Organic Farming Increases the Technical Efficiency of Olive Farms in Italy
Abstract
:1. Introduction
2. Theoretical Background
3. Methods
3.1. Stochastic Frontier Analysis
3.2. Treatment Effect of Organic Certification
i = 1,…, 355
i = 1,…, 355
i = 1,…, 355
3.3. Data Description
4. Results
4.1. Technical Efficiency Estimates
4.2. Propensity Score and ATT Estimates
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European 612 Parliament, the European Council, the Council, the European Economic and Social Committee 613 and the Committee of the Regions. 2019. Available online: https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf (accessed on 11 December 2020).
- Raimondo, M.; Nazzaro, C.; Marotta, G.; Caracciolo, F. Land degradation and climate change: Global impact on wheat yields. Land Degrad. Dev. 2021, 32, 387–398. [Google Scholar] [CrossRef]
- Pretty, J.; Brett, C.; Gee, D.; Hine, R.; Mason, C.; Morison, J.; Rayment, M.; Van Der Bijl, G.; Dobbs, T. Policy challenges and priorities for internalizing the externalities of modern agriculture. J. Environ. Plan. Manag. 2001, 44, 263–283. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B 2007, 363, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Caracciolo, F.; Lombardi, P. A new-institutional framework to explore the trade-off between Agriculture, Environment and Landscape. Econ. Policy Energy Environ. 2012, 3, 135–154. [Google Scholar] [CrossRef]
- Home, R.; Indermuehle, A.; Tschanz, A.; Ries, E.; Stolze, M. Factors in the decision by Swiss farmers to convert to organic farming. Renew. Agric. Food Syst. 2019, 34, 571–581. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Gemmill-Herren, B.; D’Annolfo, R.; Graeub, B.E.; Cunningham, S.A.; Breeze, T.D. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 2017, 32, 68–80. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustain. Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Beltrán-Esteve, M.; Reig-Martínez, E. Comparing conventional and organic citrus grower efficiency in Spain. Agric. Syst. 2014, 129, 115–123. [Google Scholar] [CrossRef]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [Green Version]
- Bénard, M.; Baudry, J.; Méjean, C.; Lairon, D.; Giudici, K.V.; Etilé, F.; Reach, G.; Hercberg, S.; Kesse-Guyot, E.; Péneau, S. Association between time perspective and organic food consumption in a large sample of adults. Nutr. J. 2018, 17, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 11 December 2020).
- Graffham, A.; MacGregor, J. Fresh Insights Number 5—Impact of EurepGAP on Small-Scale Vegetable Growers in Zambia; Department for International Development: London, UK, 2007.
- Graffham, A.; Karehu, E.; MacGregor, J. Fresh Insights Number 6—Impact of EurepGAP on Small-Scale Vegetable Growers in Kenya; Department for International Development: London, UK, 2007.
- Schuster, M.; Maertens, M. Do private standards create exclusive supply chains? New evidence from the Peruvian asparagus export sector. Food Policy 2013, 43, 291–305. [Google Scholar] [CrossRef] [Green Version]
- Kleemann, L.; Abdulai, A.; Buss, M. Certification and access to export markets: Adoption and return on investment of organic-certified pineapple farming in Ghana. World. Dev. 2014, 64, 79–92. [Google Scholar] [CrossRef]
- Bolwig, S.; Gibbon, P.; Jones, S. The economics of smallholder organic contract farming in tropical Africa. World. Dev. 2009, 37, 1094–1104. [Google Scholar] [CrossRef]
- Kassie, M.; Zikhali, P.; Manjur, K.; Edwards, S. Adoption of Organic Farming Techniques: Evidence from a Semi-Arid Region of Ethiopia; Environment for Development Discussion Paper-Resources for the Future (RFF); Environment for Development Initiative: Gothenburg, Sweden, 2009. [Google Scholar]
- Subervie, J.; Vagneron, I. A drop of water in the Indian Ocean? The impact of GlobalGap certification on lychee farmers in Madagascar. World. Dev. 2013, 50, 57–73. [Google Scholar] [CrossRef]
- Blackman, A.; Rivera, J.E. The Evidence Base for Environmental and Socioeconomic Impacts of ‘Sustainable’ Certification. 2010. Available online: https://ssrn.com/abstract=1579083 (accessed on 2 February 2021). [CrossRef] [Green Version]
- Maertens, M.; Swinnen, J.F. Trade, standards, and poverty: Evidence from Senegal. World Dev. 2009, 37, 161–178. [Google Scholar] [CrossRef] [Green Version]
- Valkila, J. Fair Trade organic coffee production in Nicaragua—Sustainable development or a poverty trap? Ecol. Econ. 2009, 68, 3018–3025. [Google Scholar] [CrossRef]
- Beuchelt, T.D.; Zeller, M. Profits and poverty: Certification’s troubled link for Nicaragua’s organic and fairtrade coffee producers. Ecol. Econ. 2011, 70, 1316–1324. [Google Scholar] [CrossRef]
- Calo, M.; Wise, T.A. Revaluing Peasant Coffee Production: Organic and Fair Trade Markets in Mexico; Global Development and Environment Institute, Tufts University: Somerville, MA, USA, 2005. [Google Scholar]
- Tzouvelekas, V.; Pantzios, C.J.; Fotopoulos, C. Technical efficiency of alternative farming systems: The case of Greek organic and conventional olive-growing farms. Food Policy 2001, 26, 549–569. [Google Scholar] [CrossRef]
- Kalaitzandonakes, N.G.; Boggess, W.G. A dynamic decision-theoretic model of technology adoption for the competitive firm. Technol. Forecast. Soc. Chang. 1993, 44, 17–25. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Tsionas, E.G.; Sipiläinen, T. Joint estimation of technology choice and technical efficiency: An application to organic and conventional dairy farming. J. Prod. Anal. 2009, 31, 151–161. [Google Scholar] [CrossRef]
- Lansink, A.O.; Silva, E.; Stefanou, S. Inter-firm and intra-firm efficiency measures. J. Prod. Anal. 2001, 15, 185–199. [Google Scholar] [CrossRef]
- Pagliuca, M.M.; Scarpato, D. The olive oil sector: A comparison between consumers and “experts” choices by the sensory analysis. Procedia Econ. Financ. 2014, 17, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 December 2019).
- Available online: http://www.internationaloliveoil.org/world-olive-oil-fi (accessed on 30 December 2019).
- Available online: https://www.istat.it/ (accessed on 30 December 2019).
- Mipaaf-SINAB. Bio in Cifre. 2017. Available online: www.sinab.it (accessed on 30 December 2019).
- Available online: https://www.ismea.it/ (accessed on 30 December 2019).
- Flubacher, M.; Sheldon, G.; Müller, A. Comparison of the economic performance between organic and conventional dairy farms in the swiss mountain region using matching and stochastic frontier analysis. J. Socio-Econ. Agric. 2015, 8, 76–84. [Google Scholar]
- Djokoto, J.G. Technical efficiency of organic agriculture: A quantitative review. Stud. Agric. Econ. 2015, 117, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Djokoto, J.G.; Pomeyie, P. Productivity of organic and conventional agriculture—A common technology analysis. Stud. Agric. Econ. 2018, 120, 150–156. [Google Scholar] [CrossRef]
- Madau, F.A. Technical efficiency in organic and conventional farming: Evidence from Italian cereal farms. Agric. Econ. Rev. 2007, 8, 5–21. [Google Scholar]
- Madau, F.A.; Furesi, R.; Pulina, P. Technical efficiency and total factor productivity changes in European dairy farm sectors. Agric. Food Econ. 2017, 5, 17. [Google Scholar] [CrossRef]
- Danso-Abbeam, G.; Baiyegunhi, L.J. Do farm-level technical efficiency and welfare complement each other? Insight from Ghana’s cocoa industry. J. Econ. Struct. 2020, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Lakner, S.; Breustedt, G. Efficiency Analysis of Organic Farming Systems—A Review of Concepts, Topics, Results and Conclusions. Ger. J. Agric. Econ. 2017, 66, 85–108. [Google Scholar]
- Lansink, A.O.; Pietola, K.; Bäckman, S. Effciency and productivity of conventional and organic farms in Finland 1994–1997. Eur. Rev. Agric. Econ. 2002, 29, 51–65. [Google Scholar] [CrossRef]
- Guesmi, B.; Serra, T.; Radwan, A.; Gil, J.M. Efficiency of Egyptian organic agriculture: A local maximum likelihood approach. Agribusiness 2018, 34, 441–455. [Google Scholar] [CrossRef]
- Naglova, Z.; Vlasicova, E. Economic performance of conventional, organic, and biodynamic farms. J. Agric. Sci. Technol. 2016, 18, 881–894. [Google Scholar]
- Doanh, N.; Thuong, N.; Heo, Y. Impact of Conversion to Organic Tea Cultivation on Household Income in the Mountainous Areas of Northern Vietnam. Sustainability 2018, 10, 4475. [Google Scholar] [CrossRef]
- Acs, S.; Berentsen, P.B.M.; Huirne, R.B.M. Conversion to organic arable farming in The Netherlands: A dynamic linear programming analysis. Agric. Syst. 2007, 94, 405–415. [Google Scholar] [CrossRef]
- Demiryurek, K.; Ceyhan, V. Economics of organic and conventional hazelnut production in the Terme district of Samsun, Turkey. Renew. Agric. Food Syst. 2008, 23, 217–227. [Google Scholar] [CrossRef]
- Kamali, F.P.; Meuwissen, M.P.; de Boer, I.J.; van Middelaar, C.E.; Moreira, A.; Lansink, A.G.O. Evaluation of the environmental, economic, and social performance of soybean farming systems in southern Brazil. J. Clean. Prod. 2017, 142, 385–394. [Google Scholar] [CrossRef]
- Yu, X.; Guo, L.; Jiang, G.; Song, Y.; Muminov, M.A. Advances of organic products over conventional productions with respect to nutritional quality and food security. Acta Ecol. Sin. 2018, 38, 53–60. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, A.; Joshi, P.K.; D’Souza, A.; Tripathi, G. How can organic rice be a boon to smallholders? Evidence from contract farming in India. Food Policy 2018, 75, 147–157. [Google Scholar] [CrossRef]
- Panpluem, N.; Mustafa, A.; Huang, X.; Wang, S.; Yin, C. Measuring the Technical Efficiency of Certified Organic Rice Producing Farms in Yasothon Province: Northeast Thailand. Sustainability 2019, 11, 6974. [Google Scholar] [CrossRef] [Green Version]
- Serra, T.; Zilberman, D.; Gil, J.M. Differential uncertainties and risk attitudes between conventional and organic producers: The case of Spanish arable crop farmers. Agric. Econ. 2008, 39, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, H.; Moghaddam, P.R.; Moradi, R. Energy budget and economic analysis in conventional and organic rice production systems and organic scenarios in the transition period in Iran. Front. Energy 2012, 6, 341–350. [Google Scholar] [CrossRef]
- Zhang, L.W.; Feike, T.; Holst, J.; Hoffmann, C.; Doluschitz, R. Comparison of energy consumption and economic performance of organic and conventional soybean production—A case study from Jilin Province, China. J. Integr. Agric. 2015, 14, 1561–1572. [Google Scholar] [CrossRef]
- Berentsen, P.B.M.; Van Asseldonk, M.A.P.M. An empirical analysis of risk in conventional and organic arable farming in The Netherlands. Eur. J. Agron. 2016, 79, 100–106. [Google Scholar] [CrossRef]
- Barrett, H.R.; Browne, A.W.; Harris, P.J.C.; Cadoret, K. Organic certification and the UK market: Organic imports from developing countries. Food Policy 2002, 27, 301–318. [Google Scholar] [CrossRef]
- Zhengfei, G.; Lansink, A.O.; Wossink, A.; Huirne, R. Damage control inputs: A comparison of conventional and organic farming systems. Eur. Rev. Agric. Econ. 2005, 32, 167–189. [Google Scholar] [CrossRef]
- Froehlich, A.G.; Melo, A.S.; Sampaio, B. Comparing the Profitability of Organic and Conventional Production in Family Farming: Empirical Evidence from Brazil. Ecol. Econ. 2018, 150, 307–314. [Google Scholar] [CrossRef]
- Lachaal, L.; Karray, B.; Dhehibi, B.; Chebil, A. Technical efficiency measures and its determinants for olive producing farms in Tunisia: A stochastic frontier analysis. Afr. Dev. Rev. 2005, 17, 580–591. [Google Scholar] [CrossRef]
- Lambarraa, F.; Serra, T.; Gil, J.M. Technical efficiency analysis and decomposition of productivity growth of Spanish olive farms. Span. J. Agric. Res. 2007, 5, 259–270. [Google Scholar] [CrossRef]
- Stillitano, T.; Falcone, G.; Nicolò, B.F.; Di Girolamo, C.; Gulisano, G.; De Luca, A.I. Technical Efficiency Assessment of Intensive and Traditional Olive Farms in Southern Italy. AGRIS On-Line Pap. Econ. Inform. 2019, 11, 81–93. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. A. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Vidoli, F.; Ferrara, G. Analyzing Italian citrus sector by semi-nonparametric frontier efficiency models. Empir. Econ. 2015, 49, 641–658. [Google Scholar] [CrossRef]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar] [CrossRef]
- Kostlivý, V.; Fuksová, Z. Technical efficiency and its determinants for Czech livestock farms. Agric. Econ. 2019, 65, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Greene, W.H. The econometric approach to efficiency analysis. In The Measurement of Productive Efficiency and Productivity Growth; Oxford University: Oxford, UK, 2008; pp. 92–250. [Google Scholar] [CrossRef] [Green Version]
- Battese, G.E.; Coelli, T.J. A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Coelli, T.; Perelman, S.; Romano, E. Accounting for environmental influences in stochastic frontier models: With application to international airlines. J. Prod. Anal. 1999, 11, 251–273. [Google Scholar] [CrossRef]
- Marotta, G.; Nazzaro, C. Public goods production and value creation in wineries: A structural equation modelling. Br. Food J. 2020, 122, 1705–1724. [Google Scholar] [CrossRef]
- Raimondo, M.; Nazzaro, C.; Nifo, A.; Marotta, G. Does the Institutional Quality Affect Labor Productivity in Italian Vineyard Farms? Wine Econ. Policy 2020, 9, 113–126. [Google Scholar] [CrossRef]
- Rosenbaum, P.R. Overt bias in observational studies. In Observational Studies; Springer: New York, NY, USA, 2002; pp. 71–104. [Google Scholar] [CrossRef]
- Carillo, F.; Caracciolo, F.; Cembalo, L. Do durum wheat producers benefit of vertical coordination? Agric. Food Econ. 2017, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Caracciolo, F.; Furno, M. Quantile treatment effect and double robust estimators: An appraisal on the Italian labour market. J. Econ. Stud. 2017, 44, 585–604. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn (accessed on 21 November 2019).
- Torres, A.P.; Marshall, M.I. Identifying drivers of organic decertification: An analysis of fruit and vegetable farmers. HortScience 2018, 53, 504–510. [Google Scholar] [CrossRef]
- Fuglie, K.O. Is agricultural productivity slowing? Glob. Food Secur. 2018, 17, 73–83. [Google Scholar] [CrossRef]
- Kirui, O.; von Braun, J. Mechanization in African Agriculture: A Continental Overview on Patterns and Dynamics; Working Paper 169; Center for Development Research: Bonn, Germany, 2018. [Google Scholar] [CrossRef]
- Conner, D.S. Beyond organic: Information provision for sustainable agriculture in a changing market. J. Food Distrib. Res. 2004, 35, 34–39. [Google Scholar] [CrossRef]
- Djokoto, J.G.; Owusu, V.; Awunyo-Vitor, D. Is Organic Agriculture More Scale Efficient Than Conventional Agriculture? The Case of Cocoa Cultivation in Ghana. Rev. Agric. Appl. Econ. (RAAE) 2020, 23, 112–123. [Google Scholar] [CrossRef]
- Lerro, M.; Raimondo, M.; Stanco, M.; Nazzaro, C.; Marotta, G. Cause Related Marketing among Millennial Consumers: The Role of Trust and Loyalty in the Food Industry. Sustainability 2019, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.P.; Glover, J.D.; Andrews, P.K.; Hinman, H.R. Sustainability of three apple production systems. Nature 2001, 410, 926. [Google Scholar] [CrossRef]
- Okoye, B.C.; Onyenweaku, C.E.; Ukoha, O.O.; Asumugha, G.N.; Aniedu, O.C. Determinants of labour productivity on small-holder cocoyam farms in Anambra State, Nigeria. Sci. Res. Essays 2008, 3, 559–561. [Google Scholar]
- Krozer, Y. Life cycle costing for innovations in product chains. J. Clean. Prod. 2008, 16, 310–321. [Google Scholar] [CrossRef]
- Sims, B.; Kienzle, J. Sustainable agricultural mechanization for smallholders: What is it and how can we implement it? Agriculture 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, R.; Lipton, M.; Newell, A. Farm Size. In Handbook of Agricultural Economics; Pingali, P.L., Evenson, R.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S.; Liu, Y.; Singh, S.K. Can Labour-Market Imperfections Explain Changes in the Inverse Farm Size–Productivity Relationship? Longitudinal Evidence from Rural India. Land Econ. 2018, 94, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Clodoveo, M.L.; Camposeo, S.; Amirante, R.; Dugo, G.; Cicero, N.; Boskou, D. Research and innovative approaches to obtain virgin olive oils with a higher level of bioactive constituents. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015; pp. 179–215. [Google Scholar] [CrossRef]
- Barham, B.L.; Weber, J.G. The economic sustainability of certified coffee: Recent evidence from Mexico and Peru. World Dev. 2012, 40, 1269–1279. [Google Scholar] [CrossRef]
- Urso, A.; Timpanaro, G.; Caracciolo, F.; Cembalo, L. Efficiency analysis of Italian wine producers. Wine Econ. Policy 2018, 7, 3–12. [Google Scholar] [CrossRef]
- Julie, T.N.; Engwali, F.D.; Jean-Claude, B. Technical Efficiency of Diversification Versus Specialization of Vegetable-Based Farms in the West Region of Cameroon. Am. J. Agric. Econ. 2017, 5, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Dimitri, C.; Greene, C. Recent Growth Patterns in the U.S. Organic Foods Market; Agriculture Information Bulletin No. 777; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2002. [CrossRef]
- Kremen, A.; Greene, C.; Hanson, J. Organic Produce, Price Premiums, and Eco-Labeling in U.S. Producers’ Markets; USDA-ERS Electronic Report No. VGS-301–01; Government Printing Office: Washington, DC, USA, 2004.
- Park, T.A.; Lohr, L. Choices of marketing outlets by organic producers: Accounting for selectivity effects. J. Agric. Food Ind. Organ. 2006, 4, 4. [Google Scholar] [CrossRef]
- Veldstra, M.D.; Alexander, C.E.; Marshall, M.I. To certify or not to certify? Separating the organic production and certification decisions. Food Policy 2014, 49, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Ferjani, A.; Zimmermann, A.; Reissig, L. Organic agriculture: Why so few farms convert. Rech. Agron. Suisse 2010, 1, 238–243. [Google Scholar]
- Karki, L.; Schleenbecker, R.; Hamm, U. Factors influencing a conversion to organic farming in Nepalese tea farms. J. Agric. Rural Dev. Trop. 2011, 112, 113–123. [Google Scholar]
- Thorup-Kristensen, K.; Dresbøll, D.B.; Kristensen, H.L. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. Eur. J. Agron. 2012, 37, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Lodolini, E.M.; Neri, D.; Gangatharan, R.; Ponzio, C. Organic olive farming. Afr. J. Agric. Res. 2013, 8, 6426–6434. [Google Scholar] [CrossRef]
- Nettier, B.; Dufour, A.; Chabrat, S.; Madelrieux, S. Conversion to organic farming and consequences on work organisation and work perception. In Proceedings of the 10th European IFSA Symosium, Aarhus, Denmark, 1–4 July 2012. [Google Scholar]
- Jansen, K. Labour, livelihoods and the quality of life in organic agriculture in Europe. Biol. Agric. Hortic. 2000, 17, 247–278. [Google Scholar] [CrossRef] [Green Version]
- Lobley, M.; Butler, A.; Reed, M. The contribution of organic farming to rural development: An exploration of the socio-economic linkages of organic and non-organic farms in England. Land Use Policy 2009, 26, 723–735. [Google Scholar] [CrossRef]
- Orsini, S.; Padel, S.; Lampkin, N. Labour Use on Organic Farms: A Review of Research since 2000. Org. Farming 2018, 4, 7–15. [Google Scholar] [CrossRef]
Model | Functional Forms | Inclusion of Env. Factors in the Production Function | Inclusion of Env. Factors in the Inefficiency Term | Log-Likelihood | Number of Parameters | AIC | BIC |
---|---|---|---|---|---|---|---|
1 | Cobb–Douglas | NO | NO | −306.2 | 7 | 626.3 | 653.5 |
2 | Translog | NO | NO | −299.6 | 11 | 621.2 | 663.8 |
3 | Cobb–Douglas | NO | YES | −281.9 | 12 | 587.7 | 634.2 |
4 | Translog | NO | YES | −270.7 | 16 | 573.4 | 635.3 |
5 | Translog | YES | NO | −275.0 | 17 | 584.0 | 649.8 |
6 | Cobb–Douglas | YES | NO | −285.3 | 13 | 596.7 | 647.0 |
7 | Cobb–Douglas | YES | YES | −278.2 | 18 | 592.5 | 662.2 |
8 | Translog | YES | YES | −266.4 | 22 | 576.7 | 661.9 |
Variable | Variable Description | All Sample | Organic Farms (obs.103) | Conventional Farms (obs.252) | |
---|---|---|---|---|---|
(obs.355) | |||||
Mean | Std. Dev. | Mean | Mean | ||
GMO | Economic value of gross marketable output (GMO) | 81,367.3 | 118,783.5 | 74,182.15 | 84,304.12 |
Added_value (€) | Farm net value added | 68,643.81 | 105,204.1 | 62,958 | 70,967.77 |
Working_Cap | Economic value of circulating agricultural capital | 615.782 | 912.397 | 521.47 | 654.33 |
Mec_value (€) | Economic value of machines | 19,450.48 | 30,483.94 | 14,702.25 | 21,391.22 |
Capes_UAA (€/ha) | Ratio between the circulating agricultural capital and UAA | 1454.38 | 2685.18 | 1051.79 | 1618.93 |
Mecc_UAA (€/ha) | Ratio between mechanic value and UAA | 1433.75 | 2614.26 | 1047.54 | 1591.61 |
Labour | Economic value of labour | 40,687.1 | 45,902.38 | 37,742.26 | 41,890.78 |
Hours of labor | Total hours of labour | 4238.24 | 4781.5 | 3931.49 | 4363.62 |
Lab_prod (€/hour) | Ratio between GMO and hours of labor | 17.99 | 10.41 | 18.58 | 17.75 |
Activity (hours/ha) | Ratio between hours of labor and UAA | 324.54 | 346.77 | 267.99 | 347.66 |
Labf (hours_fam/ha) | Ratio between hours of family labour and UAA | 0.09 | 0.08 | 0.07 | 0.1 |
Land_Cap | Economic value of land capital | 7400.55 | 11,884.64 | 7227.24 | 7471.39 |
Land_prod (€/ha) | Ratio between GMO and UAA | 4748.63 | 3564.74 | 4174.31 | 4983.37 |
UAA (ha) | Used agricultural area (UAA) | 21.56 | 31.55 | 21.08 | 21.75 |
GMO_quality (1 = yes; 0 = no) | Gross marketable output obtained from quality products | 0.05 | N.A. | 0.1 | 0.04 |
Short_sc (1 = yes; 0 = no) | Short supply chain | 0.1 | N.A. | 0.15 | 0.09 |
Diversified activities | Presence of complementary activities (1 = yes; 0 = no) | 0.1 | N.A. | 0.12 | 0.09 |
Gender | (1 = female; 0 = male) | 0.34 | N.A. | 0.32 | 0.34 |
Young | (1 = yes; 0 = no) | 0.17 | N.A. | 0.19 | 0.16 |
Altimetry classification | (1 = mountain 2 = hill 3 = plain) | 2.13 | N.A. | 2.1 | 2.14 |
Geographic area_1 | (1 = south and island; 0 = otherwise) | 0.8 | N.A. | 0.86 | 0.77 |
Geographic area_2 | (1 = north; 0 = otherwise) | 0.05 | N.A. | 0 | 0.07 |
Geographic area_3 | (1 = center; 0 = otherwise) | 0.15 | N.A. | 0.14 | 0.15 |
Dep.var: ln (GMO) | Coef. | Std. Err. | p-Value |
---|---|---|---|
Frontier | |||
ln (working_cap) | 0.044 | 0.017 | 0.009 *** |
ln (land_cap) | 0.125 | 0.022 | 0.000 *** |
ln (labour) | 0.980 | 0.044 | 0.000 *** |
Cons | −0.109 | 0.411 | 0.790 |
U | |||
Organic certification | −1.011 | 0.391 | 0.010 ** |
Geographic area (north) | −3.690 | 3.311 | 0.265 |
Geographic area (center) | 1.082 | 0.299 | 0.000 *** |
Diversified activities | 1.234 | 0.327 | 0.000 *** |
Altimetry classification (hill) | −0.842 | 0.366 | 0.021 ** |
Altimetry classification (plain) | −1.258 | 0.516 | 0.015 ** |
Usigma | |||
Cons | −0.299 | 0.214 | 0.163 |
Vsigma | |||
Cons | −1.948 | 0.168 | 0.000 *** |
Description | Area | Average θ | Obs |
---|---|---|---|
Organic | South and Islands | 0.751 | 89 |
Center | 0.504 | 14 | |
North | N.A. | 0 | |
Conventional | South and Islands | 0.671 | 195 |
Center | 0.462 | 39 | |
North | 0.863 | 18 |
Area | Class UAA | Δθ (%) | Std. Dev. | Frequency | Distribution |
---|---|---|---|---|---|
South and Islands | <5 ha | 15.6 | 5.39 | 31 | 11% |
5–15 ha | 14.5 | 7.77 | 146 | 51% | |
15–40 ha | 9.9 | 6.82 | 71 | 25% | |
>40 ha | 9.9 | 7.22 | 36 | 13% | |
Total | 284 | 100% | |||
Center | <5 ha | 28.4 | 1.63 | 4 | 8% |
5–15 ha | 23.7 | 8.32 | 24 | 45% | |
15–40 ha | 21.1 | 8.34 | 14 | 26% | |
>40 ha | 16.8 | 7.84 | 11 | 21% | |
Total | 53 | 100% | |||
North | <5 ha | 14.9 | 9.50 | 9 | 50% |
5–15 ha | 11.7 | 8.35 | 9 | 50% | |
Total | 18 | 100% |
Coeff. | Std. Err. | p-Value | |
---|---|---|---|
Altimetry classification | −0.285 | 0.132 | 0.030 ** |
Gender | 0.029 | 0.180 | 0.873 |
Young | 0.053 | 0.229 | 0.817 |
Added_value | 0.908 | 0.288 | 0.002 *** |
Mec_value | 0.157 | 0.091 | 0.082 * |
GMO_quality | 0.868 | 0.377 | 0.022 ** |
UAA | 0.244 | 0.370 | 0.509 |
Short_sc | 0.497 | 0.284 | 0.081 * |
Hours of labour | −1.667 | 0.445 | 0.000 *** |
Capes_UAA | −0.006 | 0.002 | 0.007 *** |
Land_prod | 0.000 | 0.000 | 0.566 |
Lav_prod | −0.052 | 0.020 | 0.008 *** |
Activity | 0.003 | 0.001 | 0.019 ** |
Labf | −7.951 | 2.890 | 0.006 *** |
Mecc_UAA | 0.005 | 0.002 | 0.012 ** |
Mecc_UAA_square | 0.000 | 0.000 | 0.001 *** |
Geo_1 | 21.302 | 163.181 | 0.896 |
Geo_3 | 20.976 | 163.181 | 0.898 |
Cons | −18.626 | 163.208 | 0.909 |
Method | Number of Treated | Number of Control | ATT | Std. Err. | t |
---|---|---|---|---|---|
Strat. M | 103 | 189 | 0.060 | 0.018 | 3.378 |
NNM | 103 | 65 | 0.076 | 0.028 | 2.716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondo, M.; Caracciolo, F.; Nazzaro, C.; Marotta, G. Organic Farming Increases the Technical Efficiency of Olive Farms in Italy. Agriculture 2021, 11, 209. https://doi.org/10.3390/agriculture11030209
Raimondo M, Caracciolo F, Nazzaro C, Marotta G. Organic Farming Increases the Technical Efficiency of Olive Farms in Italy. Agriculture. 2021; 11(3):209. https://doi.org/10.3390/agriculture11030209
Chicago/Turabian StyleRaimondo, Maria, Francesco Caracciolo, Concetta Nazzaro, and Giuseppe Marotta. 2021. "Organic Farming Increases the Technical Efficiency of Olive Farms in Italy" Agriculture 11, no. 3: 209. https://doi.org/10.3390/agriculture11030209
APA StyleRaimondo, M., Caracciolo, F., Nazzaro, C., & Marotta, G. (2021). Organic Farming Increases the Technical Efficiency of Olive Farms in Italy. Agriculture, 11(3), 209. https://doi.org/10.3390/agriculture11030209