organic carbon stocks and sequestration. Open J. Soil Sci. 2014, 4, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Wortman, S.E.; Francis, C.A.; Bernards, M.L.; Drijber, R.A.; Lindquist, J.L. Optimizing cover crop benefits with diverse mixtures and an alternative termination method. Agron. J. 2012, 104, 1425–1435. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, R.; Ghimire, B.; Mesbah, A.O.; Sainju, U.M.; Idowu, O.J. Soil Health Response of Cover Crops in Winter Wheat—Fallow System. Agron. J. 2019, 111, 2108–2115. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.; Jagadamma, S.; Walker, F.R.; Eash, N.S.; Buschermohle, M.J.; Duncan, L.A. Effect of Multispecies Cover Crop Mixture on Soil Properties and Crop Yield. Agric. Environ. Lett. 2017, 2, 170030. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.; Jellum, E.J.; Sanju, U. The Effect of Winter Cover Cropping on Soil and Water Quality. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 9–10 March 1995; pp. 56–64. [Google Scholar]
- McVay, K.A.; Radcliffe, D.E.; Hargrove, W.L. Winter legume effects on soil properties and nitrogen fertilizer requirements. Soil Sci. Soc. Am. J. 1989, 53, 1856–1862. [Google Scholar] [CrossRef]
- Sarr, S.; Gebremedhin, M.; Coyne, M.; Topè, A.; Sistani, K.; Lucas, S. Do Conservation Practices Bring Quick Changes to Key Soil Properties for Resource-Limited Farmers? J. Ky. Acad. Sci. 2019, 80, 6–16. [Google Scholar] [CrossRef]
- Villamil, M.B.; Miguez, F.E.; Bollero, G.A. Multivariate Analysis and Visualization of Soil Quality Data for No-Till Systems. J. Environ. Qual. 2008, 37, 2063–2069. [Google Scholar] [CrossRef]
- Amado, T.J.C.; Bayer, C.; Conceiqdo, P.C.; Spagnollo, E.; de Campos, B.H.C.; da Veiga, M. Potential of Carbon Accumulation in No-Till Soils with Intensive Use and Cover Crops in Southern Brazil. J. Environ. Qual. 2006, 35, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Casagrande, M.; David, C.; Valantin-Morison, M.; Makowski, D.; Jeuffroy, M.H. Factors limiting the grain protein content of organic winter wheat in south-eastern France: A mixed-model approach. Agro. Sustain. Dev. 2009, 29, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- David, C.; Jeuffroy, M.H.; Henning, J.; Meynard, J.M. Yield variation in organic winter wheat: A diagnostic study in the Southeast of France. Agron. Sustain. Dev. 2005, 25, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Mazzoncini, M.; Canali, S.; Giovannetti, M.; Castagnoli, M.; Tittarelli, F.; Antichi, D.; Nannelli, R.; Cristani, C.; Bárberi, P. Comparison of organic and conventional stockless arable systems: A multidisciplinary approach to soil quality evaluation. Appl. Soil Ecol. 2010, 44, 124–132. [Google Scholar] [CrossRef]
- Fujita, K.; Ofosubudu, K.G.; Ogata, S. Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 1992, 141, 155–175. [Google Scholar] [CrossRef]
- Jensen, E.S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Naudin, C.; Corre-Hellou, G.; Pineau, S.; Crozat, Y.; Jeuffroy, M.H. The effect of various dynamics of N availability on winter pea-wheat intercrops: Crop growth, N partitioning and symbiotic N2 fixation. Field Crop. Res. 2010, 119, 2–11. [Google Scholar] [CrossRef]
- García-González, I.; Hontoria, C.; Gabriel, J.L.; Alonso-Ayuso, M.; Qemada, M. Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 2018, 322, 81–88. [Google Scholar] [CrossRef]
- Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M.J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 2014, 69, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M.; Baranski, M.; Nobel-de Lange, M.N.J.; Vallejo, A.; Cooper, J.M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosys. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Justes, E.; Beaudoin, N.; Bertuzzi, P.; Charles, R.; Constantin, J.; Dürr, C.; Réchauchère, O. The Use of Cover Crops in the Reduction of Nitrate Leaching: Impact on the Water and Nitrogen Balance and Other Ecosystem Services; Summary of the study report; INRA: Paris, France, 2012. [Google Scholar]
- Valkama, E.; Lemola, R.; Känkänen, H.; Turtola, E. Meta-analysis of the effects of under-sown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agric. Ecosys. Environ. 2015, 203, 93–101. [Google Scholar] [CrossRef]
- Lal, R. Enhancing eco-efficiency in agro-ecosystems through soil C sequestration. Crop Sci. 2010, 50 (Suppl. 1), S-120. [Google Scholar] [CrossRef] [Green Version]
- Hajduk, E.; Właśniewski, S.; Szpunar-Krok, E. Influence of legume crops on content of organic C in sandy soil. Soil Sci. Annu. 2015, 66, 52–56. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Yadav, G.S. Soil Carbon Sequestration in Crop Production. In Nutrient Dynamics for Sustainable Crop Production; Meena, R.S., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 1–39. [Google Scholar] [CrossRef]
- Schmidt, O.; Curry, J.P.; Hackett, R.A.; Purvis, G.; Clements, R.O. Earthworm communities in conventional wheat monocropping and lowinput wheat-clover intercropping systems. Ann. Appl. Biol. 2001, 138, 377–388. [Google Scholar] [CrossRef]
- Nakamoto, T.; Tsukamoto, M. Abundance and activity of soil organisms in fields of maize grown with a white clover living mulch. Agric. Ecosys. Environ. 2006, 115, 34–42. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Singer, J.W. The Use of Cover Crops to Manage Soil. USDAARS UNL Fac. 2011, 1382. Available online: https://digitalcommons.unl.edu/usdaarsfacpub/1382 (accessed on 2 August 2020).
- Singh, R.; Serawat, M.; Singh, A. Effect of Tillage and Crop Residue Management on Soil Physical Properties. J. Soil Salin. Water Qual. 2018, 10, 200–206. [Google Scholar]
- Oliveira, F.C.C.; Ferreira, G.W.D.; Souza, J.L.S.; Vieira, M.E.O.; Pedrotti, A. Soil physical properties and soil organic carbon content in northeast Brazil: Long-term tillage systems effects. Sci. Agric. 2020, 77, e20180166. [Google Scholar] [CrossRef] [Green Version]
- Harasim, E.; Antonkiewicz, J.; Kwiatkowski, C.A. The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture. Agronomy 2020, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.M.; Bragg, E. Microorganisms and soil aggregate stability. Adv. Soil Sci. 1985, 5, 133–171. [Google Scholar] [CrossRef]
- Wagger, M.G.; Denton, H.P. Influence of cover crop and wheel traffic on soil physical properties in continuous notill corn. Soil Sci. Soc. Am. J. 1989, 53, 1206–1210. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Mikha, M.M.; Presley, D.R.; Claassen, M.M. Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Sci. Soc. Am. J. 2011, 75, 1471–1482. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools. Can. J. Soil Sci. 2003, 83, 155–165. [Google Scholar] [CrossRef]
- Dormaar, J.F. Chemical properties of soil and waterstable aggregates after sixty-seven years of cropping to spring wheat. Plant Soil 1983, 75, 51–61. [Google Scholar] [CrossRef]
- Kay, B.D. Rates of change of soil structure under different cropping systems. Adv. Soil Sci. 1990, 12, 1–52. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci. Soc. Am. J. 2009, 73, 418–426. [Google Scholar] [CrossRef]
- Cannell, R.Q.; Hawes, J.D. Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil Tillage Res. 1994, 30, 245–282. [Google Scholar] [CrossRef]
- Singh, B.; Chanasyk, D.S.; McGill, W.B.; Nyborg, M.P.K. Residue and tillage management effects on soil properties of a typic cryoboroll under continuous barley. Soil Tillage Res. 1994, 32, 117–133. [Google Scholar] [CrossRef]
- Liu, A.G.; Ma, B.L.; Bomke, A.A. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Sci. Soc. Am. J. 2005, 69, 2041–2048. [Google Scholar] [CrossRef]
- Henderson, C.W.L. Lupin as a biological plough: Evidence for, and effects on wheat growth and yield. Aust. J. Exp. Agric. 1989, 29, 99–102. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Foloni, J.S.S.; Tiritan, C.S. Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res. 2002, 65, 109–115. [Google Scholar] [CrossRef]
- Carof, M.; de Tourdonnet, S.; Coquet, Y.; Hallaire, V.; Roger-Estrade, J. Hydraulic conductivity and porosity under conventional and no-tillage and the effect of three species of cover crop in northern France. Soil Use Manag. 2007, 23, 230–237. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shapiro, C.A.; Wortmann, C.S.; Drijber, R.A.; Mamo, M.; Shaver, T.M.; Ferguson, R.B. Soil organic carbon: The value to soil properties. J. Soil Water Conserv. 2013, 68, 129A–134A. [Google Scholar] [CrossRef]
- Chenu, C.; le Bissonnais, Y.; Arrouays, D. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Keisling, T.C.; Scott, H.D.; Waddle, B.A.; Williams, W.; Frans, R.E. Winter cover crops influence on cotton yield and selected soil properties. Commun. Soil Sci. Plant Anal. 1994, 25, 3087–3100. [Google Scholar] [CrossRef]
- Steele, M.K.; Coale, F.J.; Hill, R.L. Winter annual cover crop impacts on no-till soil physical properties and organic matter. Soil Sci. Soc. Am. J. 2012, 76, 2164–2173. [Google Scholar] [CrossRef]
- Folorunso, O.A.; Rolston, D.E.; Prichard, T.; Louie, D.T. Soil surface strength and infiltration rate as affected by winter cover crops. Soil Technol. 1992, 5, 189–197. [Google Scholar] [CrossRef]
- Mupambwa, H.A.; Wakindiki, I.I.C. Winter cover crops effects on soil strength, infiltration and water retention in a sandy loam Oakleaf soil in Eastern Cape, South Africa. S. Afr. J. Plant Soil 2012, 29, 121–126. [Google Scholar] [CrossRef]
- Drury, C.F.; Tan, C.S.; Welacky, T.W.; Oloya, T.O.; Hamill, A.S.; Weaver, S.E. Red clover and tillage influence on soil temperature, water content, and corn emergence. Agron. J. 1999, 91, 101–108. [Google Scholar] [CrossRef]
- Malhi, S.; Lemke, R. Tillage, Crop Residue and N Fertilizer Effects on Crop Yield, Nutrient Uptake, Soil Quality and Nitrous Oxide Gas Emissions in a Second 4-yr Rotation Cycle. Soil Tillage Res. 2007, 96, 269–283. [Google Scholar] [CrossRef]
- Bajgai, Y.; Kristiansen, P.; Hulugalle, N.; McHenry, M. Comparison of Organic and Conventional Managements on Yields, Nutrients and Weeds in a Corn-Cabbage Rotation. Renew. Agric. Food Syst. 2015, 30, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Shakeel, M.; Matloob, A.; Hussain, S.; Tanveer, A.; Murtaza, G. Influence of Tillage and Weed Control Practices on Growth and Yield of Wheat. Phillips. J. Crop Sci. 2013, 38, 54–62. [Google Scholar]
- Mupangwa, W.; Twomlow, S.; Walker, S. Reduced Tillage, Mulching and Rotational Effects on Maize (Zea mays L.), Cowpea (Vigna unguiculata (Walp) L.) and Sorghum (Sorghum bicolor L. (Moench)) Yields under Semi-Arid Conditions. Field Crop. Res. 2012, 132, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Claassen, M.; Presley, D. Summer cover crops fix nitrogen, increase crop yield, and improve soil–crop relationships. Agron. J. 2012, 104, 137–147. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Lyon, D.J.; Hergert, G.W.; Higgins, R.K.; Calderón, F.J.; Vigil, M.F. Cover Crop Mixtures Do Not Use Water Differently than Single-Species Plantings. Agron. J. 2015, 107, 1025–1038. [Google Scholar] [CrossRef]
- Colla, G.; Mitchell, J.P.; Joyce, B.A.; Huyet, L.M.; Wallender, W.W.; Temple, S.R. Soil physical properties and tomato yield and quality in alternative cropping systems. Agron. J. 2000, 92, 924–932. [Google Scholar] [CrossRef]
- Lotter, D.W.; Seidel, R.; Liebhardt, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Altern. Agric. 2003, 18, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, X.; Wu, P.; Chen, X. Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Eur. J. Agron. 2015, 71, 149–159. [Google Scholar] [CrossRef]
- Irmak, S.; Sharma, V.; Mohammed, A.T.; Djaman, K. Impacts of cover crops on soil physical properties: Field capacity, permanent wilting point, soil-water holding capacity, bulk density, hydraulic conductivity, and infiltration. Am. Soc. Agric. Biol. Eng. 2018, 61, 1307–1321. [Google Scholar] [CrossRef]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Amossé, C.; Jeuffroy, M.H.; David, C. Relay intercropping of legume cover crops in organic winter wheat: Effects on performance and resource availability. Field Crop. Res. 2013, 145, 78–87. [Google Scholar] [CrossRef]
- Martens, J.R.T.; Hoeppner, J.F.; Entz, M.H. Legume Cover Crops with Winter Cereals in Southern Manitoba: Establishment, Productivity, and Microclimate Effects. Agron. J. 2001, 93, 1086–1096. [Google Scholar] [CrossRef] [Green Version]
- Unger, P.W.; Vigil, M.F. Cover crops effects on soil water relationships. J. Soil Water Cons. 1998, 53, 241–244. [Google Scholar]
- Clark, A. Managing Cover Crops Profitably, 3rd ed.; Handbook Series Book 9; Sustainable Agriculture Research & Education (SARE) Program, University of Maryland: College Park, MD, USA, 2012. [Google Scholar]
- Zibilskie, L.M.; Makus, D.J. Black oat cover crop management effects on soil temperature and biological properties on a Mollisol in Texas, USA. Geoderma 2009, 149, 379–385. [Google Scholar] [CrossRef]
- Kahimba, F.C.; Sri Ranjan, R.; Froese, J.; Entz, M.; Nason, R. Cover crop effects on infiltration, soil temperature, and soil moisture distribution in the Canadian prairies. Appl. Eng. Agric. 2008, 24, 321–333. [Google Scholar] [CrossRef]
- Thiagalingam, K.; Dalgliesh, N.P.; Gould, N.S.; McCown, R.L.; Cogle, A.L.; Chapman, A.L. Comparison of no-tillage and conventional tillage in the development of sustainable farming systems in the semi-arid tropics. Aust. J. Exp. Ag. 1996, 36, 995–1002. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Flerchinger, G.N. Straw color for altering soil temperature and heat flux in the subarctic. Agron. J. 1995, 87, 814–819. [Google Scholar] [CrossRef]
- Hansen, L.; Ribaudo, M. Economic Measures of Soil Conservation Benefits: Regional Values for Policy Assessment; USDA Technical Bulletins 1922; 2008. Available online: https://www.ers.usda.gov/webdocs/publications/47548/11517_tb1922_reportsummary.pdf?v=0 (accessed on 10 June 2020).
- Langdale, G.W.; Blevins, R.L.; Karlen, D.L.; McCool, D.K.; Nearing, M.A.; Skidmore, E.L.; Thomas, A.W.; Tyler, D.D.; Williams, J.R. Cover Crop Effects on Soil Erosion by Wind and Water. In Cover Crops for Clean Water, Proceedings of an International Conference, Jackson, TN, USA, 9–11 April 1991; Hargrove, W.L., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1999; pp. 15–22. [Google Scholar]
- Martin, C.K.; Cassel, D.K. Soil loss and silage yield for three tillage management systems. J. Prod. Agric. 1992, 5, 581–586. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Meersmans, J.; Serlet, L. Cover Crops and Their Erosion-Reducing Effects during Concentrated Flow Erosion. Catena 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Wortman, S.E.; Francis, C.A.; Lindquist, J.L. Cover crop mixtures for the western Corn Belt: Opportunities for increased productivity and stability. Agron. J. 2012, 104, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Colazo, J.C.; Buschiazzo, D.E. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 2010, 159, 228–236. [Google Scholar] [CrossRef]
Cover Crops | Crop | Dominant Weed Species | Weed Control | References |
---|---|---|---|---|
Medicago lupulina L. | Triticum aestivum L. | - | reduced weed DM (50%) | [55] |
M. lupulina L.; Medicago sativa L.; Trifolium pratense L.; Trifolium repens L. | T. aestivum L. | - | reduced weed density (40%−57%); reduced aerial DM of M. lupulina (about 35 kg DM ha−1) and M. sativa (about 16 kg DM ha−1) | [13] |
M. sativa L.; T. pratense L. | T. aestivum L. × Triticosecale Wittmack | - | reduced weed DM (68%—M. sativa; 38%—T. pratense); reduced of weed density (65%) | [54] |
M. sativa L.; Lupinus albus L. | T. aestivum L. × Secale cereale L. | Chenopodium album L., Poa annua L., Stellaria media (L.) Vill. | reduced weed biomass (54%—M. sativa; 42%—L. albus) | [43] |
M. sativa L.; T. pratense L.; Pisum sativum L. | T. aestivum L. | Descurainia sophia (L.) Webb. ex Prantl; Sonchus oleraceus L.; Kochia scoparia (L.) Schrad. | reduced weed DM (45%—M. sativa; 63%—P. sativum); increased of weed DM (11%—T. pratense) | [53] |
Medicago polymorpha L.; Medicago truncatula Gaertn.; Trifolium alexandrinum L.; T. pratense L. | T. aestivum L. and Zea mays L. rotation system | Capsella bursa- pastoris (L.) Medik.; S. media (L.) Vill.; Thlaspi arvense L.; T. aestivum L. (volunteer wheat) | reduced density (41–78%) and dry weight (26%–80%) of winter annual weeds; reduced dry weights of summer annual (70%–Medicago spp.) and perenial weeds (35%–75% Medicago spp., T. alexandrinum) | [56] |
M. lupulina L. (United Kingdom); T. repens L. (Norway, Germany, Sweden); Trifolium subterraneum L. (Germany, Switzerland); mixture of T. repens and Lolium perenne L. (Sweden); mixture of M. lupulina, Sinapis alba L., Brassica napus L. and Raphanus sativus L. (United Kingdom) | T. aestivum L. (first year); Hordeum vulgare L. in United Kingdom and Norway, and Z. mays L. at the other sites (second year) | S. media (L.) Vill.; C. album L.; Rumex spp.; Tripleurospermum inodorum (L.) Sch.Bip.; Elymus repens (L.) Gould | reduced weed cover throughout the intercrop period (55% to 1% depending on site); no reduced weed biomass or density | [57] |
M. lupulina L.; T. pratense L.; T. repens L.; T. incarnatum L.; Trifolium resupinatum L.; M. alba Medik.; V. sativa L.; mixture of M. lupulina L. and L. multiflorum Lam. | H. vulgare L.; T. aestivum L. | Galeopsis L. spp.; Myosotis arvensis (L.) Hill; S. media (L.) Vill.; Viola arvensis Murr.; Taraxacum officinale Weber in Wiggers; T. inodorum (L.) Sch.Bip.; Cirsium arvense (L.) Scop.); P. annua L. | reduced weed density and biomass in T. aestivum above 50% (in H. vulgare—no effect) | [58] |
Medicago scutellata Mill.; Vicia villosa Roth.; T. subterraneum L. | Solanum tuberosum L. | Lolium temulentum L.; S. media (L.) Vill. | reduced weed biomass (22%–57%) | [59] |
M. lupulina L.; mixture of M. lupulina L. + Lolium multiflorum Lam. var. westerwoldicum Mansh. | Beta vulgaris L. | Agropyron repens (L.) P. Beauv.; C. album L.; Echinochloa crus-galli (L.) Beauv.; Galium aparine L.; V. arvensis Murr.; Amaranthus retroflexus L.; Solanum nigrum L.; S. media (L.) Vill. | reduced weed number (25%–38%—M. lupulina; 44%–55%—mixture of CCs) and air-dry weight of weeds (21%–44%—M. lupulina; 45%–51%—mixture of CCs) | [60] |
M. lupulina L.; V. villosa Roth.; T. subterraneum L.; T. pratense L.; T. repens L.; Trifolium incarnatum L. | - | Chamomilla suaveolens (Pursh) Rydb.; Matricaria perforata Merat; P. annua L. | reduced weed dry weight (V. villosa reduced 95% compared to T. repens) | [61] |
monoculture or mixture of Trifolium hybridum L., Lotus corniculatus L., M. lupulina L., T. incarnatum L.; Lolium multiflorum Lam.; Lotus pedunculatus Cav.; M. sativa L., Festuca pratensis Huds.; Lathyrus pratensis L.; L. perenne L.; T. pratense L.; Onobrychis viciifolia Scop.; Phleum pratense L.; T. repens L.; Melilotus alba Medik.; V. sativa L. | - | S. media (L.) Vill.; Sonchus arvensis L.; Veronica persica Poiret; Persicaria maculosa L.; Ranunculus repens L.; V. arvensis Murray | reduced weed aboveground biomass (44%–92%—legumes, 72%–90%—T. pratense) | [62] |
monoculture or mixture of Trifolium hybridum L. (AC) and M. lupulina L. (BM); AC:BM ratios (100:0, 67:33, 50:50, 33:67, 0:100) | - | - | reduced weed aboveground biomass (39%–96%, depending on the harvest date) | [20] |
T. pratense L. | T. aestivum L. × Triticosecale Wittmack | - | reduced weed density (38%) | [63] |
T. pratense L. | T. aestivum L. | Ambrosia artemisiifolia L. | reduced weed biomass (28%–43%) | [64] |
T. pratense L.; T. repens L.; mixture of T. pratense L. and Phleum pratense L.; mixture of T. pratense L. and Lolium L. | T. aestivum L.; Avena sativa L. | Spergula arvensis L.; S. media (L.) Vill.; V. arvensis Murray; C. album L.; Erodium cicutarium (L.) L’Herit; C. arvense (L.) Scop. | reduced weed biomass (74%)—mixture of T. pratense and Lolium; increased seed bank and density of emerged weed (4.5 and 10 times in cloves) | [65] |
T. incarnatum L.; T. subterraneum L. | Z. mays L. | S. nigrum L.; C. album L.; A. retroflexus L.; Ammi majus L.; Cynodon dactylon (L.) Pers.; Geranium dissectum L.; Polygonum aviculare L.; V. persica Poiret; Xanthium strumarium L.; E. crus-galli (L.) Beauv. | reduced weed biomass (22%–46%—T. incarnatum; 21%–67%—T. subterraneum) | [7] |
T. pratense L.; V. villosa Roth. | Z. mays L. | A. retroflexeus L.; Convolvulus arvensis L.; Acroptilon repens (L.) DC.; Cuscuta sp. | reduced weed biomass (77%—V. villosa) | [66] |
T. pratense L.; V. sativa L. | - | Lamium aplexicaule L.; Papaver rhoeas L.; Sinapis arvensis L.; Chamomilla recutita L.; Phalaris minor Retz. | reduced weed number (34%–68%—V. sativa; 19%–48%—T. pratense) and dry weight (58%–78%—V. sativa; 29%–44%—T. pratense) | [35] |
T. repens L.; T. pratense L.; V. villosa Roth; Vicia benghalensis L.; Trifolium resupinatum L. | - | A. retroflexus L.; C. album L.; Portulaca oleracea L.; Persicaria longiseta (De Bruyn) Kitag.; S. nigrum L. | reduced weed dry weight (29%–53%—V. villosa) | [19] |
T. hybridum L.; Trifolium michelianum Savi var. balansae (Boiss.) Azn.; T. alexandrinum L.; T. incarnatum L.; Trifolium resupinatum L.; T. pratense L.; T. repens L. | - | Brassica juncea (L.) | reduced mustard biomass (29%–57%—without mowing) | [41] |
mixture of Vicia faba L. (35%); Vicia dasycarpa Ten. (15%); V. benghalensis L. (15%); P. sativum L. (25%); A. sativa L. (10%) | - | Malva parviflora L.; C. bursa-pastoris L.; S. media L.; Lamium amplexicaule L.; Urtica urens L.; Sonchus spp.; P. annua L. | reduced weed DM linearly with increasing seeding rate (82%–100%) | [67] |
V. dasycarpa Ten.; V. faba L.; Lupinus angustifolius L. | - | Bromus cartharticus Vahl; C. bursa-pastoris (L.) Medik.; C. album L.; M. parviflora L.; S. media L. | reduced weed density (23%–80%) and dry weight (30%–80%) | [68] |
P. sativum L. and V. sativa L.—LSL; T. incarnatum L. and Trifolium squarrosum L.—SSL; A. sativa L. and H. vulgare L.—POA; R. sativus L. and Brassica nigra L.—BRS; mixtures of SSL, LSL + POA, SSL + BRS, LSL + POA + BRS, SSL + POA + BRS, LSL + SSL + POA + BRS | - | Senecio vulgaris L.; Helmintotheca echioides L.; Alopecurus myosuroides L.; R. repens L.; Juncus tenageja Ehrh.; Lolium multiflorum Lam. | reduced weed biomass (93%—mixture of LSL + POA compared to monoculture of P. sativum; 54%—mixture of SSL + POA compared to monoculture of T. incarnatum) | [69] |
V. villosa Rotch. | Apium graveolens L. | S. media (L.) Vill.; Amaranthus blitoides S. Wats; Cyperus esculentus L.; C. bursa-pastoris (L.) Medik.; P. oleracea L. | reduced weed biomass (70%) | [70] |
V. villosa Rotch. | Solanum lycopersicum L. | A. retroflexus L.; Digitaria sanguinalis (L.) Scop.; P. oleracea L. | reduced weed density (72%–79%) and aboveground biomass (40%) | [71] |
V. sativa L. | Z. mays L. | Ipomoea grandifolia (Dammer) O’Donell; Euphorbia heterophylla L.; D. sanguinalis (L.) Scop.; Cyperus rotundus L. | reduced weed DM (76%) and numer (58%) | [14] |
V. villosa Roth.; mixture of V. villosa and S. cereale L. | Z. mays L. | L. amplexicaule L.; S. media (L.) Vill.; P. annua L. | decreased weed biomass (92%—V. villosa; 97%—mixture of cover crops) | [72] |
V. villosa Roth. | Glycine max (L.) Merr. | Amaranthus rudis Sauer; Setaria faberi Herrm. | decreased weed biomass (26%, in rolled system compared to the burndown system) | [51] |
mixture of V. villosa Roth. and S. cereale L. | G. max (L.) Merr. | A. retroflexus L.; A. artemisiifolia L.; C. album L.; Polygonum convolvulus L.; Panicum dichotomiflorum Michx.; Setaria faberi Herrm.; Setaria glauca L.; C. esculentus L.; T. officinale Weber in Wiggers | reduced weed density (67%–85%—C. album A. retroflexus, Setaria spp.), without C. esculentus L. | [73] |
V. villosa Roth.; P. sativum L. | Brassica oleracea L. var. acephala | E. cruss galli (L.) P.B.; C. dactylon (L.) Pers.; C. arvensis L.; C. album L.; P. oleracea L.; A. retroflexus L.; C. arvense (L.) Scop. | reduced weed dry biomass (81%—V. villosa, 48%—P. sativum) and density (66%—V. villosa, 15%—P. sativum) | [42] |
mixture of V. villosa Rotch. and S. cereale L. | Brassica oleracea var. capitata f. rubra | T. arvense L.; C. bursa-pastoris (L.) Medik.; Galinsoga parviflora Cav.; L. amplexicaule L. | reduced weed number (25%) and fresh biomass (50%) | [74] |
mixture of V. villosa Rotch. and S. cereale L. | Capsicum annuum L.; B. oleracea var. capitata f. rubra | C. album L.; C. bursa-pastoris L.; S. vulgaris L.; Matricaria inodora L.; L. amplexicaule L.; G. parviflora Cav.; E. crus-galli (L.) Beauv.; U. urens L.; Fallopia convolvulus (L.) Á. Löve; Polygonum persicaria L.; A. retroflexus L.; T. arvense L.; S. media (L.) Vill.; E. cicutarium (L.) L’Herit | reduced weed number and biomass (39%–58%—cover crops mulching, 10%–45%—cover crops incorporated into soil) | [75] |
V. villosa Rotch.; mixture of V. villosa Rotch. and S. cereale L. | Solanum lycopersicum L.; Cucurbita pepo L.; C. annuum L. | C. bursa-pastoris (L.) Medik.; Setaria spp.; C. album L.; A. retroflexus L. | reduced weed density (96%—mixture of cover crops, 80%—V. villosa) | [76] |
Crotalaria juncea L. | S. lycopersicum L. | Digitaria horizontalis Willd.; Gnaphalium spicatum Lam.; Cyperus sp.; G. parviflora Cav.; Amaranthus sp. | reduced weed DM (97%) | [77] |
Legume Cover Crops | Crop/Tillage | Soil Texture | Potentially Mineralizable Carbon (kg·ha−1) | Permanganate Oxidizable Carbon (kg·ha−1) | Potentially Mineralizable Nitrogen (mg·kg−1) | Soil Inorganic N | Soil Organic C | References |
---|---|---|---|---|---|---|---|---|
no legume CCs P. sativum L. mixture of P. sativum L. and A. sativa L. mixture of P. sativum L. and B. napus L. mixture of P. sativum L., A. sativa L. and B. napus L. mixture of P. sativum L., A. sativa L., B. napus L., V. villosa Rotch, R. sativus L. and H. vulgare L. | T. aestivum L./no-till | clay loam | 133 202 192 210 158 190 | 795 769 831 776 810 850 | [188] | |||
no legume CCs mixture of S. cereale L. and V. villosa Roth. mixture of S. cereale L. and T. incarnatum L. mixture of S. cereale L., A. sativa L., R. sativus var. niger J. Kern., Brassica campestris L. and T. incarnatum L. | Z. mays L. G. max (L.) Merr./no-till | silt loam | 28.4 34.7 32.6 35.8 | (mg·kg−1) 15.5 18.5 20.6 19.4 | [189] | |||
no legume CCs M. sativa L. T. pratense L. P. sativum L. | T. aestivum L./ conventional tillage, fall planted | sandy clay loam | (kg·ha−1) 19.6 43.8 34.6 30.0 | [53] | ||||
no legume CCs M. sativa L. T. pratense L. P. sativum L. | T. aestivum L./conventional tillage, spring planted | sandy clay loam | (kg·ha−1) 20.8 27.1 18.5 24.2 | [53] | ||||
no legume CCs P. sativum L. V. villosa Rotch/ | Z. mays L./conventional tillage | silt loam | (g·kg−1) 1.22 1.26 1.28 | (g·kg−1) 15.7 16.0 15.8 | [190] | |||
no legume CCs T. incarnatum L. V. villosa Rotch. | Sorghum bicolor (L.) Moench/ conventional tillage | sandy clay loam | (g·kg−1) 1.0–1.3 1.3–1.5 1.3–1.5 | (g·kg−1) 8.5–10.1 10.6–12.8 10.2–11.8 | [191] | |||
no legume CCs mixture of S. cereale L., P, sativum L. and T. incarnatum L. | Z. mays L. G. max (L.) Merr./conventional tillage | silt loam | 5.78 7.62 | (weight %) 0.11 0.10 | [192] | |||
no legume CCs S. cereale L. (in Z. mays) and V. villosa Rotch. (in G. max) S. cereale L. (in Z. mays) and mixture of S. cereale L. and V. villosa Rotch. (in G. max) | Z. mays L. Glycine max (L.) Merr./no-till | silt loam | (mg·kg−1) 0.26 0.29 0.21 | [193] | ||||
no legume CCs Mucuna pruriens (L.) DC. no legume CCs M. pruriens (L.) DC. | Z. mays L./ no-till | sandy loam | (Mg·ha−1) 6.76/0–5 9.42/0–5 19.2/0–20 25.1/0–20 | [194] |
Legume Cover Crops | Crop/Tillage | Soil Texture | Bulk Density (g cm–3) | Water–Stable Agregates (%) | Mean Weight Diameter (mm) | Total Aggregate-Associated Carbon (dag kg−1) | Soil Particle Size Fractions (>0.002 mm) | Soil Total Porosity (%) | Soil Capillary Porosity (%) | Soil Penetration Resistance (MPa) | References |
---|---|---|---|---|---|---|---|---|---|---|---|
no legume CCs V. villosa Rotch. | Z. mays L./no-till | fine sandy loam | 1.44 1.47 | [220] | |||||||
no legume CCs T. incarnatum L. V. villosa Rotch. | Z. mays L./no-till | clay loam | 56.3 55.0 58.2 | [191] | |||||||
no legume CCs T. incarnatum L. V. villosa Rotch. | S. bicolor (L.) Moench/ conventional tillage | sandy clay loam | 28.9 37.9 36.7 | [191] | |||||||
no legume CCs V. villosa Rotch. mixture of S. cereale L. and V. villosa Rotch. | Z. mays L. G. max (L.) Merr./no-till | silt loam | 1.32 1.23 1.23 | 38.0 43.0 44.0 | [24] | ||||||
no legume CCs G. max (L.) Merr | T. aestivum L. S. bicolor (L.) Moench /no-till | silt loam | 1.21 1.24 | 0.42 0.76 | [221] | ||||||
mixture of Phaseolus vulgaris L. and Pennisetum glaucum L. mixture of P. vulgaris L. and P. glaucum L. mixture of P. vulgaris L. and P. glaucum L. | Z. mays L./no-till minimum tillage conventional tillage | Typic Hapludult | 1.58/0–10 1.71/10–20 1.47/0–10 1.48/10–20 1.64/0–10 1.77/10–20 | 1.79/0–5 1.47/5–10 1.05/10–20 1.79/0–5 1.16/5–10 1.05/10–20 1.53/0–5 1.26/5–10 1.42/10–20 | 0.96/0–5 0.57/5–10 0.36/10–20 1.08/0–5 0.66/5–10 0.54/10–20 0.51/0–5 0.39/5–10 0.54/10–20 | 1.94/0–10 4.07/10–20 1.64, 0–10 6.55/10–20 2.06/0–10 5.13/10–20 | [217] | ||||
no legume CCs mixture of V. faba L. and V. villosa Rotch no legume CCs mixture of V. faba L. and V. villosa Rotch | T. aestivum L./plough or conservation tillage | silt loam | 1.56/5–10 1.50/5–10 1.62/15–20 1.53/15–20 | 8 10 (plough tillage) 5 7 (conservation tillage) | 38.5/5–10 40.7/5–10 36.4/15–20 39.1/15–20 | 34.4/5–10 35.0/5–10 32.4/15–20 33.0/15–20 | [218] | ||||
no legume CCs S. cereale L. (in Z. mays) and V. villosa Rotch. (in G. max) S. cereale L. (in Z. mays) and mixture of S. cereale L. and V. villosa Rotch. (in G. max) | Z. mays L. G. max (L.) Merr./no-till | silt loam | 1.41 1.37 1.37 | 38.6 42.1 44.1 | 1.41 1.49 1.46 | [193] | |||||
no legume CCs T. incarnatum L. V. villosa Rotch | Solanum lycopersicum L. Solanum melongena L./ conventional tillage | sandy loam | 1.70 1.66 1.71 | [222] | |||||||
no legume CCs mixture of S. cereale L., P. sativum L., and T. incarnatum L. | 1.61 1.65 | [192] |
Legume Cover Crops | Crop/Tillage | Soil Texture | Water Infiltration (cm) | Soil Water Content /Depth (cm) | Soil Moisture | Water Stability Index (%) | References |
---|---|---|---|---|---|---|---|
V. villosa Rotch. | Z. mays L./no-till | silt loam | 0.52 | [236] | |||
no legume CCs G. max (L.) Merr | T. aestivum L. S. bicolor (L.) Moench /no-till | silt loam | 5.7 11.4 | [221] | |||
no legume CCs mixture of A. sativa L. and V. villosa Rotch. | S. lycopersicum L./ conventional tillage | loam | 19.0 20.3 | [237] | |||
no legume CCs Trifolium fragiferum L. | orchard/conventional tillage | sandy loam | 3.3 6.3 | [237] | |||
no legume CCs V. dasycarpa L. L. angustifolius L. no legume CCs mixture of A. sativa L.(90%) and V. dasycarpa L. (10%) mixture of A. sativa L.(70%) and V. dasycarpa L. (30%) mixture of A. sativa L.(50%) and V. dasycarpa L. (50%) | - | sandy loam | cumulative (mm) 40 41 43 28 41 44 57 | (m3·m−3) 0.56 0.72 0.68 0.74 0.77 0.77 0.80 | [238] | ||
no legume CCs M. sativa L. T. pratense L. P. sativum L. | T. aestivum L./ conventional tillage, fall planted | sandy clay loam | (g·kg−1) 192/90 171/90 190/90 188/90 | [52] | |||
no legume CCs M. sativa L. T. pratense L. P. sativum L. | T. aestivum L./ conventional tillage, spring planted | sandy clay loam | (g·kg−1) 188/90 189/90 189/90 185/90 | [52] | |||
no legume CCs P. sativum L. mixture of P. sativum L. and A. sativa L. mixture of P. sativum L. and B. napus L. mixture of P. sativum L., A. sativa L. and B. napus L. mixture of P. sativum L., A. sativa L., B. napus L., V. villosa Rotch, R. sativus L. and H. vulgare L. | T. aestivum L./no-till | clay loam | (%) 15.0 11.5 11.0 11.5 10.7 11.0 | [188] | |||
no legume CCs T. pratense L. no legume CCs T. pratense L. | T. aestivum L. Z. mays L. G. max (L.) Merr./no-till | clay loam | (%) 27.1/0–10 27.0/0–10 31.2/0–30 30.8/0–30 | [239] | |||
no legume CCs T. pratense L. no legume CCs T. pratense L. | T. aestivum L. Z. mays L. G. max (L.) Merr./conventional tillage | clay loam | (%) 24.1/0–10 23.4/0–10 27.9/0–30 29.7/0–30 | [239] | |||
no legume CCs mixture of S. cereale L. and V. villosa Roth. mixture of S. cereale L. and T. incarnatum L. mixture of S. cereale L., A. sativa L., Raphanus sativus var. niger J. Kern., B. campestris L. and T. incarnatum L. | Z. mays L. G. max (L.) Merr./no-till | silt loam | (mm) 17 20 19 21 | [189] | |||
no legume CCs mixture of V. faba L. and V. villosa Rotch no legume CCs mixture of V. faba L. and V. villosa Rotch | T. aestivum L. | silt loam | (%) 16.7/5–10 17.6/5–10 (%) 16.9/15–20 18.2/15–20 | 40.4 70.2 | [218] | ||
mixture of P.vulgaris L. and P. glaucum L. mixture of P. vulgaris L. and P. glaucum L. mixture of P. vulgaris L. and P. glaucum L. | Z. mays L./no-till minimum tillage conventional tillage | Typic Hapludult | (g g–1) 0.06/0–10 0.03/10–20 0.05/0–10 0.03/10–20 0.10/0–10 0.06/10–20 | [217] | |||
no legume CCs mixture of P. sativum L. ssp. arvense and S. cereale L. mixture of V. villosa Rotch and S. cereale L. | Z. mays L./no-till | loamy sand clay loam S | (%) volumetric 0.182/10 0.178/10 0.198/10 | [86] | |||
no legume CCs mixture of P. sativum L. ssp. arvense and S. cereale L. mixture of V. villosa Rotch and S. cereale L. | Z. mays L./no-till | clay loam S | (%) volumetric 0.251/10 0.257/10 0.261/10 | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocira, A.; Staniak, M.; Tomaszewska, M.; Kornas, R.; Cymerman, J.; Panasiewicz, K.; Lipińska, H. Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review. Agriculture 2020, 10, 394. https://doi.org/10.3390/agriculture10090394
Kocira A, Staniak M, Tomaszewska M, Kornas R, Cymerman J, Panasiewicz K, Lipińska H. Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review. Agriculture. 2020; 10(9):394. https://doi.org/10.3390/agriculture10090394
Chicago/Turabian StyleKocira, Anna, Mariola Staniak, Marzena Tomaszewska, Rafał Kornas, Jacek Cymerman, Katarzyna Panasiewicz, and Halina Lipińska. 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review" Agriculture 10, no. 9: 394. https://doi.org/10.3390/agriculture10090394