Evaluating the Predictive Accuracy of the Weather-Rice-Nutrient Integrated Decision Support System (WeRise) to Improve Rainfed Rice Productivity in Southeast Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sowing Period
2.2. Historical Weather Data
2.3. Seasonal Climate Predictions
2.4. Crop Growth Model
2.4.1. Crop Data
2.4.2. Soil Data
2.4.3. Local Weather Data
2.5. Statistical Analysis
2.6. On-Farm Field Validation of WeRise Predictability
3. Results
3.1. Variability of Rice Production in Target Areas
3.2. Evaluation of the Applicability of ORYZA Simulation and Seasonal Climate Predictions for the Targeted Rainfed Rice Areas
3.3. Evaluation of Predictabilities of WeRise through On-Farm Experiments
3.3.1. Indonesia
3.3.2. Philippines
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/ (accessed on 9 March 2021).
- Haefele, S.; Nelson, A.; Hijmans, R. Soil quality and constraints in global rice production. Geoderma 2014, 235–236, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Global Rice Science Partnership (GRiSP). Rice Almanac, 4th ed.; International Rice Research Institute: Los Baños, Philippines, 2013; p. 283. [Google Scholar]
- Wassmann, R.; Jagadish, S.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.; Heuer, S. Chapter 3 Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. In Advances in Agronomy Volume 40; Elsevier BV: Amsterdam, The Netherlands, 2009; Volume 102, pp. 91–133. [Google Scholar]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-Y.; Sun, Y.-J.; Wang, M.-T.; Li, X.-Y.; Guo, X.; Hu, R.; Ma, J. Effects of Seed Priming on Germination and Seedling Growth Under Water Stress in Rice. Acta Agron. Sin. 2010, 36, 1931–1940. [Google Scholar] [CrossRef]
- Patel, A.R.; Patel, M.L.; Patel, R.K.; Mote, B.M. Effect of different sowing dates on phenology, growth and yield of rice—A review. Plant Arcieves 2019, 19, 12–16. [Google Scholar]
- Hayashi, K.; Bugayong, I.; Siregar, I.H.; Jonharnas; Wirajaswadi, L.; Hadiawati, L.; Agustiani, N.; Orden, M.E. Appraisal of rainfed rice production and management practices through case studies in North Sumatera and West Nusa Tenggara, Indo-nesia. Trop. Agric. Develop. 2018, 62, 43–54. [Google Scholar]
- Koide, N.; Robertson, A.W.; Ines, A.V.M.; Qian, J.-H.; DeWitt, D.G.; Lucero, A. Prediction of Rice Production in the Philippines Using Seasonal Climate Forecasts. J. Appl. Meteorol. Clim. 2013, 52, 552–569. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.A.M.; Kropff, M.J.; Tuong, T.P.; Wopereis, M.C.S.; ten Berge, H.F.M.; van Laar, H.H. ORYZA 2000: Modeling Lowland Rice; International Rice Research Institute: Los Baños, Philippines; Wageningen University and Research Center: Wageningen, The Netherlands, 2001; p. 235. [Google Scholar]
- Luo, J.-J.; Masson, S.; Behera, S.K.; Yamagata, T. Extended ENSO Predictions Using a Fully Coupled Ocean–Atmosphere Model. J. Clim. 2008, 21, 84–93. [Google Scholar] [CrossRef]
- Hayashi, K.; Llorca, L.; Rustini, S.; Setyanto, P.; Zaini, Z. Reducing vulnerability of rainfed agriculture through seasonal climate predictions: A case study on the rainfed rice production in Southeast Asia. Agric. Syst. 2018, 162, 66–76. [Google Scholar] [CrossRef]
- Iizumi, T.; Nishimori, M.; Dairaku, K.; Adachi, S.A.; Yokozawa, M. Evaluation and intercomparison of downscaled daily pre-cipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statisti-cal downscaling methods. J. Geophys. Res. 2011, 116, D01111. [Google Scholar] [CrossRef] [Green Version]
- Iizumi, T.; Nishimori, M.; Ishigooka, Y.; Yokozawa, M. Introduction to climate change scenario derived by statistical downscaling. J. Agric. Meteorol. 2010, 66, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Iizumi, T.; Takayabu, I.; Dairaku, K.; Kusaka, H.; Nishimori, M.; Sakurai, G.; Ishizaki, N.N.; Adachi, S.A.; Semenov, M.A. Future change of daily precipitation indices in Japan: A stochastic weather generator-based bootstrap approach to provide probabilistic climate information. J. Geophys. Res. Space Phys. 2012, 117, 1114. [Google Scholar] [CrossRef] [Green Version]
- Wopereis, M.C.S.; Wosten, J.H.M.; ten Berge, H.F.M.; Woodhead, T.; de San Agustin, E.M.A. Comparing the performance of a soil-water balance model using measured and calibrated hydraulic conductivity data: A case-study for dryland rice. Soil Sci. 1993, 156, 133–140. [Google Scholar] [CrossRef]
- Walther, B.A.; Moore, J.L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 2005, 28, 815–829. [Google Scholar] [CrossRef]
- Jamieson, P.; Porter, J.; Wilson, D. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crop. Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Yadav, R. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crop. Res. 2003, 81, 39–51. [Google Scholar] [CrossRef]
- Ding, W.; Xu, X.; He, P.; Ullah, S.; Zhang, J.; Cui, Z.; Zhou, W. Improving yield and nitrogen use efficiency through alternative fertilizer options for rice in China: A meta-analysis. Field Crop. Res. 2018, 227, 11–18. [Google Scholar] [CrossRef]
- United Nations Economic and Social Commission for Asia and the Pacific (ESCAP). Adaptation and Resilience to Drought: From Know How To Do How A Guidebook for the Practitioners [Based on the Case Studies from South East Asia]; ICT and Disaster Risk Reduction Division Capacity development toolkit 7/2020; ESCAP: Bangkok, Thailand, 2020; p. 38. [Google Scholar]
- Malanon, H.G.; Dela Cruz, R.S.M. On-farm mechanization of paddy in the Philippines. Asian J. Postharvest Mech. 2018, 1, 1–10. [Google Scholar]
- Briones, R.M. The Role of Mineral Fertilizers in Transforming Philippine Agriculture; PIDS Discussion Paper Series No. 2014-14; Philippine Institute for Development Studies (PIDS): Makati City, Philippines, 2014; p. 23. [Google Scholar]
- Dobermann, A.; Fairhurst, T. Rice: Nutrient Disorders & Nutrient Management; Handbook Series; Potash & Phosphate Institute (PPI): Atlanta, GA, USA; Potash & Phosphate Institute of Canada (PPIC): Canada; International Rice Research Institute (IRRI): Los Baños, Philippines, 2000; p. 191. [Google Scholar]
- Banayo, N.P.; Haefele, S.M.; Desamero, N.V.; Kato, Y. On-farm assessment of site-specific nutrient management for rainfed lowland rice in the Philippines. Field Crop. Res. 2018, 220, 88–96. [Google Scholar] [CrossRef]
- Peng, S.; Garcia, F.; Laza, R.; Sanico, A.; Visperas, R.; Cassman, K. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crop. Res. 1996, 47, 243–252. [Google Scholar] [CrossRef]
- Wang, D.; Xu, C.; Ye, C.; Chen, S.; Chu, G.; Zhang, X. Low recovery efficiency of basal fertilizer-N in plants does not indicate high basal fertilizer-N loss from split-applied N in transplanted rice. Field Crop. Res. 2018, 229, 8–16. [Google Scholar] [CrossRef]
Country | Province | Site | Data Source |
---|---|---|---|
Indonesia | West Nusa Tenggara | Central Lombok | (Hayashi et al., 2016) |
Central Java | Rembang | This study | |
Philippines | Tarlac | Victoria | This study |
Iloilo | Sta. Barbara, Cabatuan and Miag-ao | This study |
Country | Province | Site | Data Period | Data Source |
---|---|---|---|---|
Indonesia | West Nusa Tenggara | Central Lombok | 2000–2012 | BMKG * |
Central Java | Pati | 2000–2013 | IAERI ** | |
Philippines | Nueva Ecija | Muñoz | 1983–2014 | PAGASA *** |
Tarlac | Victoria | 1981–2013 | PAGASA *** | |
Iloilo | Iloilo | 1984–2006 | PAGASA *** |
Country | Experimental Site | Experiment Year | Variety |
---|---|---|---|
Indonesia | ICRR * | 2016–2017 | Inpari 41 |
Philippines | PhilRice CES ** | 2016–2017 | NSIC Rc216 |
Country | Province | Site | Data Source | Soil Analysis |
---|---|---|---|---|
Indonesia | West Nusa Tenggara | Central Lombok | This study | Assessment Institute for Agricultural Technology in West Nusa Tenggara |
Central Java | Pati | This study | Indonesian Agricultural Environment Research Institute | |
Philippines | Nueva Ecija | Muños | This study | Philippine Rice Research Institute |
Tarlac | Victoria | Wopereis et al. (1993) [16] | ||
Iloilo | Sta. Barbara, Cabatuan, Miagao | This study | International Rice Research Institute |
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Year of Survey |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Philippines | |||||||||||||
Tarlac | 2014–2015 | ||||||||||||
Iloilo | 2017–2018 | ||||||||||||
Indonesia | |||||||||||||
Central Java | 2013 | ||||||||||||
West Nusa Tenggara | 2014–2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, K.; Llorca, L.P.; Bugayong, I.D.; Agustiani, N.; Capistrano, A.O.V. Evaluating the Predictive Accuracy of the Weather-Rice-Nutrient Integrated Decision Support System (WeRise) to Improve Rainfed Rice Productivity in Southeast Asia. Agriculture 2021, 11, 346. https://doi.org/10.3390/agriculture11040346
Hayashi K, Llorca LP, Bugayong ID, Agustiani N, Capistrano AOV. Evaluating the Predictive Accuracy of the Weather-Rice-Nutrient Integrated Decision Support System (WeRise) to Improve Rainfed Rice Productivity in Southeast Asia. Agriculture. 2021; 11(4):346. https://doi.org/10.3390/agriculture11040346
Chicago/Turabian StyleHayashi, Keiichi, Lizzida P. Llorca, Iris D. Bugayong, Nurwulan Agustiani, and Ailon Oliver V. Capistrano. 2021. "Evaluating the Predictive Accuracy of the Weather-Rice-Nutrient Integrated Decision Support System (WeRise) to Improve Rainfed Rice Productivity in Southeast Asia" Agriculture 11, no. 4: 346. https://doi.org/10.3390/agriculture11040346
APA StyleHayashi, K., Llorca, L. P., Bugayong, I. D., Agustiani, N., & Capistrano, A. O. V. (2021). Evaluating the Predictive Accuracy of the Weather-Rice-Nutrient Integrated Decision Support System (WeRise) to Improve Rainfed Rice Productivity in Southeast Asia. Agriculture, 11(4), 346. https://doi.org/10.3390/agriculture11040346