Effects of the Autumn Incorporation of Rice Straw and Application of Lime Nitrogen on Methane and Nitrous Oxide Emissions and Rice Growth of a High-Yielding Paddy Field in a Cool-Temperate Region in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.1.1. Experimental Field, Setup and Cultivation
2.1.2. Measurement of Rice Straw Decomposition Rate
2.1.3. Outline of Rice Cultivation
2.1.4. Climate
2.1.5. GHG Fluxes
2.1.6. Growth and Yield of Rice
2.2. Incubation Experiment for Rice Straw Decomposition
2.3. Statistical Analysis
3. Results
3.1. Decomposition of Rice Straw
3.2. Fe2+, Eh and GHG Fluxes
3.3. Growth and Yield of Rice
3.4. Incubation Experiment for Rice Straw Decomposition
4. Discussion
4.1. Effects on Rice Straw Decomposition
4.2. Effects on CH4 and N2O Emissions
4.3. Effects on Rice Growth
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Promotion of Rice for Feed. 2021. Available online: https://www.maff.go.jp/j/seisan/kokumotu/attach/pdf/siryouqa-96.pdf (accessed on 17 September 2021). (In Japanese)
- Cheng, W.; Kimani, S.M.; Kanno, T.; Tang, S.; Oo, A.Z.; Tawaraya, K.; Sudo, S.; Sasaki, Y.; Yoshida, N. Forage rice varieties Fukuhibiki and Tachisuzuka emit larger CH4 than edible rice Haenuki. Soil Sci. Plant Nutr. 2018, 64, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Itoh, M.; Sudo, S.; Mori, S.; Saito, H.; Yoshida, T.; Shiratori, Y.; Suga, S.; Yoshikawa, N.; Suzue, Y.; Mizukami, H.; et al. Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ. 2011, 141, 359–372. [Google Scholar] [CrossRef]
- Toma, Y.; Takechi, Y.; Inoue, A.; Nakaya, N.; Hosoya, K.; Yamashita, Y.; Adachi, M.; Kono, T.; Ueno, H. Early mid-season drainage can mitigate greenhouse gas emission from organic rice farming with green manure application. Soil Sci. Plant Nutr. 2021, 1–11, published online. [Google Scholar] [CrossRef]
- Miura, Y. Rice straw management for mitigation of methane emission from paddy field. Spec. Bull. Fukushima Prefect. Agric. Exp. Stn. 2003, 7, 1–38. (In Japanese) [Google Scholar]
- Takakai, F.; Hirano, S.; Harakawa, Y.; Hatakeyama, K.; Yasuda, K.; Sato, T.; Kimura, K.; Kaneta, Y. Fate of fertilizer-derived N applied to enhance rice straw decomposition in a paddy field during the fallow season under cool-temperature conditions. Agriculture 2018, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Nan, Q.; Xin, L.; Qin, Y.; Waqas, M.; Wu, W. Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: A review. Biochar 2021, 3, 125–134. [Google Scholar] [CrossRef]
- Sriphirom, P.; Chidthaisong, A.; Yagi, K.; Tripetchkul, S.; Towprayoon, S. Evaluation of biochar applications combined with alternate wetting and drying (AWD) water management in rice field as a methane mitigation option for farmers’adoption. Soil Sci. Plant Nutr. 2020, 66, 235–246. [Google Scholar] [CrossRef]
- Furukawa, Y.; Inubushi, K. Feasible suppression technique of methane emission from paddy soil by iron amendment. Nutr. Cycl. Agroecosyst. 2002, 64, 193–201. [Google Scholar] [CrossRef]
- Furukawa, Y.; Inubushi, K. Evaluation of slag application to decrease methane emission from paddy soil and fate of iron. Soil Sci. Plant Nutr. 2004, 50, 1029–1036. [Google Scholar] [CrossRef]
- Ali, M.A.; Lee, C.H.; Kim, P.J. Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biol. Fertil. Soils 2008, 44, 597–604. [Google Scholar] [CrossRef]
- Fauzan, M.I.; Anwar, S.; Nugroho, B.; Ueno, H.; Toma, Y. The study of chicken manure and steel slag amelioration to mitigate greenhouse gas emission in rice cultivation. Agriculture 2021, 11, 661. [Google Scholar] [CrossRef]
- Hayano, M.; Fumoto, T.; Yagi, K.; Shirato, Y. National-scale estimation of methane emission from paddy fields in Japan: Database construction and upscaling using a process-based biogeochemistry model. Soil Sci. Plant Nutr. 2013, 59, 812–823. [Google Scholar] [CrossRef] [Green Version]
- Shiono, H.; Saito, H.; Konno, Y.; Kumagai, K.; Nagata, O. Shallow tillage in autumn reduced methane and nitrous oxide emissions from a paddy field with incorporated rice straw in a cold region of Japan. Jpn. J. Soil Sci. Plant Nutr. 2016, 87, 101–109, (In Japanese with English Summary). [Google Scholar]
- Liu, X.; Zhou, T.; Liu, Y.; Zhang, X.; Li, L.; Pan, G. Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis. Agric. Water Manag. 2019, 213, 1028–1035. [Google Scholar] [CrossRef]
- Mae, T.; Inaba, A.; Kaneta, Y.; Masaki, S.; Sasaki, M.; Aizawa, M.; Okawa, S.; Hasegawa, S.; Makino, A. A large-grain rice cultivar, Akita63, exhibits high yields with high physiological N efficiency. Field Crops Res. 2006, 97, 227–237. [Google Scholar] [CrossRef]
- Makino, A.; Kaneta, Y.; Obara, M.; Ishiyama, K.; Kanno, K.; Kondo, E.; Suzuki, Y.; Mae, T. High yielding ability of a large-grain rice cultivar, Akita 63. Sci. Rep. 2020, 10, 12231. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries, Akita Prefecture. Guidelines for Rice Cultivation; Department of Agriculture, Forestry and Fisheries, Akita Prefecture: Akita, Japan, 2021; pp. 12–23. (In Japanese) [Google Scholar]
- Takakai, F.; Ichikawa, J.; Ogawa, M.; Ogaya, S.; Yasuda, K.; Kobayashi, Y.; Sato, T.; Kaneta, Y.; Nagahama, K. Suppression of CH4 emission by rice straw removal and application of bio-ethanol production residue in a paddy field in Akita, Japan. Agriculture 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Takakai, F.; Nakagawa, S.; Sato, K.; Kon, K.; Sato, T.; Kaneta, Y. Net greenhouse gas budget and soil carbon storage in a field with paddy–upland rotation with different history of manure application. Agriculture 2017, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Takakai, F.; Kobayashi, M.; Sato, T.; Yasuda, K.; Kaneta, Y. Effects of forage rice cultivation on carbon and greenhouse gas balances in a rice paddy field. Atmosphere 2018, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Takakai, F.; Kominami, Y.; Ohno, S.; Nagata, O. Effect of the long-term application of organic matter on soil carbon accumulation and GHG emissions from a rice paddy field in a cool-temperate region, Japan -I. Comparison of rice straw and rice straw compost -. Soil Sci. Plant Nutr. 2020, 66, 84–95. [Google Scholar] [CrossRef]
- Takakai, F.; Hatakeyama, K.; Nishida, M.; Nagata, O.; Sato, T.; Kaneta, Y. Effect of the long-term application of organic matter on soil carbon accumulation and GHG emissions from a rice paddy field in a cool-temperate region, Japan -II. Effect of different compost applications-. Soil Sci. Plant Nutr. 2020, 66, 96–105. [Google Scholar] [CrossRef]
- Toma, Y.; Hatano, R. Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 198–205. [Google Scholar] [CrossRef]
- Takakai, F.; Takeda, M.; Kon, K.; Inoue, K.; Nakagawa, S.; Sasaki, K.; Chida, A.; Sekiguchi, K.; Takahashi, T.; Sato, T.; et al. Effects of preceding compost application on the nitrogen budget in an upland soybean field converted from a rice paddy field on gray lowland soil in Akita, Japan. Soil Sci. Plant Nutr. 2010, 56, 760–772. [Google Scholar] [CrossRef]
- Nakajima, M.; Cheng, W.; Tang, S.; Hori, Y.; Yaginuma, E.; Hattori, S.; Hanayama, S.; Tawaraya, K.; Xu, X. Modeling aerobic decomposition of rice straw during the off-rice season in an Andisol paddy soil in a cold temperate region of Japan: Effects of soil temperature and moisture. Soil Sci. Plant Nutr. 2016, 62, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). The physical science basis: Anthropogenic and natural radiative forcing. In Climate Change 2013; Myhre, G., Shindell, D., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Goto, E.; Miyamori, Y.; Hasegawa, S.; Inatsu, O. Reduction effects of accelerating rice straw decomposition and water management on methane emission from paddy fields in a cold distinct. Jpn. J. Soil Sci. Plant Nutr. 2004, 75, 191–201. (In Japanese) [Google Scholar]
- Sato, N.; Kobayashi, A.; Hirai, H. Effects of on−site techniques on quickening cellulose decomposition examined by benchkote-paper method in postharvest rice field. Jpn. J. Soil Sci. Plant Nutr. 2012, 83, 589–593. (In Japanese) [Google Scholar]
- Saigusa, M.; Hanaki, M.; Ito, T. Decomposition pattern of rice straw in poorly drained paddy soil and recovery rate of straw nitrogen by rice plant in no-tillage transplanting cultivation. Jpn. J. Soil Sci. Plant Nutr. 1999, 70, 157–163. (In Japanese) [Google Scholar]
- Japan Lime Nitrogen Industries Association. Technical Information Q&A. 2012. Available online: http://www.cacn.jp/technology/qa.html (accessed on 17 September 2021). (In Japanese).
- Chiba, M.; Shimazu, R.; Muto, K.; Uchida, S. Stable yield of the paddy rice by rice straw plowing. Bull. Iwate Agric. Exp. Stn. 1980, 22, 81–117. (In Japanese) [Google Scholar]
- Shiono, H. Effect of lime nitrogen application in autumn of the previous year on methane emission, rice growth and yield. Lime Nitrogen News 2013, 148, 15–18. (In Japanese) [Google Scholar]
- Shiono, H.; Sugawara, R.; Kumagai, K. Effect of soil pH change induced by soil conditioners on rice straw decomposition and methane emission from paddy fields in cold region of Japan. Jpn. J. Soil Sci. Plant Nutr. 2020, 91, 437–444, (In Japanese with English Summary). [Google Scholar]
- Watanabe, A.; Takeda, T.; Kimura, M. Evaluation of carbon origins of CH4 emitted from rice paddies. J. Geophys. Res. 1999, 104, 23623–23630. [Google Scholar] [CrossRef]
- Kimura, M. Decomposition of organic matter and carbon cycle in rice paddies. In Soilosphere and Global Warming; Kimura, M., Hatano, R., Eds.; Nagoya University Press: Nagoya, Japan, 2005. (In Japanese) [Google Scholar]
- Naser, H.M.; Nagata, O.; Tamura, S.; Hatano, R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Minamikawa, K.; Yagi, K.; Tokida, T.; Sander, B.O.; Wassmann, R. Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh. Gas Meas. Manag. 2012, 2, 118–128. [Google Scholar] [CrossRef]
- Shiono, H.; Saito, H.; Nakagawa, F.; Nishimura, S.; Kumagai, K. Effects of crop rotation and rice straw incorporation in spring on methane and nitrous oxide emissions from an upland paddy field in a cold region of Japan. Jpn. J. Soil Sci. Plant Nutr. 2014, 85, 420–430, (In Japanese with English Summary). [Google Scholar]
Ph (H2O) | Total-C | Total-N | C/N Ratio | Available N † | Available P ‡ |
(g kg−1) | (g kg−1) | (mg-N kg−1) | (mg-P2O5 kg−1) | ||
7.30 | 30.1 | 3.2 | 9.3 | 200 | 175 |
CEC | Exchangeable cation (cmolC kg−1) | Free ferric iron § | |||
(cmolC kg−1) | Na | K | Ca | Mg | (g-Fe2O3 kg−1) |
45.6 | 0.89 | 1.19 | 45.6 | 4.88 | 16.7 |
Timing | Event | Treatment | |||
---|---|---|---|---|---|
NA-S | LN-S | NA-A | LN-A | ||
Autumn (Previous year) | Rice straw application | ○ | ○ | ○ | ○ |
Lime nitrogen application | - | ○ | - | ○ | |
Plowing | - | - | ○ | ○ | |
Spring | Basal fertilizer application | ○ | ○ | ○ | ○ |
Plowing | ○ | ○ | ○ | ○ |
Event | Date | Remarks | |
---|---|---|---|
2017 | 2018 | ||
Previous year’s cultivar | Akitakomachi | Akita63 | In both years, cultivation by paddling and transplantation |
Setup of experimental plots | 5 October 2016 | 27 October 2017 | 750 g m−2 of rice straw were scattered to all plots (Akitakomachi in autumn 2016, Akita63 in autumn 2017). 25 g m−2 (5 g-N m−2) of lime nitrogen were applied to the application plots. Autumn plowing plots were tilled about 5 cm with rotary, and spring plowing plots were not tilled |
Basal fertilizer application | 12 April 2017 | 13 April 2018 | N, P2O5, K2O: 5 g m−2, respectively (Compound chemical fertilizer) |
Plowing | 14 April | 19 April | |
Submerging | 10 May | 2 May | |
Paddling | 20 May | 11 May | |
Transplantation | 25 May | 16 May | 20.6~21.7 hills m−2 |
Fertilizer top-dressing | 4 July, 1 August | 14 June, 19 July, 1 August | [2017] 2, 1.5 g-N m−2, respectively (Ammonium sulfate) [2018] 3, 1, 1 g-N m−2, respectively (Ammonium sulfate) |
Mid-season drainage | 10–19 July | Not conducted | |
Final drainage | 1 August | 30 Jul | |
(Heading period) | 21 August | 16 August | |
Harvesting | 19 October | 15 October |
Treatment | Carbon Decomposition Rate (%) | C/N Ratio | ||
---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | |
NA-S | 38.0 ± 1.3 | 34.6 ± 2.2 | 68.5 ± 2.7 | 66.3 ± 2.2 |
LN-S | 43.5 ± 1.2 | 31.5 ± 1.1 | 55.0 ± 2.9 | 73.9 ± 1.3 |
NA-A | 42.4 ± 1.5 | 33.4 ± 1.5 | 54.6 ± 0.9 | 74.8 ± 2.5 |
LN-A | 44.4 ± 0.5 | 36.7 ± 1.9 | 45.5 ± 1.7 | 68.8 ± 3.6 |
[Three-way ANOVA] | ||||
Source | p value | |||
Year | ** | ** | ||
Incorporation | * | * | ||
LN addition | † | * | ||
Year × Incorporation | 0.750 | ** | ||
Year × LN addition | † | ** | ||
Incorporation × LN addition | 0.503 | 0.276 | ||
Year × Incorporation × LN addition | * | * |
Treatment | CH4 (g-C m−2) | N2O (mg-N m−2) | GWP (g-CO2eq m−2) | |||
---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
NA-S | 12.3 ±0.6 | 74.6 ± 10.8 | 22.1 ± 21.0 | 13.4 ± 11.7 | 568 ± 30 | 3390 ± 492 |
LN-S | 10.3 ± 1.2 | 76.5 ± 12.7 | 1.3 ± 17.3 | −0.2 ± 8.6 | 470 ± 49 | 3469 ± 577 |
NA-A | 7.5 ± 0.9 | 58.9 ± 9.2 | 37.4 ± 39.4 | 17.2 ± 5.6 | 358 ± 36 | 2678 ± 419 |
LN-A | 10.7 ± 2.1 | 56.2 ± 7.6 | 25.9 ± 30.5 | 4.7 ± 25.3 | 499 ± 108 | 2552 ± 334 |
[Three-way ANOVA] | ||||||
Source | p value | |||||
Year | ** | 0.433 | ** | |||
Incorporation | † | 0.459 | † | |||
LN addition | 0.982 | 0.376 | 0.995 | |||
Year × Incorporation | 0.146 | 0.633 | 0.142 | |||
Year × LN addition | 0.923 | 0.924 | 0.925 | |||
Incorporation × LN addition | 0.976 | 0.871 | 0.972 | |||
Year × Incorporation × LN addition | 0.644 | 0.898 | 0.641 |
Year | Treatment | Number of Panicles | Number of Spikelets per Panicle | Total Number of Spikelets | Filled Spikelets | 1000-Kernel Weight a | Grain Yield a (Brown Rice) |
---|---|---|---|---|---|---|---|
(m−2) | (×103 m−2) | (%) | (g) | (g m−2) | |||
2017 | NA-S | 309 | 88.7 | 27.5 | 77.0 | 28.4 | 511 |
LN-S | 317 | 91.3 | 29.3 | 77.6 | 28.9 | 556 | |
NA-A | 306 | 88.2 | 26.7 | 74.8 | 28.7 | 538 | |
LN-A | 334 | 95.5 | 32.0 | 74.6 | 29.6 | 648 | |
2018 | NA-S | 313 | 87.7 | 27.1 | 62.4 | 29.5 | 639 |
LN-S | 362 | 89.4 | 32.2 | 65.2 | 29.9 | 666 | |
NA-A | 333 | 81.6 | 27.4 | 62.2 | 29.7 | 676 | |
LN-A | 353 | 88.0 | 31.1 | 62.8 | 30.0 | 698 | |
[Three-way ANOVA] | |||||||
Source | p value | ||||||
Year | * | 0.102 | 0.541 | ** | ** | ** | |
Incorporation | 0.208 | 0.641 | 0.349 | 0.569 | † | † | |
LN addition | * | 0.871 | 0.220 | 0.608 | * | * | |
Year × Incorporation | 0.503 | 0.314 | 0.135 | 0.446 | 0.601 | 0.844 | |
Year × LN addition | 0.149 | 0.900 | 0.566 | * | 0.811 | 0.137 | |
Incorporation × LN addition | 0.792 | 0.319 | 0.923 | 0.441 | 0.983 | 0.523 | |
Year × Incorporation × LN addition | 0.204 | 0.840 | 0.265 | 0.717 | 0.796 | 0.466 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takakai, F.; Goto, M.; Watanabe, H.; Hatakeyama, K.; Yasuda, K.; Sato, T.; Kaneta, Y. Effects of the Autumn Incorporation of Rice Straw and Application of Lime Nitrogen on Methane and Nitrous Oxide Emissions and Rice Growth of a High-Yielding Paddy Field in a Cool-Temperate Region in Japan. Agriculture 2021, 11, 1298. https://doi.org/10.3390/agriculture11121298
Takakai F, Goto M, Watanabe H, Hatakeyama K, Yasuda K, Sato T, Kaneta Y. Effects of the Autumn Incorporation of Rice Straw and Application of Lime Nitrogen on Methane and Nitrous Oxide Emissions and Rice Growth of a High-Yielding Paddy Field in a Cool-Temperate Region in Japan. Agriculture. 2021; 11(12):1298. https://doi.org/10.3390/agriculture11121298
Chicago/Turabian StyleTakakai, Fumiaki, Mimori Goto, Haruki Watanabe, Keiko Hatakeyama, Kentaro Yasuda, Takashi Sato, and Yoshihiro Kaneta. 2021. "Effects of the Autumn Incorporation of Rice Straw and Application of Lime Nitrogen on Methane and Nitrous Oxide Emissions and Rice Growth of a High-Yielding Paddy Field in a Cool-Temperate Region in Japan" Agriculture 11, no. 12: 1298. https://doi.org/10.3390/agriculture11121298
APA StyleTakakai, F., Goto, M., Watanabe, H., Hatakeyama, K., Yasuda, K., Sato, T., & Kaneta, Y. (2021). Effects of the Autumn Incorporation of Rice Straw and Application of Lime Nitrogen on Methane and Nitrous Oxide Emissions and Rice Growth of a High-Yielding Paddy Field in a Cool-Temperate Region in Japan. Agriculture, 11(12), 1298. https://doi.org/10.3390/agriculture11121298