Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plots and Design
2.2. Measurement of CH4 and N2O Emissions
2.3. Measurement of Selected Field Properties
2.4. Estimation of Soil C Storage Based on the RothC Model
2.5. Estimation of the Net GHG Balance
2.6. Statistical Analysis
3. Results
3.1. CH4, N2O, and Their Carbon Dioxide Equivalent (CO2eq) Emissions
3.1.1. CH4 and N2O Flux
3.1.2. Precipitation
3.1.3. Water-Filled Pore Space
3.1.4. Soil Eh
3.1.5. Annual CH4, N2O, and Their CO2eq Emissions
3.2. Predictive Evaluation of Soil Carbon Storage Using the RothC Model
3.3. Net GHG Balance
3.4. Yield, Quality, and Nitrogen Uptake of Rice, Wheat and Soybean
4. Discussion
4.1. Temporal Changes in the Mitigation Effect of GHG Emissions and Its Regulatory Factors
4.2. Effect of Climate on the Mitigation Effect of PU Rotation Systems
4.3. Comprehensive Assessment of Soil Carbon Stocks and GHG Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Fagodiya, R.K.; Pathak, H.; Bhatia, A.; Jain, N.; Kumar, A.; Malyan, K. Global warming impacts of nitrogen use in agriculture: An assessment for India since 1960. Carbon Manag. 2020, 11, 291–301. [Google Scholar] [CrossRef]
- Fagodiya, R.K.; Pathak, H.; Kumar, A.; Bhatia, A.; Jain, N. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. FAOSTAT Database. 2020. Available online: http://faostat.fao.org/ (accessed on 24 February 2020).
- Yagi, K.; Minami, K. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 1990, 36, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Miura, Y.; Watanabe, A.; Katoh, T.; Haraguchi, H. Methane emission from paddy fields (Part 1). Effect of fertilization, growth stage and midsummer drainage: Pot experiment. Environ. Sci. 1991, 4, 265–271. [Google Scholar]
- Gupta, K.; Bhatia, A.; Kumar, A.; Das, K.; Jain, N.; Tomer, R.; Malyan, K.; Fagodiya, R.K.; Dubey, R.; Pathac, H. Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management. Agric. Ecosyst. Environ. 2016, 230, 1–9. [Google Scholar] [CrossRef]
- Yagi, K. Mitigation options for methane emissions in rice. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: Columbus, OH, USA, 2002; pp. 814–818. [Google Scholar]
- Setyanto, P.; Pramono, A.; Adriany, T.A.; Susilawati, H.L.; Tokida, T.; Agnes, T.; Padre, A.T.; Minamikawa, K. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. 2018, 64, 23–30. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.T.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.K.; Terao, Y.; et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Yagi, K.; Tsuruta, H.; Kanda, K.; Minami, K. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycl. 1996, 10, 255–267. [Google Scholar] [CrossRef]
- Itoh, M.; Sudo, S.; Mori, S.; Saito, H.; Yoshida, T.; Shiratori, Y.; Suga, S.; Yoshikawa, N.; Suzue, Y.; Mizukami, H.; et al. Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ. 2011, 141, 359–372. [Google Scholar] [CrossRef]
- Malyan, K.; Bhatia, A.; Kumar, A.; Gupta, K.; Singh, R.; Kumar, S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef]
- Nira, R. The present condition of soil fertility of paddy- upland rotation fields and some proposals for its management. In Fertility and Management of Soil in Paddy- Upland Rotation Fields in Japan- Factors of Fertility Change and Approaches for Its Control; Toriyama, K., Kimura, T., Yanai, J., Eds.; Hakuyusha: Tokyo, Japan, 2010; pp. 9–26. (In Japanese) [Google Scholar]
- Kumagai, K.; Konno, Y. Methane emission from rice paddy fields after Upland Farming. Jpn. J. Soil Sci. Plant Nutr. 1998, 69, 333–339, (In Japanese with English summary). [Google Scholar]
- Nishimura, S.; Yonemura, S.; Sawamoto, T.; Shirato, Y.; Akiyama, H.; Sudo, S.; Yagi, K. Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budge of a cropland in Japan. Agric. Ecosyst. Environ. 2008, 125, 9–20. [Google Scholar] [CrossRef]
- Nishimura, S.; Akiyama, H.; Sudo, S.; Fumoto, T.; Cheng, W.; Yagi, K. Combined emission of CH4 and N2O from a paddy field was reduced by preceding upland crop cultivation. Soil Sci. Plant Nutr. 2011, 57, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Shiono, H.; Saito, H.; Nakagawa, F.; Nishimura, S.; Kumagai, K. Effects of crop rotation and rice straw incorporation in spring on methane and nitrous oxide emissions from an upland paddy field in a cold region of Japan. Jpn. J. Soil Sci. Plant Nutr. 2014, 85, 420–430, (In Japanese with English summary). [Google Scholar]
- Chu, H.; Hosen, Y.; Yagi, K. Nitrogen Oxide Emissions and Soil Microbial Activities in a Japanese Andisol as Affected by N-Fertilizer Management. Soil Sci. Plant Nutr. 2004, 50, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Sumida, H.; Kato, N.; Nishida, M. Depletion of soil fertility and crop productivity in succession of paddy rice-soybean rotation. Bull. Natl. Agric. Res. Cent. Tohoku Reg. 2005, 103, 39–52, (In Japanese with English summary). [Google Scholar]
- Shirato, Y.; Nishimura, S.; Minamikawa, K. A new framework for study of irrigated paddy rice and upland crops rotation farming and its relation to soil and plant nutrition science. 6. Paddy-upland rotation and environmental impacts. Jpn. J. Soil Sci. Plant Nutr. 2014, 85, 533–538. (In Japanese) [Google Scholar]
- Takakai, F.; Nakagawa, S.; Sato, K.; Kon, K.; Sato, T.; Kaneta, Y. Net Greenhouse Gas Budget and Soil Carbon Storage in a Field with Paddy–Upland Rotation with Different History of Manure Application. Agriculture. 2017, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- FAO; ISRIC; ISSS. World Reference Base for Soil Resources 2006, A Framework for International Classification Correlation and Communication; World Soil Resources Reports 103; FAO: Rome, Italy, 2006; pp. 1–128. [Google Scholar]
- Nishina, K.; Sudo, S.; Yagi, K.; Sano, T.; Takata, Y.; Obara, H.; Eguchi, S.; Oura, N.; Yano, S.; Ohkoshi, S.; et al. Multi-site monitoring for N2O emission factors of synthetic fertilizer in various soils with different redoximorphic features across Japan. Nutr. Cycl. Agroecosyst. 2015, 103, 87–99. [Google Scholar] [CrossRef]
- Shiga Prefectural Government. Guidelines for Wheat and Soybeans Cultivation That Sell; Shiga Prefectural Government: Otsu, Japan, 2012; pp. 1–177. (In Japanese) [Google Scholar]
- Shiga Prefectural Government. Rice Cultivation Technical Guidance Guidelines; Shiga Prefectural Government: Otsu, Japan, 2015; pp. 201–205. (In Japanese) [Google Scholar]
- Yagi, K. Greenhouse gas generation-absorption. In Soil Environmental Analysis; Hakuyusha: Tokyo, Japan, 1997; pp. 129–138. (In Japanese) [Google Scholar]
- Sudo, S. Recent advances in research on soil redox reacations: Chasing redox reacation in soil. 3. Measurement method of greenhouse gas emission from agricultural field by gas chromatograph. Jpn. J. Soil Sci. Plant Nutr. 2012, 83, 599–605. (In Japanese) [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis, Contribution of Working Group1 to the Fifth Assessment Report of the Intergovermental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Soil Nutrient Measurement Method Committee. Soil Nutrient Analysis; Yokendo: Tokyo, Japan, 1983; pp. 1–440. (In Japanese) [Google Scholar]
- Soil Environment Analysis Method Editing Committee. Soil Environmental Analysis; Hakuyusha: Tokyo, Japan, 1997; pp. 1–427. (In Japanese) [Google Scholar]
- Asami, T.; Kumada, K. A new method for determining free iron in paddy soils. Soil. Plant Food 1995, 5, 141–146. [Google Scholar] [CrossRef]
- Nanzyo, M.V. 12 Available Nitrogen. In Analysis Methods of Soil Environment; Konno, T., Ed.; Hakuyusha: Tokyo, Japan, 1997; pp. 262–273. (In Japanese) [Google Scholar]
- Shirato, Y.; Yokozawa, M. Applying the Rothamsted Carbon Model for long-term experiments on Japanese paddy soils and modifying it by simple turning of the decomposition rate. Soil Sci. Plant Nutr. 2005, 51, 405–415. [Google Scholar] [CrossRef]
- Shirato, Y. Validation and Modification of Soil Organic Matter Models in Arable Soils in Japan and Thailand. Bull. Natl. Inst. Agro. Environ. Sci. 2006, 24, 23–94, (In Japanese with English summary). [Google Scholar]
- Shirato, Y.; Yagasaki, Y.; Nishida, M. Using diffrent versions of the Rothamsted carbon model to simulate soil carbon in long-term experimental plots subjected to paddy-upland rotation Japanese. Soil Sci. Plant Nutr. 2011, 57, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Nishibori, Y.; Shibahara, F.; Takehisa, T.; Kitagawa, Y.; Kyuma, K. Characterization and Grouping of Paddy Soils in Shiga Prefecture with Reference to Clay Minerals and Microbial Biomass. Bull. Shiga Prefect. Agric. Technol. Promot. Cent. 2009, 48, 35–52, (In Japanese with English summary). [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Shibahara, Y. Studies on Nitrogen Dynamics of Soil Microbial Biomass and its Significance in Paddy Field Ecosystems. Spec. Bull. Shiga Prefect. Agric. Technol. Promot. Cent. 2002, 22, 1–149, (In Japanese with English summary). [Google Scholar]
- Ogawa, K.; Takeuchi, Y.; Katayama, M. Biomass Production and the Amounts of Absorbed Inorganic Elements by Crops in Arable Lands in Hokkaido, and its evaluation. Res. Bull. Hokkaido Natl. Argic. Exp. Stn. 1998, 149, 57–91, (In Japanese with English summary). [Google Scholar]
- Yanai, J.; Shirato, Y.; Nishida, M.; Kasuya, M.; Nira, R.; Tanaka, S. Evaluation and management of long-term changes of soil fertility at the era of paradigm shift. Jpn. J. Soil Sci. Plant Nutr. 2020, 91, 99–105. (In Japanese) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Hasukawa, H.; Inoda, Y.; Toritsuka, S.; Sudo, S.; Oura, N.; Sano, T. Effects of mitigation strategies on greenhouse gas emissions from a paddy field on gray lowland soil under a paddy-upland rotation system with four-crops over three-years. Jpn. J. Soil Sci. Plant Nutr. 2019, 90, 1–12, (In Japanese with English summary). [Google Scholar]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiratori, Y.; Watanabe, H.; Furukawa, Y.; Tsuruta, H.; Inubushi, K. Effectiveness of a subsurface drainage system in poorly drained paddy field on reduction of methane emissions. Soil Sci. Plant Nutr. 2007, 53, 387–400. [Google Scholar] [CrossRef]
- Su, M.; Kuang, F.; Lv, Y.; Shi, X.; Liu, X.; Shen, J.; Zhang, F. Nitrous oxide and methane emissions from paddy soils in southwest China. Geoderma. Reg. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Cha-un, N.; Chidthaisong, A.; Yagi, K.; Sudo, S.; Towprayoon, S. Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agric. Ecosyst. Environ. 2017, 237, 109–120. [Google Scholar] [CrossRef]
- Ishibashi, E.; Yamamoto, S.; Akai, N.; Iwata, T.; Tsuruta, H. The influence of no-tilled direct seeding cultivation on greenhouse gas emissions from rice paddy fields in Okayama, Western Japan. 5. Annual emission of CH4, N2O, and CO2 from rice paddy fields under different cultivation methods and carbon sequestration into paddy soils. Jpn. J. Soil Sci. Plant Nutr. 2009, 80, 123–135, (In Japanese with English summary). [Google Scholar]
Treatment † | 2012~2013 (First Year) | 2013~2014 (Second Year) | 2014~2015 (Third Year) | |||
---|---|---|---|---|---|---|
CP (continuous Paddy) | Fallow period of paddy (9 October 2012–13 May 2013) | Paddy rice (13 May 2013–12 September 2013) | Fallow period of paddy (12 September 2013–22 April 2014) | Paddy rice (22 April 2014–17 September 2014) | Fallow period of paddy (17 September 2014–7 May 2015) | Paddy rice (7 May 2015–27 October 2015) |
PU (paddy- upland rotation) | Wheat (9 October 2012–1 July 2013) | Soybean (1 July 2013–18 Novermber 2013) | Post soybean fallow period (18 Novermber 2013–22 April 2014) | Paddy rice (22 April 2014–17 September 2014) | Fallow period of paddy (17 September 2014–7 May 2015) | Paddy rice (7 May 2015–27 October 2015) |
Treat- ment | pH | T-C | T-N | Available N 2 | Available P2O5 | Available SiO2 | Free Fe2O3 | CEC | Exchangeable Base | Three Phases Distribution 3 | Bulk Density 3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | K | Gaseous Phase | Liquid Phase | Solid Phase | ||||||||||
(H2O) | (g kg−1) | (g kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | (g kg−1) | (cmolc kg−1) | (cmolc kg−1) | (%) | (g cm−3) | |||||
CP | 5.4 | 25.0 | 2.26 | 36.3 | 55.0 | 122.7 | 27.6 | 21.6 | 9.60 | 2.25 | 0.43 | 14.3 | 52.7 | 33.0 | 1.11 |
PU | 5.9 | 22.6 | 1.95 | 31.5 | 95.0 | 165.7 | 24.5 | 21.4 | 11.29 | 3.66 | 0.56 | 24.1 | 40.0 | 36.0 | 1.01 |
Year | Treatment | CH4 Emission (kgCH4-C ha−1 year−1) | N2O Emission (kgN2O-N ha−1 year−1) | GWP (CO2eq) † | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CH4 (Mg ha−1 year−1) | N2O (Mg ha−1 year−1) | Total (Mg ha−1 year−1) | |||||||||
2012–2013 | CP | 165.3 ± 14.8 | A | −0.169 ± 0.185 | A | 6.17 ± 0.55 | A | −0.07 ± 0.08 | A | 6.10 ± 0.48 | A |
(First year) | PU | −0.6 ± 1.2 | B | 2.591 ± 0.322 | B | −0.02 ± 0.05 | B | 1.08 ± 0.13 | B | 1.05 ± 0.18 | B |
2013–2014 | CP | 273.5 ± 28.4 | A | 0.113 ± 0.085 | A | 10.21 ± 1.06 | A | 0.05 ± 0.04 | A | 10.26 ± 1.03 | A |
(Second year) | PU | 28.4 ± 5.3 | B | 0.340 ± 0.338 | A | 1.06 ± 0.20 | B | 0.14 ± 0.14 | A | 1.20 ± 0.30 | B |
2014–2015 | CP | 155.4 ± 7.9 | A | 0.263 ± 0.109 | A | 5.80 ± 0.29 | A | 0.11 ± 0.05 | A | 5.91 ± 0.33 | A |
(Third year) | PU | 81.1 ± 31.1 | B | 0.342 ± 0.259 | A | 3.03 ± 1.16 | B | 0.14 ± 0.11 | A | 3.17 ± 1.17 | B |
2012–2015 | CP | 198.1 ± 11.9 | 0.069 ± 0.109 | 7.39 ± 0.44 | 0.03 ± 0.05 | 7.42 ± 0.40 | |||||
(Average) | PU | 36.3 ± 11.1 | 1.091 ± 0.219 | 1.36 ± 0.42 | 0.45 ± 0.09 | 1.81 ± 0.38 | |||||
Analysis of variance | Treatment | ** | ** | ** | ** | ** | |||||
Year | ** | ** | ** | ** | ** | ||||||
Interaction | ** | ** | ** | ** | ** |
Year | Treatment | Paddy Rice | Wheat Soybean | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield | Protein Content in Brown Rice 3 | Nitrogen Uptake | Yield (Wheat) | Nitrogen Uptake (Wheat) | Yield (Soybean) | Nitrogen Accumulation (Soybean) | ||||||||||||
Unhulled Rice Weight 1 | Straw Weight 1 | Refined Brown Rice Weight 2 | Unhulled rice | Straw | Total | Grain Weight 4 | Straw Weight | Grain | Straw | Total | Grain Weight 5 | Stem and Pod Weight | Grain | Stem and Pod | Total | |||
(g m−2) | (%) | (gN m−2) | (g m−2) | (gN m−2) | (g m−2) | (gN m−2) | ||||||||||||
2012–2013 | CP | 894 | 786 | 692 | 6.2 | 8.2 | 3.8 | 12.0 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― |
PU | ― | ― | ― | ― | ― | ― | ― | 507 | 444 | 9.0 | 1.2 | 10.2 | 505 | 455 | 30.9 | 2.9 | 33.8 | |
2013–2014 | CP | 787 | 689 | 532 | 8.0 | 8.7 | 3.9 | 12.6 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― |
PU | 820 | 777 | 552 | 8.3 | 9.2 | 4.6 | 13.8 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― | |
2014–2015 | CP | 731 | 780 | 580 | 7.4 | 7.3 | 4.8 | 12.1 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― |
PU | 769 | 775 | 603 | 7.3 | 7.7 | 4.2 | 11.9 | ― | ― | ― | ― | ― | ― | ― | ― | ― | ― |
Report Case | Survey Area | Annual Mean Air Temperature 1 | Annual Precipitation 1 | Soil Type | PU- System 2 | Investigation Period | Harvested Residue | CH4-C Emissions 3 in CP | Average CO2eq Emissions 4 | Reduction Rates 5 of CO2eq Emission for PU (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP | PU | Total | Restored Field (year) | ||||||||||
(gCH4-C m−2) | (Mg CO2eq ha−1 year−1) | 1st | 2nd | ||||||||||
Shiono et al. (2014) | Cold region of Japan | 11.7 °C | 1238 mm | alluvial | S-S-R-R | 4 year | removed | 30.5 | 10.15 | 2.54 | 75 | 83(84) | 37(37) |
Cha-un et al. (2017) | Thailand | 27.3 °C | 1043 mm | alluvial | C-R-C-R | 2 year | incorporated | 50.3 | 16.97 | 4.30 | 75 | 61(63) 6 | - |
This report | Warm region of Japan | 14.9 °C | 1529 mm | alluvial | W S-R-R | 3 year | incorporated | 19.8 | 7.42 | 1.81 | 76 | 88(89) | 46(47) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasukawa, H.; Inoda, Y.; Toritsuka, S.; Sudo, S.; Oura, N.; Sano, T.; Shirato, Y.; Yanai, J. Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan. Agriculture 2021, 11, 52. https://doi.org/10.3390/agriculture11010052
Hasukawa H, Inoda Y, Toritsuka S, Sudo S, Oura N, Sano T, Shirato Y, Yanai J. Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan. Agriculture. 2021; 11(1):52. https://doi.org/10.3390/agriculture11010052
Chicago/Turabian StyleHasukawa, Hiroyuki, Yumi Inoda, Satoshi Toritsuka, Shigeto Sudo, Noriko Oura, Tomohito Sano, Yasuhito Shirato, and Junta Yanai. 2021. "Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan" Agriculture 11, no. 1: 52. https://doi.org/10.3390/agriculture11010052
APA StyleHasukawa, H., Inoda, Y., Toritsuka, S., Sudo, S., Oura, N., Sano, T., Shirato, Y., & Yanai, J. (2021). Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan. Agriculture, 11(1), 52. https://doi.org/10.3390/agriculture11010052