Rice Breeding in Vietnam: Retrospects, Challenges and Prospects
Abstract
:1. Introduction
2. Rice Germplasm: An Important Input
3. Commercial Rice Varieties, an Output of Breeding Activities
4. Breeding Goals by Applying Newly Improved Rice Varieties
4.1. High-Yielding Rice Cultivars
4.2. Improvement of Biotic and Abiotic Stress Tolerances to Stabilize Rice Production
4.3. High-Quality Rice for Export
4.4. New Medicinal Rice Varieties for Health Care
5. Rice Breeding in the Modern Genetics Era
5.1. Genome-Wide Association Studies (GWAS)
5.2. Molecular Breeding
5.3. Mutation Breeding
5.4. Genetic Engineering and Genome Editing Studies
6. Challenges and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Crop Prospects and Food Situation. In Rome: Food and Agriculture Organization of the United Nation. Available online: http://faostat.fao.org (accessed on 7 December 2019).
- Dabi, T.; Khanna, V.K. Effect of climate change on rice. Agrotechnology 2018, 7, 2–7. [Google Scholar]
- Khush, G.S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 1997, 35, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Luat, N.V. Rice history in Vietnam. In Vietnam Fity Years of Rice Research and Development; Bong, B.B., Bo, N.V., Buu, B.C., Eds.; Agriculture Publishing House: Hanoi, Vietnam, 2010; pp. 95–102. [Google Scholar]
- General Statistics of Vietnam, Agricultural, Forestry, and Fishing. Available online: https://www.gso.gov.vn/ (accessed on 3 March 2019).
- Redfern, S.K.; Azzu, N.; Binamira, J.S. Rice in Southeast Asia: Facing risks and vulnerabilities to respond to climate change. Build Resil. Adapt Clim. Chang. Agric. Sect. 2012, 23, 295–314. [Google Scholar]
- Duong, P.B.; Thanh, P.T. Adoption and effects of modern rice varieties in Vietnam: Micro-econometric analysis of household surveys. Econ. Anal. Policy 2019, 64, 282–292. [Google Scholar] [CrossRef]
- Diu, P.T.H. Rice Price Controls Policy of Vietnam and Its Competition with Thailand: A Practical Application of Spatial Equilibrium Models. Ph.D. Thesis, Faculty of Agriculture and Horticulture, Humboldt-Universität zu Berlin, Berlin, Germany, 2015. [Google Scholar]
- Tran, V.D. History of Rice Cultivation in Vietnam; Five Star Printing: Torrance, CA, USA, 2010; p. 489. (In Vietnamese) [Google Scholar]
- Tran, T.U.; Kajisa, K. The impact of green revolution on rice production in Vietnam. Dev. Eco. 2006, 2, 167–189. [Google Scholar]
- Dao, T.T.B.; Lam, Q.D.; To, T.A. Using Gamma-ray 60Co for Improvement Rice Variety (KhangDan-18); Science and Technics Publishing House: Hanoi, Vietnam, 2008. (In Vietnamese) [Google Scholar]
- Dao, T.T.B.; Nguyen, T.H.N.; Nguyen, P.H. Breeding New Rice Variety DT39 Quelam by Gamma-Ray. In Achievement Sub-Project on Composition or Quality in Rice (2007–2012); Mutation Breeding Project Forum for Nuclear Cooperation in Asia; 2013; pp. 8–89. Available online: https://www.fnca.mext.go.jp/english/mb/rice/pdf/0_whole.pdf (accessed on 12 January 2021).
- Linh, L.H.; Khanh, D.T.; Luan, N.V.; Cuc, D.T.K.; Duc, L.D.; Linh, T.H.; Ismail, A.M.L.; Ham, L.H. Application of marker assisted backcrossing to pyramid salinity tolerance (Saltol) into rice cultivar- Bac Thom7. VNU J. Sci. Nat. Sci. Tech. 2012, 28, 87–99. [Google Scholar]
- Kawahara, Y.; De La Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, H.; Fujisawa, M.; Katagiri, S.; Oono, Y.; Fujisawa, H.; Karasawa, W.; Kurita, K.; Sasaki, H.; Mori, S.; Hamada, M.; et al. A BAC physical map of aus rice cultivar ‘Kasalath’, and the map-based genomic sequence of ‘Kasalath’ chromosome. Plant J. 2013, 76, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef]
- Feltus, F.A.; Wan, J.; Schulze, S.R.; Estill, J.C.; Jiang, N.; Paterson, A.H. An SNP Resource for Rice Genetics and Breeding Based on Subspecies Indica and Japonica Genome Alignments. Genome Res. 2004, 14, 1812–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCouch, S.R.; Teytelman, L.; Xu, Y.; Lobos, K.B.; Clare, K.; Walton, M.; Fu, B.; Maghirang, R.; Li, Z.; Xing, Y.; et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 2002, 9, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Jena, K.K.; Mackill, D.J. Molecular markers and their use in marker-assisted selection in rice. Crop. Sci. 2008, 48, 1266–1276. [Google Scholar] [CrossRef]
- Higgins, J.; Santos, B.; Khanh, T.D.; Trung, K.H.; Duong, T.D.; Doai, N.T.P.; De Vega, J. J Resequencing of 672 native rice accessions to explore genetic diversity and trait associations along Vietnam. Rice 2021, in press. [Google Scholar]
- Hoang, G.T.; Van Dinh, L.; Nguyen, T.T.; Ta, N.K.; Gathignol, F.; Mai, C.D.; Jouannic, S.; Tran, K.D.; Khuat, T.H.; Do, V.N.; et al. Genome-wide association study of a panel of Vietnamese rice landraces reveals new QTLs for tolerance to water deficit during the vegetative phase. Rice 2019, 12, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, H.; Truong, K.H.; Nguyen, L.V.; Pham, H.Q.; Can, T.H.; Xuan, T.D.; La, H.A.; Mario, C.; Sarah, A.; Nguyen, T.D.; et al. Whole-Genome characteristics and polymorphic analysis of Vietnamese rice landraces as a comprehensive information resource marker-assisted selection. Inter. J. Genom. 2017, 9272363, 11. [Google Scholar] [CrossRef] [Green Version]
- Buu, B.C.; Lang, N.T. Rice conventional and molecular breeding at CLRRI (1977–2007). Omonrice 2007, 15, 1–11. [Google Scholar]
- Buu, B.C.; Lang, N.T.; Hue, N.T.N. Rice germplasm conservation in Vietnam. In Vietnam Fifty Years of Rice Research and Development; Bong, B.B., Bo, N.V., Buu, B.C., Eds.; Agriculture Publishing House: Hanoi, Vietnam, 2010; pp. 167–177. [Google Scholar]
- Saseendran, S.A.; Singh, K.K.; Rathore, L.S.; Singh, S.V.; Sinha, S.K. Effects of climate change on rice production in the tropical humid climate of Kerala, India. Clim. Chang. 2000, 44, 495–514. [Google Scholar] [CrossRef]
- Du, P.V.; Loan, L.C. Improvement of the rice breeding in intensive cropping system in the Mekong delta. Omonrice 2007, 15, 12–20. [Google Scholar]
- Hue, H.T.; Nghia, L.T.; Minh, H.T.; Anh, L.H.; Trang, L.T.T.; Khanh, T.D. Evaluation of genetic diversity of local-colored rice landraces using SSR Markers. Int. Lett. Nat. Sci. 2018, 67, 24–34. [Google Scholar] [CrossRef]
- Higgins, J.; Santos, B.A.; Khanh, T.D.; Trung, K.H.; Vega, J.D.; Ham, L.H.; Caccamo, M. Analysis of a large collection of Vietnamese native rice lines reveals novel genomics variants. In Proceedings of the Plant and Animal Genome Conference XXVII, San Diego, CA, USA, 12–16 January 2019. [Google Scholar]
- Tung, H.; Ton, P.H.; Hai, T.V.; Trung, T.N. Evaluation of local back glutinous rice germplasm of Vietnam for resistance to bacterial leaf blight disease. Vietnam J. Agric. Sci. 2019, 1, 240–248. [Google Scholar]
- Bach, N.D.; Hai, T.V.; Hung, N.V.; Ton, P.H. Collection, conservation, exploitation and development of rice genetic resource of Vietnam. J Viet. Environ. 2014, 6, 239–243. [Google Scholar]
- Tan, M.V.; Huong, D.T.; Tung, N.T.; Hoan, N.V.; Cuong, P.V. Breeding short growth duration of rice derived from a cross between indica cultivar IR24 (Oryza sativa L.) and Oryza rufipogon species. J. Sci. Dev. 2014, 11, 945–950. [Google Scholar]
- Fukuoka, S.; Alpatyeva, N.V.; Ebana, K.; Luu, N.T.; Nagamine, T. Analysis of Vietnamese rice germplasm provides an insight into Japonica rice differentiation. Plant Breed. 2003, 122, 497–502. [Google Scholar] [CrossRef]
- Trinh, L.N. Crop genetic resource diversity in Indochina and available approaches for its conservation. In Plant Genetic Resource: Characterization and Evaluation-New Approaches for Improved Use of Plant Genetic Resource, Proceedings of the Fourth Ministry of Agriculture, Forestry and Fishery Workshop on genetic resources, Tsukuba, Japan, 22–24 October 1996; MAFF: Ibaraki, Japan, 1996. [Google Scholar]
- Luy, T.T.; Lang, N.T.; Buu, B.C. Storage and Conservation of Wild Rice Species in Cuu Long River Delta. 2013. Available online: http://iasvn.org/homepage/DUY-TRI-VA-BAO-TON-NGUON-GEN-LUA-HOANG--TAI-DONG-BANG-SONG-CUU-LONG-4192.html (accessed on 14 March 2021). (In Vietnamese).
- Brar, D.S.; Khush, G.S. Wild relatives of rice: A valuable genetic resource for genomic and breeding research. In The Wild Oryza Genome; Modal, T.K., Henry, R.J., Eds.; Springer International Publishing, Springer Nature Switzerland AG: Cham, Switzerland, 2018; pp. 1–25. [Google Scholar]
- Grillo, M.A.; Li, C.; Fowlkes, A.M.; Briggeman, T.M.; Zhou, A.; Schemske, U.W.; Sang, T. Genetic architecture for the adaptive origin of annual wild rice, oryza nivara. Evolution 2009, 63, 870–883. [Google Scholar] [CrossRef]
- Le, H. Poaceae-Part 6. 2012. Available online: https://vietnamplants.blogspot.com/2012/?view=sidebar (accessed on 14 January 2021).
- La, V.H.; Tong, V.H.; Phan, H.T.; Tran, M.T.; Li, Y.R. Application of DNA marker to evaluate genetic resources for rice selecting with high yield and bacterial blight resistance. Sci. Deve 2010, 8, 9–16, (In Vietnamese with abstract in English). [Google Scholar]
- Lang, N.T.; Buu, B.C.; Viet, N.V.; Ismail, A.M. Strategies for improving and stabilizing rice productivity in the coastal zones of the Mekong Delta, Vietnam. In Tropical Deltas and Coastal Zones: Food Production, Communities and Environment at the Land-Water Interface (Comprehensive Assessment of Water Management in Agriculture Series, 9), 1st ed.; Hoang, C.T., Szuster, B.W., Pheng, K.S., Noble, A.D., Ismail, A.M., Eds.; CABI Publishing: Wallingford, UK, 2010; pp. 209–222. [Google Scholar]
- Ma, S.; Lin, S.; Wang, M.; Zou, Y.; Tao, H.; Liu, W.; Zhang, L.; Liang, K.; Ai, Y.; He, H. Differential expression proteins contribute to race-specific resistant ability in rice (Oryza sativa L.). Plants 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Sharma, T.R.; Rai, A.K.; Singh, N.K. Broad-spectrum blast resistance gene Pi-kh cloned from rice line Tetep designated as Pi54. J. Plant Bioch. Biotech. 2010, 19, 87–89. [Google Scholar] [CrossRef]
- Sharma, T.R.; Shanker, P.; Singh, B.K.; Jana, T.K.; Madhav, M.S.; Gaikwad, K.; Singh, N.K.; Plaha, P.; Rathour, R. Molecular mapping of rice blast resistance gene Pi-kh in the rice variety Tetep. J. Plant Biochem. Biotechnol. 2005, 14, 127–133. [Google Scholar] [CrossRef]
- Barman, S.R.; Gowda, M.; Venu, R.C.; Chattoo, B.B. Identification of a major blast resistance gene in the rice cultivar ‘Tetep’. Plant Breed. 2004, 123, 300–302. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Z.; Fjellstrom, R.G.; Moldenhauer, K.A.K.; Azam, M.A.; Correll, J.; Lee, F.N.; Xia, Y.; Rutger, J.N. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the US. Phytopathology 2004, 94, 296–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Wang, X.; Jia, Y.; Minkenberg, B.; Wheatley, M.; Fan, J.; Jia, M.H.; Famoso, A.; Edwards, J.D.; Wamishe, Y.; et al. The rice blast resistance gene Ptr encodes an atypical protein and confers broad spectrum disease resistance. Nat. Commun. 2018, 9, 2039. [Google Scholar] [CrossRef]
- Richa, K.; Tiwari, I.M.; Kumari, M.; Devanna, B.N.; Sonah, H.; Kumari, A.; Nagar, R.; Sharma, V.; Botella, J.R.; Sharma, T. Functional characterization of novel chitinase genes present in the sheath blight resistance QTL: qSBR11-1 in rice line Tetep. Front. Plant Sci. 2016, 7, 244. [Google Scholar] [CrossRef]
- Vu, X.T.; Vu, D.T.; La, T.N.; Vu, V.T.; Luu, Q.H.; Nguyen, T.D. Results of plant genetic resources conservation during the period of 2011. In Proceedings of the National Conference on Plant Science, 2nd, Can Tho, Vietnam, 11–12 August 2016; Agriculture Publishing House: Hanoi, Vietnam, 2016; p. 786, (In Vietnamese with English abstract). [Google Scholar]
- Toan, V.D.; Anh, D.T. Results of Biodiversity Policy in Vietnam: Conservation and exploration of plant genetic resources. In FFTC Agricultural Policy Platform (FFTC-AP); Available online: http://ap.fftc.agnet.org/files/ap_policy/1090/1090_1.pdf (accessed on 16 December 2020).
- Nguyen, T.H.; Tran, V.Q.; Dam, V.H.; Nguyen, T.A. Evaluation of agronomical and quality traits of some combination of the new two-lines rice hybrids. J. Sci. Dev. 2011, 9, 884–891. [Google Scholar]
- Bong, B.B. Rice-based food security in Vietnam: Past, present and future. In Vietnam Fifty Years of Rice Research and Development; Bong, B.B., Bo, N.V., Buu, B.C., Eds.; Agriculture Publishing House: Hanoi, Vietnam, 2010; pp. 9–18. [Google Scholar]
- Bo, N.V.; Buu, B.C. Rice production in Vietnam: Achievements, opportunities and challenges. In Vietnam Fifty Years of Rice Research and Development; Bong, B.B., Bo, N.V., Buu, B.C., Eds.; Agriculture Publishing House: Hanoi, Vietnam, 2010; pp. 19–36. [Google Scholar]
- New Plant Variety Protection of Vietnam (NPVPOV). Available online: http://pvpo.mard.gov.vn (accessed on 4 March 2020).
- Japonica Rice Producing Companies. Available online: http://www.angimex-kitoku.com.vn and http://www.phuthoseed.com (accessed on 4 March 2020).
- Khanh, T.D.; Trung, K.H.; Hoi, P.X. Future perspectives and some approaches to develop rice in Vietnam. In Biotechnology and Perspectives of Applications in Rice Breeding in Vietnam; Hoi, P.X., Khanh, T.D., Trung, K.H., Eds.; Hanoi National University Publisher: Hanoi, Vietnam, 2018; pp. 671–701. [Google Scholar]
- Phano-Vietnam Rural Development Association. The final report of Phano project. Current and biotech capacity in rice breeding and producing in Vietnam. Vietnam Rural Development Science Association, Hanoi, Vietnam. Available online: https://phano.org.vn/ (accessed on 4 December 2020).
- Le, M.T.; Arie, T.; Teraoka, T. Population dynamics and pathogenic races of rice blast fungus, Magnaporthe oryzae in the Mekong Delta in Vietnam. J. Gen. Plant Pathol. 2010, 76, 177–182. [Google Scholar] [CrossRef]
- Thuy, N.T.T.; Long, N.T.; Lieu, L.T.; Giang, H.T.; Trung, K.H.; Xuan, T.D.; Tran, H.D.; Hoi, P.X.; Trung, N.T.; Tuan, N.T.; et al. Evaluation of genetic diversity of rice blast fungus (Magnaporthe oryzae Barr) isolates collected from South Central coast areas of Vietnam. Chiang. Mai. J. Sci. 2020, 47, 1102–1117. [Google Scholar]
- Brown, J.; Caligari, P.D.S.; Campos, H.A. Plant Breeding, 2nd ed.; Wiley Blackwell: Oxford, UK, 2014; Volume 4, pp. 21–38. [Google Scholar]
- General Statistics Office of Vietnam. 2020. Available online: https://www.gso.gov.vn/Default_en.aspx?tabid=491 (accessed on 10 March 2020).
- Bui, B.B. Bringing the rice yield gap in Vietnam. In Bridging the Rice Yield Gap in the Asia-Pacific Region; FAO: Bangkok, Thailand, 2000; pp. 157–163. [Google Scholar]
- Hoan, N.T.; Nguyen, N.K.; Bui, B.B.; Nguyen, T.T.; Tran, D.Q.; Tran, V.B. Hybrid rice research and development in Vietnam. In Advances in Hybrid Rice Technology, Proceedings of the 3rd International Syposium on Hybrid Rice, Hyderabad, India, 14–16 November 1996; Virmani, S.S., Siddiq, E.A., Muralidharan, K., Eds.; IRRI: Laguna, Philippines, 1998; p. 443. [Google Scholar]
- Luu, V.Q.; Bui, B.B. Study on durable resistance of rice varieties to blast disease in the Mekong delta of Vietnam. Omonrice 1999, 7, 9–14. [Google Scholar]
- Luu, N.Q.; Le, Q.D.; Nguyen, T.T.; Nguyen, V.N.; Nguyen, V.T.; Bui, T.C.; Nguyen, T.N.; Nguyen, T.V.; Doan, H.G.; Luu, T.T.H.; et al. Selection and breeding of inbred rice PB10. In Proceedings of the National Conference on Plant Science 2nd, Can Tho, Vietnam, 11–12 August 2016; Agriculture Publishing House: Hanoi, Vietnam, 2016; pp. 351–360, (In Vietnamese with English abstract). [Google Scholar]
- Phi, C.N.; Thuy, T.T.; Nguyen, T.D.; Nguyen, T.L.; Nguyen, T.D.; Nguyen, T.K.; Kieu, T.D.; Dang, T.T.H.; Khanh, T.D.; Trung, H.T.; et al. Development of Jasmine 85 lines carrying genes resistance to blast and brown planthopper used marker-assisted selection. Sci. Tech. J. Agric. Rural. Dep. 2019, 5, 11–17, (In Vietnamese with English abstract). [Google Scholar]
- Son, T.M. Breeding rice cultivars resistant to bacterial leaf blight (Xanthomonas campestris pv. oryzae) in Vietnam. In Durability of Disease Resistance. Current Plant Science and Biotechnology in Agriculture; Jacobs, T., Parlevliet, J.E., Eds.; Springer: Dordrecht, The Netherlands, 1993; Volume 18, p. 351. [Google Scholar]
- Nguyen, T.L.; Bui, C.B. Molecular genetic analysis and marker-assisted selection of bacterial blight resistance in hybrid rice. Omonrice 2002, 10, 21–30. [Google Scholar]
- Huynh, V.N.; Nguyen, T.L.; Tran, T.N.; Bui, C.B. Analysis on xa-5 for resistance to bacterial blight among rice landraces in Vietnam. Omonrice 2011, 18, 50–58. [Google Scholar]
- Duong, D.H.; Nguyen, V.H. Introgression of Xa-7 for bacterial blight resistance to restorer line for development of two-line hybrid. Vietnam J. Agri. Sci. 2016, 14, 1859–1867, (In Vietnamese with English abstract). [Google Scholar]
- Diep, N.T.; Thuy, T.T.; Cuong, T.D.; Khoa, N.T.; Doai, N.T.P.; Trung, K.H.; Khanh, T.D. Pyramiding the candicate genes of rice bacterial leaf blight resistance xa5, Xa7 and xa13 into the elite rice variety. J. Sci. Engin. Res. 2017, 4, 92–98. [Google Scholar]
- Furuya, N.; Taura, S.; Goto, T.; Thuy, B.T.; Ton, P.H.; Tsuchiya, K.; Yoshimura, A. Diversity in Virulence of Xanthomonas oryzae pv. oryzae from Northern Vietnam. Jpn. Agric. Res. Q. JARQ 2012, 46, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Luu, V.Q.; Nguyen, T.M.H.; Nguyen, T.M.; Nguyen, T.P.N.; Do, T.H.; Truong, T.T. Identifying bacterial blight resistance genes in rice breeding in the Northern Vietnam. In Proceedings of the National Conference on Plant Science 2nd, Can Tho, Vietnam, 11–12 August 2016; Agriculture Publishing House: Hanoi, Vietnam, 2016; pp. 1–6, (In Vietnamese with English abstract). [Google Scholar]
- Linh, L.H.; Linh, T.H.; Xuan, T.D.; Ham, L.H.; Ismail, A.M.; Khanh, T.D. Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int. J. Plant Genom. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wassmann, R.; Hien, N.X.; Hoanh, C.T.; Tuong, T.P. Sea Level Rise Affecting the Vietnamese Mekong Delta: Water elevation in the flood season and implications for rice production. Clim. Chang. 2004, 66, 89–107. [Google Scholar] [CrossRef]
- Yoshida, Y.; Lee, H.S.; Trung, B.H.; Tran, H.-D.; Lall, M.K.; Kakar, K.; Xuan, T.D. Impacts of mainstream hydropower dams on fisheries and agriculture in lower Mekong basin. Sustainability 2020, 12, 2408. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Trinh, T.L.; Pham, T.T.H.; Bui, C.B. Genotype analysis to blast disease in rice (Oryza sativa L.) in Mekong delta. Omonrice 2010, 17, 87–98. [Google Scholar]
- Quan, T.A.L.; Vo, C.T.; Nguyen, T.H.N. Evaluation on saline tolerance ability and quality of Lua Soi, Mot Bui Hong, Nang Quot Bien varieties. CanTho Uni. J. Sci. 2012, 24a, 281–289, (In Vietnamese with English abstract). [Google Scholar]
- Anh, L.H.; Hue, H.T.; Quoc, N.K.; Nghia, L.T.; Trung, K.H.; Trung, T.; Trang, D.; Xuan, T.D.; Khanh, T.D. Effect of salt on growth of rice landraces in Vietnam. Int. Lett. Nat. Sci. 2016, 59, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Luu, M.C.; Luu, T.N.H.; Pham, T.M.H.; Vu, T.T.H.; Nguyen, Q.D.; Pham, T.M.; Vu, D.Q.; Ismail, A.M.; Le, H.H. Application of marker-assisted backcrossing to introgress the tolerance QTL SUB1 into the Vietnam elite rice variety-AS996. Am. J. Plant Sci. 2012, 3, 528–536. [Google Scholar]
- Huyen, L.T.N.; Cuc, L.M.; Ham, L.H.; Khanh, T.D. Introgression the salinity tolerance QTLs Saltol into Q5DB, the elite variety of Vietnam using marker-assisted -selection. Am. J. Plant Sci. 2013, 1, 80–84. [Google Scholar]
- Kotera, A.; Nawata, E.; Le, V.T.; Nguyen, V.V.; Sakuratani, T. Effect of submergence on rice yield in the Red River Delta, Vietnam. Jpn. J. Trop. Agric. 2005, 49, 197–206. [Google Scholar]
- Huyen, L.T.N.; Cuc, L.M.; Ismail, A.M.; Ham, L.H. Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am. J. Plant Sci. 2012, 3, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Khanh, D.; Linh, L.H.; Ham, L.H.; Xuan, T.D. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into the Vietnamese elite rice variety. J. Plant Breed. Crop. Sci. 2013, 5, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Grumbine, R.E.; Dore, J.; Xu, J. Mekong hydropower: Drivers of change and governance challenges. Front. Ecol. Environ. 2012, 10, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.T.; Le, N.T.; Hoang, T.M.; Luong, D.H. Water scarcity in Vietnam: A point of view on virtual water perspective. Water Resour. Manag. 2018, 32, 3579–3593. [Google Scholar] [CrossRef]
- Chau, M.N. Vietnam’s Mekong Delta Declares Emergency on Devastating Drought. In Climate Adaptation. Available online: https://www.climatesignals.org/headlines/vietnam%E2%80%99s-mekong-delta-declares-emergency-devastating-drought (accessed on 10 March 2020).
- Do, V.A.; Nguyen, X.D. Initial results about research, drought-resistant rice breeding for dry land and ecological areas with difficult conditions. In Proceedings of the First National Conference on Plant Science, Hanoi, Vietnam, 5–6 September 2013; Agriculture Publishing House: Hanoi, Vietnam, 2013; pp. 266–273. [Google Scholar]
- Tu, X.D.; Huong, N.Y.; Giang, L.T.; Thanh, L.T.; Khanh, T.D.; Trung, K.H.; Nhan, D.T.; Tuan, N.T. Screening drought tolerance of Vietnamese rice landraces in the laboratory and net house condition. Adv. Stud. Biol. 2021, 13, 21–28. [Google Scholar] [CrossRef]
- Vu, T.B.H.; Le, T.B.T.; Nguyen, A.D.; Hoang, B.T.; Nguyen, D.T. Assessment of genetic diversity of Vietnam rice by SSR markers to identify cross combinations for development of drought tolerance rice cultivars. J. Biol. 2013, 35, 80–91, (In Vietnamese with English abstract). [Google Scholar]
- Pham, V.C.; Doan, C.D.; Tran, T.A.; Tang, T.H. Evaluation on drought tolerance of rice lines with indica genetic background carrying chromosomal segment substitution from wild rice (Oryza rufipogon) or japonica. J. Sci. Dev. 2015, 13, 166–172. [Google Scholar]
- Nguyen, T.L.; Chu, T.N.; Pham, T.T.H.; Buu, C.B. Quantitative trait loci (QTLs) associated with drought tolerance in rice (Oryza sativa L.). Sabrao J. Bred. Genet. 2013, 45, 409–421. [Google Scholar]
- Thanh, N.C.; Singh, B. Trend in rice production and export in Vietnam. Omonrice 2006, 14, 111–123. [Google Scholar]
- Nguyen, T.T.; Nguyen, B.V.; Vo, C.T. Evaluation of grain quality of 55 rice varieties growing in the coastal areas of Ben Tre, Long An, Tien Giang and Tra Vinh provinces. Cantho Uni. J. Sci. 2005, 3, 33–39, (In Vietnamese with English abstract). [Google Scholar]
- Le, T.T.; Le, X.T.; Nguyen, H.K.; Nguyen, T.T. Selection of high grain quality rice varieties and factors influencing rice grain quality. Cantho Uni. J. Sci. 2005, 4, 36–45, (In Vietnamese with English abstract). [Google Scholar]
- Pham, V.P.; Huu, M.S.; Vo, C.T. Researching and selecting high quality rice varieties in Mekong Delta. Cantho Uni. J. Sci. 2010, 15b, 97–105, (In Vietnamese with English abstract). [Google Scholar]
- Tran, M.C.; Nguyen, Q.T.; Ngo, T.T.; Nguyen, Q.D.; Tran, V.Q.; Pham, V.C. Characterization of quality of parental lines for breeding high quality two-line hybrid rice. J. Sci. Dev. 2014, 12, 650–655. [Google Scholar]
- Nguyen, T.L.; Buu, C.B. Rice genetic resource conservation and utilization in the Mekong delta. Omonrice 2011, 18, 22–33. [Google Scholar]
- Beyer, P.; Al-Babili, S.; Ye, X.; Lucca, P.; Schaub, P.; Welsch, R.; Potrykus, I. Golden Rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 2002, 132, 506S–510S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Quan, N.; Xuan, T.D.; Tran, H.-D.; Ahmad, A.; Khanh, T.D.; Dat, T.D. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm. J. 2019, 27, 643–649. [Google Scholar] [CrossRef]
- Quan, V.N.; Tran, H.D.; Xuan, T.D.; Admad, A.; Dat, T.D.; Khanh, T.D.; Teschke, R. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules 2019, 24, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Quan, N.; Thien, D.D.; Khanh, T.D.; Tran, H.-D.; Xuan, T.D. Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods 2019, 8, 602. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.C.H.; Pham, T.N.; Huynh, T.P.L.; Pham, T.H.; Ho, T.H.N.; Dong, T.L.; Le, T.Y.H.; Nguyen, T.H.B.; Ha, M.L. Studies on developing high micro-nutrient rice varieties possessing high yield and good grain quality. In Proceedings of the National Conference on Plant Science 1st, Hanoi, Vietnam, 5–6 September 2013; Agriculture Publishing House: Hanoi, Vietnam, 2013; pp. 204–211. [Google Scholar]
- Singh, R.; Singh, Y.; Xalaxo, S.; Verulkar, S.; Yadav, N.; Singh, S.; Singh, N.; Prasad, K.; Kondayya, K.; Rao, P.R.; et al. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci. 2016, 242, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.S.; Barratt, B.J.; Clayton, D.G.; Todd, J.A. Genome-wide association studies: Theoretical and practical concerns. Nat. Rev. Genet. 2005, 6, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Genetics 2010, 42, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Yano, K.; Yamamoto, E.; Aya, K.; Takeuchi, H.; Lo, P.-C.; Hu, L.; Yamasaki, M.; Yoshida, S.; Kitano, H.; Hirano, K.; et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 2016, 48, 927–934. [Google Scholar] [CrossRef]
- Phung, T.P.N.; Mai, D.C.; Hoang, T.G.; Truong, T.M.H.; Lavarenne, J.; Gonin, M.; Nguyen, L.K.; Ha, T.T.; Do, N.V.; Gantet, P.; et al. Genome-wide association mapping for root traits in a panel of rice accessions from Vietnam. BMC Plant Biol. 2016, 16, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- To, H.T.M.; Nguyen, H.T.; Dang, N.T.M.; Nguyen, N.H.; Bui, T.X.; Lavarenne, J.; Phung, N.T.P.; Gantet, P.; Lebrun, M.; Bellafiore, S.; et al. Unraveling the genetic elements involved in shoot and root growth regulation by Jasmonate in rice using a genome-wide association study. Rice 2019, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hoang, G.T.; Gantet, P.; Nguyen, K.H.; Phung, N.T.P.; Ha, L.T.; Nguyen, T.T.; Lebrun, M.; Courtois, B.; Pham, X.H. Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel. PLoS ONE 2019, 14, e0219274. [Google Scholar] [CrossRef]
- Bertrand, C.Y.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B 2008, 363, 557–572. [Google Scholar]
- Francia, E.; Tacconi, G.; Crosatti, C.; Barabaschi, D.; Bulgarelli, D.; Dall’Aglio, E.; Valè, G. Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult. 2005, 82, 317–342. [Google Scholar] [CrossRef]
- Huang, N.; Angeles, E.R.; Domingo, J.; Magpantay, G.; Singh, S.; Zhang, G.; Kumaravadivel, N.; Bennett, J.; Khush, G.S. Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR. Theor. Appl. Genet. 1997, 95, 313–320. [Google Scholar] [CrossRef]
- Yara, A.; Phi, C.N.; Matsumura, M.; Yoshimura, A.; Yasui, H. Development of near-isogenic lines for BPH25(t) and BPH26(t), which confer resistance to the brown planthopper, Nilaparvata lugens (Stål.) in indica rice ‘ADR52’. Breed. Sci. 2010, 60, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Bui, B.C.; Ismail, A. Molecular mapping and marker-assisted selection for salt tolerance in rice (Oryza sativa L.). Omonrice 2008, 16, 50–56. [Google Scholar]
- Hoi, P.X.; Khanh, T.D.; Trung, K.H.; Tuyen, V.T.M.; Cuc, L.M.; Giang, K.N.; Nhung, P.T.P.; Phuong, N.D.; Nguyet, N.T.M. Biotechnology and Application Perspectives in Rice Breeding in Vietnam; Hanoi National University Publisher: Hanoi, Vietnam, 2018. (In Vietnamese) [Google Scholar]
- Vu, T.T.H.; Le, D.D.; Ismail, A.M.; Le, H.H. Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Aust. J. Crop Sci. 2012, 6, 1649–1654. [Google Scholar]
- Nguyen, T.L.; Pham, T.T.H.; Pham, C.T.; Tran, B.T.; Bui, C.B.; Cho, Y.C. Breeding for heat tolerance rice based on marker-assisted backcrossing in Vietnam. Plant Breed. Biotech. 2015, 3, 274–281. [Google Scholar]
- Anh, N.T.T.; Trung, K.H.; Trung, T.; Thanh, H.K.; Loan, N.T.; Linh, L.H.; Linh, T.H.; Anh, L.H.; Xuan, T.D.; Khanh, T.D. Evaluation of agronomic traits for yield components and disease resistance of some donor and recipient rice varieties for molecular breeding. Inter. J. Curr. Sci. Tech. 2015, 3, 175–177. [Google Scholar]
- Anh, N.T.T.; Trung, T.; Trung, K.H.; Linh, L.H.; Linh, T.H.; Thanh, H.K.; Thanh, T.T.; Toan, N.N.; Loan, N.Y.; Khanh, T.D. Marker-assisted backcrossing to develop elite rice lines from KD18/KC25 concerning high grains/panicle. In Proceedings of the Second National Conference on Crop Science, Cantho, Vietnam, 11–12 August 2016; Agriculture Publishing House: Hanoi, Vietnam, 2016; pp. 131–136, (In Vietnamese with English abstract). [Google Scholar]
- Duong, X.T.; Pham, T.T.; Tang, T.D.; Tong, T.H.; Le, T.T.; Nguyen, T.H. Application of molecular markers in the breeding of aromatic rice varieties with resistance to bacterial blight. Vietnam J. Sci. Technol. 2017, 60, 59–64, (In Vietnamese with English abstract). [Google Scholar]
- Kharwal, M.C.; Pandey, R.N.; Pawar, S.E. Mutation breeding for crop improvement. In Plant Breeding-Mendelian to Molecular Approaches; Jain, H.K., Kharkwal, M.V., Eds.; Narosa Publishing House: New Delhi, India, 2004; pp. 601–645. [Google Scholar]
- Viana, V.E.; Pegoraro, C.; Busanello, C.; de Oliveira, A.C. Mutagenesis in rice: The basic for breeding a new super plant. Front. Plant. Sci. 2019, 10, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinh, M.Q.; Thinh, D.K.; Bang, D.T.; At, D.H.; Ham, L.H. Current status and research directions of induced mutation application to seed crops improvement in Vietnam. In Induced Plant Mutation in the Genomic Era; Shu, Q.Y., Ed.; FAO: Rome, Italy, 2009; pp. 341–345. [Google Scholar]
- Do, K.T. Socio-economic impacts of mutant rice varieties in southern Vietnam. In Induced plant mutation in the genomics era. In Join FAO/IAEA Programe, Nuclear Techniques in Food and Agriculture; Shu, Q.Y., Ed.; Food and Agriculture Organization of the United Nation: Rome, Italy, 2009; pp. 62–65. [Google Scholar]
- IAEA. World Wide Success in Mutation Breeding for Food Security-Achievement and Outstanding Achievement Awards. Available online: http://www-naweb.iaea.org/nafa/news/awards-mutation-breeding-food-security.html (accessed on 15 March 2021).
- Tran, T.P.; Ho, Q.C. Breeding new aromatic rice with high iron using gamma radiation and hybridization. In Biotechnologies for Plant Mutation Breeding Protocol; Jankowicz-Cieslak, J., Tai, T., Kumlehn, J., Till, B., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2017; pp. 173–191, Chapter 11. [Google Scholar]
- Nguyen, T.L.; Tran, A.N.; Nguyen, V.P.; Bui, C.B. Breeding for low phytic acid mutants in rice (Oryza sativa L.). Omonrice 2007, 15, 29–35. [Google Scholar]
- Pham, V.U.; Pham, T.B.T.; Nguyen, T.L. Evaluate the fluctuation of phytic acid content in seed from mutant lines by gamma-ray. Cantho Uni. J. Sci. 2012, 24a, 264–272, (In Vietnamese with English abstract). [Google Scholar]
- Nguyen, T.K.; Hoang, Q.M.; Tran, T.T.; Bui, P.D.; Nguyen, N.T.; Luu, N.S. Volatility of some genetic characteristics and selected values of the mutant rice lines after irradiation treatment repeated consecutive. Vietnam Sci. Technol. 2013, 3, 102–105. [Google Scholar]
- Hoang, T.L.; De Filippis, L.F.; Le, X.T. Salt Tolerance and Screening for Genetic Changes in Rice Mutants after Gamma Irradiation Using RAPD and Microsatellite (RAMP) Markers. Open Hortic. J. 2009, 2, 62–69. [Google Scholar] [CrossRef]
- Trung, K.H.; Nguyen, T.K.; Khuat, H.B.T.; Nguyen, T.D.; Khanh, T.D.; Tran, D.K.; Tran, D.X.; Nguyen, X.H. Whole genome sequencing reveals the island of novel polymorphisms in two native aromatic japonica rice landraces from Vietnam. Genome Biol. Evol. 2017, 9, 1816–1820. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.C.H.; Ho, T.H.N. Development of transgenic rice lines resistance to insect pests using Agrobacterium tumefaciens-mediated transformation and mannose selection system. Omonrice 2011, 18, 1–10. [Google Scholar]
- Doan, T.T.; Truong, Q.C.; Baiskh, N.; Normal, O.; Datta, S.W. Expression of GUS gene in indica rice (Oryza sativa ssp. indica) driven by different promoter. Biotechnology 2008, 6, 321–326, (In Vietnamese with English abstract). [Google Scholar]
- Hoang, T.G.; Mai, D.C.; Nguyen, T.H.; Lavarene, J.; Gonin, M.T.; Nguyen, H.; Do, N.V.; Gantet, P. Optimization of transformation protocol for japonica rice cv. Taichung 65 through Agrobacterium tumefaciens. J. Sci. Dev. 2015, 13, 764–773. [Google Scholar]
- Tran, T.X.M.; Nguyen, T.L. Factors affecting the efficiency of Agrobacterium-mediated transformation in rice (Oryza sativa L.) using phosphomannose isomerase selection system. Cantho Uni. J. Sci. 2017, 49, 9–17, (In Vietnamese with English abstract). [Google Scholar]
- Shan, Q.; Wang, Y.; Li, J.; Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 2014, 9, 2395–2410. [Google Scholar] [CrossRef]
- Cao, X.H.; Wang, W.; Le, T.T.H.; Vu, T.H.G. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. Int. J. Genom. 2016, 2016, 5078796. [Google Scholar] [CrossRef]
- Satheesh, V.; Zhang, H.; Wang, X.; Lei, M. Precise editing of plant genomes–Propects and Challenges. Semin. Cell. Dev. Biol. 2019, 96, 115–123. [Google Scholar] [CrossRef]
- Korotkova, A.M.; Gerasimova, S.V.; Khlestkina, E.K. Current achievements in modifying crop genes using CRISPS/Cas system. Vavilov. J. Genet. Breed. 2019, 23, 29–37. [Google Scholar] [CrossRef]
- Phuong, N.D.; Hoi, P.X. gRNA sequence design to specifically modified for OsP5CS gene enhanced drought and salinity tolerance of rice variety BC15 by CRISPR/CAS9. Sci. Technol. Agric. Rural Dev. 2017, 19, 19–26, (In Vietnamese with English abstract). [Google Scholar]
- Gibson, J.; Kim, B. Quality, quantity, and nutritional impacts of rice price changes in Vietnam. World Dev. 2013, 43, 329–340. [Google Scholar] [CrossRef]
- Feuer, R. Biotye 2 brown planthopper in the Philippines. Int. Rice Res. Newsl. 1976, 1, 15. [Google Scholar]
- Peralta, C.A.; Fontanilla, W.S.; Ferrer, L.S. Brown planthopper resurgence on IR36 in Mindanao, Philippines. Int. Rice Res. Newsl. 1983, 8, 13–14. [Google Scholar]
- Sebesvari, Z.; Le, T.T.H.; Renaud, F.G. Climate change adaptation and agrichemicals in the Mekong delta, Vietnam. Adv. Global. Chang. Res. 2011, 45, 219–239. [Google Scholar]
- Fujita, D.; Yoshimura, A.; Yasui, H. Development of near-isogenic lines and pyramided lines carrying resistance genes to green rice leafhopper (Nephotettix cinticeps Uhler) with Taichung 65 genetic background in rice (Oryza sativa L.). Breed. Sci. 2010, 60, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Zhang, W.; Liu, B.; Hu, J.; Wei, Z.; Shi, Z.; He, R.; Zhu, L.; Chen, R.; Han, B.; et al. Identification and characterization ofBph14, a gene conferring resistance to brown planthopper in rice. Proc. Natl. Acad. Sci. USA 2009, 106, 22163–22168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collard, B.C.Y.; Beredo, J.C.; Lenaerts, B.; Mendoza, R.; Santelices, R.; Lopena, V.; Verdeprado, H.; Raghavan, C.; Gregorio, G.B.; Vial, L.; et al. Revisiting rice breeding methods—evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod. Sci. 2017, 20, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Hatta, M.A.M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanh, T.D.; Duong, V.X.; Nguyen, P.C.; Xuan, T.D.; Trung, N.T.; Trung, K.H.; Gioi, D.H.; Hoang, N.H.; Tran, H.-D.; Trung, D.M.; et al. Rice Breeding in Vietnam: Retrospects, Challenges and Prospects. Agriculture 2021, 11, 397. https://doi.org/10.3390/agriculture11050397
Khanh TD, Duong VX, Nguyen PC, Xuan TD, Trung NT, Trung KH, Gioi DH, Hoang NH, Tran H-D, Trung DM, et al. Rice Breeding in Vietnam: Retrospects, Challenges and Prospects. Agriculture. 2021; 11(5):397. https://doi.org/10.3390/agriculture11050397
Chicago/Turabian StyleKhanh, Tran Dang, Vu Xuan Duong, Phi Cong Nguyen, Tran Dang Xuan, Nguyen Thanh Trung, Khuat Huu Trung, Dong Huy Gioi, Nguyen Huy Hoang, Hoang-Dung Tran, Do Minh Trung, and et al. 2021. "Rice Breeding in Vietnam: Retrospects, Challenges and Prospects" Agriculture 11, no. 5: 397. https://doi.org/10.3390/agriculture11050397
APA StyleKhanh, T. D., Duong, V. X., Nguyen, P. C., Xuan, T. D., Trung, N. T., Trung, K. H., Gioi, D. H., Hoang, N. H., Tran, H. -D., Trung, D. M., & Huong, B. T. T. (2021). Rice Breeding in Vietnam: Retrospects, Challenges and Prospects. Agriculture, 11(5), 397. https://doi.org/10.3390/agriculture11050397