Fertilization Management Improves the Yield and Capsaicinoid Content of Chili Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Dry Matter Content
2.3. Chili Pepper Analyses
2.3.1. Analysis by HPLC-UV
2.3.2. Sample Preparation
2.3.3. Quantification and Validation
2.4. Capsaicinoids Ratio
2.5. Scoville Heat Units (SHU)
2.6. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, C.C.; Barfuss, M.H.J.; Sehr, E.M.; Barboza, G.E.; Samuel, R.; Moscone, E.A.; Ehrendorfer, F. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann. Bot. 2016, 118, 35–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grozeva, S. Effect of copper levels in the culture medium on shoot regeneration in pepper. Banat. J. Biotechnol. 2015, 6, 86–91. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 1 February 2021).
- Reyes-Escogido, M.D.L.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and Pharmacological Aspects of Capsaicin. Molecules 2011, 16, 1253–1270. [Google Scholar] [CrossRef] [Green Version]
- Morales-Soriano, E.; Kebede, B.; Ugas, R.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Res. Int. 2018, 109, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Jeeatid, N.; Suriharn, B.; Chanthai, S.; Bosland, P.; Techawongstien, S. Influence of water stresses on capsaicinoid production in hot pepper (Capsicum chinense Jacq.) cultivars with different pungency levels. Food Chem. 2018, 245, 792–797. [Google Scholar] [CrossRef]
- Wu, S.; Zeng, J.; Xie, H.; Ng, S.H. Capsaicin determination and chili sauce discrimination using low-cost and portable electrochemical sensors based on all graphite pencil electrodes. Anal. Methods 2016, 8, 7025–7029. [Google Scholar] [CrossRef]
- Mali, S.; Naik, S.; Jha, B.; Singh, A.; Bhatt, B. Planting geometry and growth stage linked fertigation patterns: Impact on yield, nutrient uptake and water productivity of Chilli pepper in hot and sub-humid climate. Sci. Hortic. 2019, 249, 289–298. [Google Scholar] [CrossRef]
- Bhutia, N.D.; Seth, T.; Shende, V.D.; Dutta, S.; Chattopadhyay, A. Estimation of Heterosis, dominance effect and genetic control of fresh fruit yield, quality and leaf curl disease severity traits of chilli pepper (Capsicum annuum L.). Sci. Hortic. 2015, 182, 47–55. [Google Scholar] [CrossRef]
- Al Othman, Z.A.; Ahmed, Y.B.H.; Habila, M.A.; Ghafar, A.A. Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruit Samples using High Performance Liquid Chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
- Giuffrida, D.; Dugo, P.; Torre, G.; Bignardi, C.; Cavazza, A.; Corradini, C.; Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013, 140, 794–802. [Google Scholar] [CrossRef]
- González-Zamora, A.; Sierra-Campos, E.; Luna-Ortega, J.G.; Pérez-Morales, R.; Ortiz, J.C.R.; García-Hernández, J.L. Characterization of Different Capsicum Varieties by Evaluation of Their Capsaicinoids Content by High Performance Liquid Chromatography, Determination of Pungency and Effect of High Temperature. Molecules 2013, 18, 13471–13486. [Google Scholar] [CrossRef]
- Arabaci, B.; Gulcin, I.; Alwasel, S. Capsaicin: A Potent Inhibitor of Carbonic Anhydrase Isoenzymes. Molecules 2014, 19, 10103–10114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010, 122, 987–996. [Google Scholar] [CrossRef]
- Luo, X.-J.; Peng, J.; Li, Y.-J. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum-Titze, P.; Hiepler, C.; Mueller-Seitz, E.; Petz, M. Pungency in Paprika (Capsicum annuum). 1. Decrease of Capsaicinoid Content Following Cellular Disruption. J. Agric. Food Chem. 2002, 50, 1260–1263. [Google Scholar] [CrossRef]
- Zhao, Z.-D.; Zan, L.-S.; Li, A.-N.; Cheng, G.; Li, S.-J.; Zhang, Y.-R.; Wang, X.-Y.; Zhang, Y.-Y. Characterization of the promoter region of the bovine long-chain acyl-CoA synthetase 1 gene: Roles of E2F1, Sp1, KLF15 and E2F4. Sci. Rep. 2016, 6, 19661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.-C.; Wang, C.-Y.; Hung, Y.-H.; Weng, T.-Y.; Yen, M.-C.; Lai, M.-D. Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer. PLoS ONE 2016, 11, e0155660. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.-P.; Li, S.; Li, H.-B. Spices for Prevention and Treatment of Cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef]
- Thoennissen, N.H.; O’Kelly, J.; Lu, D.; Iwanski, G.B.; La, D.T.; Abbassi, S.; Leiter, A.; Karlan, B.; Mehta, R.; Koeffler, H.P. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene 2009, 29, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Richardson, R.L.; Dashwood, R.H.; Baek, S.J. Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells. J. Nutr. Biochem. 2012, 23, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapa-Oliver, A.M.; Mejía-Teniente, L. Capsaicin: From Plants to a Cancer-Suppressing Agent. Molecules 2016, 21, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marincaş, O.; Feher, I.; Magdas, D.A.; Puşcaş, R. Optimized and validated method for simultaneous extraction, identification and quantification of flavonoids and capsaicin, along with isotopic composition, in hot peppers from different regions. Food Chem. 2018, 267, 255–262. [Google Scholar] [CrossRef]
- Olguin-Rojas, J.A.; Vazquez-Leon, L.A.; Salgado-Cervantes, M.A.; Barbero, G.F.; Diaz-Pacheco, A.; Garcia-Alvarado, M.A.; Rodriguez-Jimenes, G.C. Water and phytochemicals dynamic during drying of red habanero chili pepper (Capsicum chinense) slices. Rev. Mex. Ing. Química 2019, 18, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Baytak, A.K.; Aslanoglu, M. Sensitive determination of capsaicin in pepper samples using a voltammetric platform based on carbon nanotubes and ruthenium nanoparticles. Food Chem. 2017, 228, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Concha, D.; Quiñones, X.; Hernández, J.P.; Romero, S. Chili Pepper Landrace Survival and Family Farmers in Central Chile. Agronomy 2020, 10, 1541. [Google Scholar] [CrossRef]
- Zamljen, T.; Zupanc, V.; Slatnar, A. Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agric. Water Manag. 2020, 234, 106104. [Google Scholar] [CrossRef]
- Rippy, J.F.; Peet, M.M.; Louws, F.J.; Nelson, P.V.; Orr, D.B.; Sorensen, K.A. Plant Development and Harvest Yields of Greenhouse Tomatoes in Six Organic Growing Systems. Hort. Sci. 2004, 39, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Khaitov, B.; Yun, H.J.; Lee, Y.; Ruziev, F.; Le, T.H.; Umurzokov, M.; Bo, A.B.; Cho, K.M.; Park, K.W. Impact of Organic Manure on Growth, Nutrient Content and Yield of Chilli Pepper under Various Temperature Environments. Int. J. Environ. Res. Public Health 2019, 16, 3031. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, V.M.; Golubkina, N.A.; Pietrantonio, L.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Florin, I.; Caruso, G. Tomato Yield, Quality, Mineral Composition and Antioxidants as Affected by Beneficial Microorganisms Under Soil Salinity Induced by Balanced Nutrient Solutions. Agriculture 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Butnariu, M.; Caunii, A.; Putnoky, S. Reverse phase chromatographic behaviour of major components in Capsicum Annuumextract. Chem. Central J. 2012, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Menichini, F.; Tundis, R. Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. LWT 2015, 64, 623–631. [Google Scholar] [CrossRef]
- Gómez-García, M.D.R.; Ochoa-Alejo, N. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.). Int. J. Mol. Sci. 2013, 14, 19025–19053. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, H.; Zheng, J.; Huang, Q. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrig. Sci. 2018, 36, 61–74. [Google Scholar] [CrossRef]
- Rêgo, E.R.D.; Rêgo, M.M.D.; Finger, F.L.; Cruz, C.D.; Casali, V.W.D. A diallel study of yield components and fruit quality in chilli pepper (Capsicum baccatum). Euphytica 2009, 168, 275–287. [Google Scholar] [CrossRef]
- Antonious, G.F.; Berke, T.; Jarret, R.L. Pungency inCapsicum chinense: Variation among countries of origin. J. Environ. Sci. Health Part B 2009, 44, 179–184. [Google Scholar] [CrossRef]
- Naves, E.R.; Silva, L.D.Á.; Sulpice, R.; Araújo, W.L.; Nunes-Nesi, A.; Peres, L.E.; Zsögön, A. Capsaicinoids: Pungency beyond Capsicum. Trends Plant Sci. 2019, 24, 109–120. [Google Scholar] [CrossRef]
- Frias, B.; Merighi, A. Capsaicin, Nociception and Pain. Molecules 2016, 21, 797. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-T.; Wang, H.-C.; Hsu, Y.-C.; Cho, C.-L.; Yang, M.-Y.; Chien, C.-Y. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway. Int. J. Mol. Sci. 2017, 18, 1343. [Google Scholar] [CrossRef] [Green Version]
- Fayos, O.; Ochoa-Alejo, N.; De La Vega, O.M.; Savirón, M.; Orduna, J.; Mallor, C.; Barbero, G.F.; Garcés-Claver, A. Assessment of Capsaicinoid and Capsinoid Accumulation Patterns during Fruit Development in Three Chili Pepper Genotypes (Capsicum spp.) Carrying Pun1 and pAMT Alleles Related to Pungency. J. Agric. Food Chem. 2019, 67, 12219–12227. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, X.; Ding, L.; Cui, F.; Tang, Z.; Liu, Z. Stage extraction of capsaicinoids and red pigments from fresh red pepper (Capsicum) fruits with ethanol as solvent. LWT 2014, 59, 396–402. [Google Scholar] [CrossRef]
- Olatunji, T.L.; Afolayan, A.J. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: A review. Food Sci. Nutr. 2018, 6, 2239–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getahun, E.; Gabbiye, N.; Delele, M.A.; Fanta, S.W.; Gebrehiwot, M.G.; Vanierschot, M. Effect of maturity on the moisture sorption isotherm of chili pepper (Mareko Fana variety). Heliyon 2020, 6, e04608. [Google Scholar] [CrossRef]
- Sobczak, A.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Niedzińska, M. Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting. Agronomy 2020, 10, 1560. [Google Scholar] [CrossRef]
- Sharafi, Y.; Aghdam, M.S.; Luo, Z.; Jannatizadeh, A.; Razavi, F.; Fard, J.R.; Farmani, B. Melatonin treatment promotes endogenous melatonin accumulation and triggers GABA shunt pathway activity in tomato fruits during cold storage. Sci. Hortic. 2019, 254, 222–227. [Google Scholar] [CrossRef]
- Meena, O.P.; Dhaliwal, M.S.; Jindal, S.K. Heterosis breeding in chilli pepper by using cytoplasmic male sterile lines for high-yield production with special reference to seed and bioactive compound content under temperature stress regimes. Sci. Hortic. 2020, 262, 109036. [Google Scholar] [CrossRef]
- Caruso, G.; Stoleru, V.V.; Munteanu, N.C.; Sellitto, V.M.; Teliban, G.C.; Burducea, M.; Tenu, I.; Morano, G.; Butnariu, M. Quality Performances of Sweet Pepper under Farming Management. Not. Bot. Horti Agrobot. 2018, 47, 458–464. [Google Scholar] [CrossRef] [Green Version]
- García-López, J.I.; Niño-Medina, G.; Olivares-Sáenz, E.; Lira-Saldivar, R.H.; Barriga-Castro, E.D.; Vázquez-Alvarado, R.; Rodríguez-Salinas, P.A.; Zavala-García, F. Foliar Application of Zinc Oxide Nanoparticles and Zinc Sulfate Boosts the Content of Bioactive Compounds in Habanero Peppers. Plants 2019, 8, 254. [Google Scholar] [CrossRef] [Green Version]
- Grau, F.; Drechsel, N.; Haering, V.; Trautz, D.; Weerakkody, W.J.S.K.; Drechsel, P.; Marschner, B.; Dissanayake, D.M.P.S.; Sinnathamby, V. Impact of Fecal Sludge and Municipal Solid Waste Co-Compost on Crop Growth of Raphanus Sativus L. and Capsicum Anuum L. under Stress Conditions. Resources 2017, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-García, A.A.; Figueroa-Viramontes, U.; Salazar-Sosa, E.; Orona-Castillo, I.; Gallegos-Robles, M.Á.; García-Hernández, J.L.; Troyo-Diéguez, E. Effect of Organic and Inorganic Fertilizers on the Yield and Quality of Jalapeño Pepper Fruit (Capsicum annuum L.). Agriculture 2019, 9, 208. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Sharma, S.S.; Sinha, P.; Negi, M.S.; Neog, B.; Tripathi, S.B. Variability in capsaicinoid content in different landraces of Capsicum cultivated in north-eastern India. Sci. Hortic. 2015, 183, 66–71. [Google Scholar] [CrossRef]
- Andrade, N.J.P.; Monteros-Altamirano, A.; Bastidas, C.G.T.; Sørensen, M. Morphological, Sensorial and Chemical Characterization of Chilli Peppers (Capsicum spp.) from the CATIE Genebank. Agronomy 2020, 10, 1732. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.; Zheng, J.; Jia, D.; Wang, J.; Li, Y.; Huang, G. Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China. Agric. Water Manag. 2012, 115, 232–241. [Google Scholar] [CrossRef]
- De Farias, V.L.; Araújo Ídila, M.D.S.; Da Rocha, R.F.J.; Garruti, D.D.S.; Pinto, G.A.S. Enzymatic maceration of Tabasco pepper: Effect on the yield, chemical and sensory aspects of the sauce. LWT 2020, 127, 109311. [Google Scholar] [CrossRef]
- Weiss, E.A. Spice Crops; CABI Publishing International: New York, NY, USA, 2002; p. 411. [Google Scholar]
Treatments | Growing and Development Chili Pepper Phenophases | ||||
---|---|---|---|---|---|
First Flower Bud Visible (BBCH 501) | First Flower Open (BBCH 601) | 10th Flower Open (BBCH 61) | First Fruit Reached Typical Size (BBCH 701) | 10th Fruit Reached Typical Size (BBCH 710) | |
Ch | NPK 24.5.16 20 kg∙ha−1 | NPK 30.10.10 100 kg∙ha−1 | NPK 15.10.30 80 kg∙ha−1 | NPK 8.24.24 120 kg∙ha−1 | NPK 8.24.24 120 kg∙ha−1 |
Ch + O | Chicken manure 400 kg∙ha−1 | Chicken manure 400 kg∙ha−1 | NPK 15.10.30 60 kg∙ha−1 | NPK 8.24.24 80 kg∙ha−1 | NPK 8.24.24 120 kg∙ha−1 |
O | Chicken manure 1000 kg∙ha−1 | Chicken manure 1000 kg∙ha−1 | Mo* fertilizer 15 kg∙ha−1 | Mo* fertilizer 10 kg∙ha−1 | Mo* fertilizer 10 kg∙ha−1 |
Treatment | Plant Height (cm) | No. of Fruits per Plant | Average Weight of the Fruit (g) | Yield (t∙ha−1) |
---|---|---|---|---|
Cultivar | ||||
De Cayenne | 70.89 ± 3.17 bc | 26.82 ± 1.22 c | 13.90 ± 0.69 cd | 17.75 ± 0.75 c |
Traian 2 | 72.36 ± 2.26 bc | 26.65 ± 1.32 c | 16.55 ± 0.67 abc | 21.39 ± 1.46 bc |
Turkish | 53.71 ± 2.51 d | 34.66 ± 1.39 b | 17.51 ± 0.76 ab | 29.32 ± 2.09 a |
Sigaretta | 78.89 ± 1.79 ab | 47.09 ± 1.79 a | 13.01 ± 0.36 d | 29.71 ± 2.22 a |
Jovial | 83.28 ± 3.49 a | 30.12 ± 1.74 bc | 19.08 ± 0.76 a | 27.77 ± 1.58 ab |
Chorbadjiiski | 63.75 ± 1.17 cd | 36.62 ± 2.22 b | 15.37 ± 0.66 bcd | 27.28 ± 1.76 ab |
Fertilization | ||||
Ch | 70.18 ± 2.88 | 33.97 ± 1.85 ab | 15.98 ± 0.65 ab | 25.83 ± 1.34 b |
O + Ch | 74.99 ± 3.12 | 38.24 ± 2.70 a | 17.31 ± 0.75 a | 31.58 ± 2.23 a |
O | 69.37 ± 2.96 | 31.97 ± 1.57 ab | 15.82 ± 0.68 ab | 23.92 ± 0.90 b |
Ct | 67.38 ± 3.16 | 30.46 ± 1.88 b | 14.51 ± 0.69 b | 20.82 ± 1.02 b |
ns | - | - | - |
Treatment | Plant Height (cm) | No. of Fruits per Plant | Average Weight of the Fruit (g) | Yield (t∙ha−1) |
---|---|---|---|---|
De Cayenne × Ch | 71.22 ± 5.92 abcd | 25.15 ± 2.12 de | 14.63 ± 1.22 abc | 17.66 ± 1.47 hi |
De Cayenne × O + Ch | 76.89 ± 6.77 abcd | 24.95 ± 1.71 de | 15.31 ± 1.35 abc | 18.34 ± 1.61 ghi |
De Cayenne × O | 68.45 ± 5.36 abcd | 26.43 ± 1.3 de | 13.92 ± 1.09 abc | 17.66 ± 1.38 hi |
De Cayenne × Ct | 66.98 ± 9.07 abcd | 30.75 ± 3.57 cde | 11.74 ± 1.59 c | 17.33 ± 2.35 hi |
Traian 2 × Ch | 70.04 ± 3.91 abcd | 27.62 ± 3.35 de | 15.89 ± 0.89 abc | 21.07 ± 1.18 fghi |
Traian 2 × O + Ch | 74.28 ± 6.26 abcd | 26.86 ± 1.52 de | 17.68 ± 1.49 abc | 22.79 ± 1.92 efghi |
Traian 2 × O | 76.34 ± 5.22 abcd | 30.62 ± 1.8 cde | 18.32 ± 1.25 abc | 26.93 ± 1.84 cdefgh |
Traian 2 × Ct | 68.79 ± 3.38 abcd | 21.50 ± 0.41 e | 14.32 ± 0.7 abc | 14.78 ± 0.73 i |
Turkish × Ch | 54.09 ± 6.28 cd | 34.15 ± 0.21 bcde | 17.48 ± 2.03 abc | 28.65 ± 3.32 bcdefg |
Turkish × O + Ch | 59.87 ± 7.26 bcd | 42.29 ± 0.3 bc | 18.89 ± 2.29 abc | 38.34 ± 4.65 ab |
Turkish × O | 51.02 ± 2.89 cd | 31.78 ± 0.06 bcde | 17.14 ± 0.97 abc | 26.15 ± 1.49 cdefgh |
Turkish × Ct | 49.87 ± 2.94 d | 30.44 ± 0.14 cde | 16.52 ± 0.98 abc | 24.14 ± 1.42 defghi |
Sigaretta × Ch | 76.03 ± 1.45 abcd | 43.68 ± 0.4 b | 12.36 ± 0.24 bc | 25.91 ± 0.49 cdefgh |
Sigaretta × O + Ch | 85.02 ± 0.52 ab | 56.36 ± 0.94 a | 15.01 ± 0.09 abc | 40.61 ± 4.92 a |
Sigaretta × O | 77.85 ± 0.56 abcd | 43.98 ± 0.49 ab | 12.55 ± 0.09 bc | 26.49 ± 1.5 cdefgh |
Sigaretta × Ct | 76.64 ± 6.46 abcd | 44.35 ± 3.47 ab | 12.13 ± 0.02 bc | 25.82 ± 1.52 cdefgh |
Jovial × Ch | 85.61 ± 5.86 ab | 31.72 ± 4.29 bcde | 19.32 ± 0.09 ab | 29.42 ± 0.56 bcdef |
Jovial × O + Ch | 89.34 ± 4.39 a | 36.22 ± 2.02 bcd | 20.43 ± 2.77 a | 35.52 ± 0.22 abc |
Jovial × O | 79.33 ± 9.2 abc | 27.18 ± 2.29 de | 18.54 ± 1.03 abc | 24.19 ± 0.17 defghi |
Jovial × Ct | 78.85 ± 9.56 abcd | 25.38 ± 1.74 de | 18.04 ± 1.52 abc | 21.98 ± 0.04 efghi |
Chorbadjiiski × Ch | 64.11 ± 3.64 abcd | 41.48 ± 2.04 bc | 16.20 ± 1.11 abc | 32.25 ± 0.15 abcde |
Chorbadjiiski × O + Ch | 64.53 ± 3.8 abcd | 42.78 ± 4.96 bc | 16.51 ± 0.81 abc | 33.9 ± 0.31 abcd |
Chorbadjiiski × O | 63.23 ± 1.21 abcd | 31.85 ± 3.86 bcde | 14.46 ± 1.68 abc | 22.11 ± 0.37 efghi |
Chorbadjiiski × Ct | 63.14 ± 0.39 abcd | 30.37 ± 1.72 cde | 14.32 ± 1.74 abc | 20.87 ± 0.23 fghi |
Treatment | Capsaicin (C) (mg∙g−1 d.w.) | Dihydro- Capsaicin (DhC) (mg∙g−1 d.w.) | Ratio C/DhC | Capsaicinoids Analyzed (mg∙g−1 d.w.) | Scoville Heat Units (SHU) |
---|---|---|---|---|---|
Cultivar | |||||
De Cayenne | 0.52 ± 0.04 b | 0.30 ± 0.02 b | 1.72 ± 0.09 b | 0.82 ± 0.05 b | 13202.00 ± 788.74 b |
Traian 2 | 0.42 ± 0.03 bc | 0.28 ± 0.03 bc | 1.56 ± 0.10 b | 0.70 ± 0.05 bc | 11189.50 ± 855.04 bc |
Turkish | 0.30 ± 0.01 c | 0.14 ± 0.01 d | 2.24 ± 0.13 a | 0.44 ± 0.01 d | 7124.25 ± 232.91 d |
Sigaretta | 0.40 ± 0.02 bc | 0.23 ± 0.01 c | 1.80 ± 0.07 b | 0.63 ± 0.03 c | 10102.75 ± 454.57 c |
Jovial | 0.65 ± 0.05 a | 0.43 ± 0.03 a | 1.53 ± 0.03 b | 1.08 ± 0.07 a | 17347.75 ± 1145.34 a |
Chorbadjiiski | 0.47 ± 0.01 b | 0.29 ± 0.01 bc | 1.64 ± 0.04 b | 0.76 ± 0.02 bc | 12155.50 ± 367.3 bc |
Fertilization | |||||
Ch | 0.54 ± 0.05 a | 0.33 ± 0.03 a | 1.76 ± 0.10 | 0.87 ± 0.08 a | 13953.33 ± 1235.91 a |
O + Ch | 0.43 ± 0.04 ab | 0.26 ± 0.03 ab | 1.80 ± 0.08 | 0.69 ± 0.07 ab | 11082.17 ± 1046.99 ab |
O | 0.40 ± 0.02 b | 0.23 ± 0.02 b | 1.82 ± 0.11 | 0.63 ± 0.03 b | 10169.83 ± 465.54 b |
Ct | 0.47 ± 0.02 ab | 0.29 ± 0.01 ab | 1.62 ± 0.04 | 0.76 ± 0.03 ab | 12209.17 ± 533.54 ab |
* |
Treatment | Capsaicin (C) (mg∙g−1 d.w.) | Dyhidrocapsaicin (DhC) (mg∙g−1 d.w.) | Ratio C/DhC | Capsaicinoids (mg∙g−1 d.w.) | Scoville Heat Units (SHU) |
---|---|---|---|---|---|
De Cayenne × Ch | 0.69 ± 0.04 b | 0.37 ± 0.01 bc | 1.86 ± 0.06 cdefgh | 1.06 ± 0.06 c | 17066 ± 886.72 c |
De Cayenne × O + Ch | 0.39 ± 0.02 fghi | 0.28 ± 0.02 def | 1.40 ± 0.11 hi | 0.67 ± 0.02 hi | 10787 ± 245.93 hi |
De Cayenne × O | 0.47 ± 0.03 def | 0.23 ± 0.01 fgh | 2.05 ± 0.16 cde | 0.70 ± 0.03 ghi | 11270 ± 491.86 ghi |
De Cayenne × Ct | 0.52 ± 0.02 cd | 0.33 ± 0.01 cd | 1.58 ± 0.05 efghi | 0.85 ± 0.03 ef | 13685 ± 483.00 ef |
Traian 2 × Ch | 0.56 ± 0.02 c | 0.41 ± 0.01 b | 1.37 ± 0.03 i | 0.97 ± 0.03 cd | 15617 ± 464.77 cd |
Traian 2 × O + Ch | 0.34 ± 0.01 ghij | 0.16 ± 0.01 ijk | 2.13 ± 0.07 bc | 0.50 ± 0.02 jk | 8050 ± 245.93 jk |
Traian 2 × O | 0.35 ± 0.01 ghij | 0.26 ± 0.01 efg | 1.35 ± 0.04 i | 0.61 ± 0.02 ij | 9821 ± 278.86 ij |
Traian 2 × Ct | 0.41 ± 0.02 efgh | 0.29 ± 0.01 def | 1.42 ± 0.07 ghi | 0.7 ± 0.02 ghi | 11270 ± 245.93 ghi |
Turkish × Ch | 0.33 ± 0.01 hij | 0.13 ± 0.01 jk | 2.55 ± 0.16 ab | 0.46 ± 0 k | 7406 ± 0.00 k |
Turkish × O + Ch | 0.27 ± 0.01 j | 0.13 ± 0.01 jk | 2.09 ± 0.12 bcd | 0.40 ± 0.01 k | 6440 ± 92.95 k |
Turkish × O | 0.29 ± 0.01 j | 0.11 ± 0.01 k | 2.65 ± 0.12 a | 0.40 ± 0.01 k | 6440 ± 161.00 k |
Turkish × Ct | 0.32 ± 0.01 ij | 0.19 ± 0.01 hij | 1.69 ± 0.07 cdefghi | 0.51 ± 0.02 jk | 8211 ± 245.93 jk |
Sigaretta × Ch | 0.31 ± 0.01 ij | 0.19 ± 0.02 hij | 1.66 ± 0.17 cdefghi | 0.50 ± 0.01 jk | 8050 ± 185.91 jk |
Sigaretta × O + Ch | 0.42 ± 0.02 efg | 0.21 ± 0.02 ghi | 2.02 ± 0.12 cdef | 0.63 ± 0.04 i | 10143 ± 580.49 i |
Sigaretta × O | 0.39 ± 0.01 fghi | 0.24 ± 0.01 fgh | 1.63 ± 0.07 defghi | 0.63 ± 0.02 i | 10143 ± 245.93 i |
Sigaretta × Ct | 0.49 ± 0.01 cde | 0.26 ± 0.01 efg | 1.89 ± 0.08 cdefg | 0.75 ± 0.02 fgh | 12075 ± 245.93 fgh |
Jovial × Ch | 0.83 ± 0.01 a | 0.53 ± 0.02 a | 1.57 ± 0.06 efghi | 1.36 ± 0.02 a | 21896 ± 371.81 a |
Jovial × O + Ch | 0.76 ± 0.01 ab | 0.48 ± 0.02 a | 1.59 ± 0.05 efghi | 1.24 ± 0.02 b | 19964 ± 278.86 b |
Jovial × O | 0.45 ± 0.02 def | 0.32 ± 0.01 cde | 1.41 ± 0.04 hi | 0.77 ± 0.02 fgh | 12397 ± 371.81 fgh |
Jovial × Ct | 0.57 ± 0.01 c | 0.37 ± 0.01 bc | 1.54 ± 0.01 ghi | 0.94 ± 0.01 de | 15134 ± 185.91 de |
Chorbadjiiski × Ch | 0.52 ± 0.01 cd | 0.33 ± 0.01 cd | 1.58 ± 0.02 efghi | 0.85 ± 0.02 ef | 13685 ± 245.93 ef |
Chorbadjiiski × O + Ch | 0.42 ± 0.01 efg | 0.27 ± 0.01 defg | 1.56 ± 0.02 fghi | 0.69 ± 0.02 ghi | 11109 ± 245.93 ghi |
Chorbadjiiski × O | 0.44 ± 0.01 def | 0.24 ± 0.02 fgh | 1.85 ± 0.1 cdefgh | 0.68 ± 0.02 hi | 10948 ± 322.00 hi |
Chorbadjiiski × Ct | 0.49 ± 0.01 cde | 0.31 ± 0.01 cde | 1.58 ± 0.01 efghi | 0.80 ± 0.01 fg | 12880 ± 185.91 fg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stan, T.; Munteanu, N.; Teliban, G.-C.; Cojocaru, A.; Stoleru, V. Fertilization Management Improves the Yield and Capsaicinoid Content of Chili Peppers. Agriculture 2021, 11, 181. https://doi.org/10.3390/agriculture11020181
Stan T, Munteanu N, Teliban G-C, Cojocaru A, Stoleru V. Fertilization Management Improves the Yield and Capsaicinoid Content of Chili Peppers. Agriculture. 2021; 11(2):181. https://doi.org/10.3390/agriculture11020181
Chicago/Turabian StyleStan, Teodor, Neculai Munteanu, Gabriel-Ciprian Teliban, Alexandru Cojocaru, and Vasile Stoleru. 2021. "Fertilization Management Improves the Yield and Capsaicinoid Content of Chili Peppers" Agriculture 11, no. 2: 181. https://doi.org/10.3390/agriculture11020181