Effect of Feeding Frequency on Intake, Digestibility, Ingestive Behavior, Performance, Carcass Characteristics, and Meat Quality of Male Feedlot Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local and Ethics Committee
2.2. Animals, Treatments, and Experimental Managements
2.3. Data Collection and Chemical Analyses
2.4. Intake and Apparent Digestibility of Nutrients
2.5. Ingestive Behavior
2.6. Blood Metabolites and Hepatic Enzyme Activity
2.7. Growth Performance
2.8. Slaughter and Carcass Characteristics
2.9. Physicochemical Characteristics and Centesimal Composition of the Meat
2.10. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alba, H.; Júnior, J.F.; Leite, L.; Azevêdo, J.; Santos, S.; Pina, D.; Cirne, L.; Rodrigues, C.; Silva, W.; Lima, V.; et al. Protected or Unprotected Fat Addition for Feedlot Lambs: Feeding Behavior, Carcass Traits, and Meat Quality. Animals 2021, 11, 328. [Google Scholar] [CrossRef]
- De Oliveira, C.R.N.; Santos, S.A.; Mariz, L.D.S.; Carvalho, G.G.P.; de Azevêdo, J.A.G.; Tosto, M.S.L.; dos Santos, A.C.S. Dietary phase-feeding as feedlot strategy for Santa Ines lambs: Performance, N retention and meat quality. Livest. Sci. 2020, 239, 104106. [Google Scholar] [CrossRef]
- Nascimento, C.; Pina, D.; Cirne, L.; Santos, S.; Araújo, M.; Rodrigues, T.; Silva, W.; Souza, M.; Alba, H.; de Carvalho, G. Effects of Whole Corn Germ, A Source of Linoleic Acid, on Carcass Characteristics and Meat Quality of Feedlot Lambs. Animals 2021, 11, 267. [Google Scholar] [CrossRef]
- Chikwanha, O.; Muchenje, V.; Nolte, J.E.; Dugan, M.E.; Mapiye, C. Grape pomace (Vitis vinifera L. cv. Pinotage) supplementation in lamb diets: Effects on growth performance, carcass and meat quality. Meat Sci. 2018, 147, 6–12. [Google Scholar] [CrossRef]
- Guerreiro, O.; Alves, S.P.; Soldado, D.; Cachucho, L.; Almeida, J.M.; Francisco, A.; Santos-Silva, J.; Bessa, R.J.; Jerónimo, E. Inclusion of the aerial part and condensed tannin extract from Cistus ladanifer L. in lamb diets—Effects on growth performance, carcass and meat quality and fatty acid composition of intramuscular and subcutaneous fat. Meat Sci. 2019, 160, 107945. [Google Scholar] [CrossRef]
- Valença, R.D.L.; Sobrinho, A.G.D.S.; Borghi, T.H.; Meza, D.A.R.; de Andrade, N.; Silva, L.G.; Bezerra, L.R. Performance, carcass traits, physicochemical properties and fatty acids composition of lamb’s meat fed diets with marine microalgae meal (Schizochytrium sp.). Livest. Sci. 2020, 243, 104387. [Google Scholar] [CrossRef]
- Hart, K.; McBride, B.; Duffield, T.; Devries, T. Effect of frequency of feed delivery on the behavior and productivity of lactating dairy cows. J. Dairy Sci. 2014, 97, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Judy, J.; Bachman, G.; Brown-Brandl, T.; Fernando, S.; Hales, K.; Miller, P.; Stowell, R.; Kononoff, P. Energy balance and diurnal variation in methane production as affected by feeding frequency in Jersey cows in late lactation. J. Dairy Sci. 2018, 101, 10899–10910. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C.; Hassanat, F. Frequency of diet delivery to dairy cows: Effect on nutrient digestion, rumen fermentation, methane production, nitrogen utilization, and milk production. J. Dairy Sci. 2020, 103, 7094–7109. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.S.d.S.; Ghizzi, L.G.; Marques, J.A.; Nunes, A.T.; Grigoletto, N.T.; Gheller, L.S.; Silva, T.B.; Silva, G.G.; Lobato, D.N.; e Silva, L.F.C.; et al. Effects of organic acids in total mixed ration and feeding frequency on productive performance of dairy cows. J. Dairy Sci. 2021, 104, 5405–5416. [Google Scholar] [CrossRef]
- Bunting, L.D.; Howard, M.D.; Muntifering, R.B.; Dawson, K.A.; Boling, J.A. Effect of Feeding Frequency on Forage Fiber and Nitrogen Utilization in Sheep. J. Anim. Sci. 1987, 64, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.R.; Allen, O.B.; Grovum, W.L. The effect of feeding frequency and meal size on amounts of total and parotid saliva secreted by sheep. Br. J. Nutr. 1990, 63, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Abouheif, M.; Alshamiry, F.; El-Waziry, A.; Ali, M.; Swelum, A. Effect of Feeding Frequency on Plasma Metabolites Concentrations and Production Cost in Feed-restricted Lambs. Anim. Nutr. Feed. Technol. 2017, 17, 279. [Google Scholar] [CrossRef]
- Sun, X.; Chen, A.; Pacheco, D.; Hoskin, S.O.; Luo, D. Sheep Rumen Fermentation Characteristics Affected by Feeding Frequency and Feeding Level When Fed Fresh Forage. Animals 2019, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Macmillan, K.; Gao, X.; Oba, M. Increased feeding frequency increased milk fat yield and may reduce the severity of subacute ruminal acidosis in higher-risk cows. J. Dairy Sci. 2017, 100, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, R.S. Genotype differences and their impact on digestive tract function of ruminants: A review. Aust. J. Exp. Agric. 2004, 44, 459. [Google Scholar] [CrossRef]
- Clauss, M.; Hummel, J. Physiological adaptations of ruminants and their potential relevance for production systems. Rev. Bras. Zootec. 2017, 46, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Amorim, S.T.; Kluska, S.; Berton, M.P.; De Lemos, M.V.A.; Peripolli, E.; Stafuzza, N.B.; Martin, J.F.; Álvarez, M.S.; Gaviña, B.V.; Toro, M.A.; et al. Genomic study for maternal related traits in Santa Inês sheep breed. Livest. Sci. 2018, 217, 76–84. [Google Scholar] [CrossRef]
- De Sousa, W.H.; Cartaxo, F.Q.; Costa, R.G.; Cezar, M.F.; Cunha, M.D.G.G.; Filho, J.M.P.; Dos Santos, N.M. Biological and economic performance of feedlot lambs feeding on diets with different energy densities. Rev. Bras. de Zootec. 2012, 41, 1285–1291. [Google Scholar] [CrossRef] [Green Version]
- Juca, A.; Faveri, J.C.; Filho, G.M.M.; Filho, A.D.L.R.; Azevedo, H.C.; Muniz, E.N.; Pinto, L.F.B. Performance of the Santa Ines breed raised on pasture in semiarid tropical regions and factors that explain trait variation. Trop. Anim. Health Prod. 2014, 46, 1249–1256. [Google Scholar] [CrossRef]
- Gallo, S.B.; Arrigoni, M.; Lemos, A.L.D.S.C.; Haguiwara, M.M.H.; Bezerra, H. Influence of lamb finishing system on animal performance and meat quality. Acta Sci. Anim. Sci. 2018, 41, 44742. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. Assoc. Off. Anal. Chem. 2002, 85, 1217–1240. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standartization of procedures for nitrogen fractionation of ruminants feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Hall, M.B. Neutral Detergent-Soluble Carbohydrates: Nutritional Relevance and Analysis; University of Florida: Gainesville, FL, USA, 2000; p. 76. [Google Scholar]
- Da Cruz, C.H.; Santos, S.A.; de Carvalho, G.G.P.; Azevedo, J.A.G.; Detmann, E.; Filho, S.D.C.V.; Mariz, L.D.S.; Pereira, E.S.; Nicory, I.M.C.; Tosto, M.S.L.; et al. Estimating digestible nutrients in diets for small ruminants fed with tropical forages. Livest. Sci. 2021, 104532. [Google Scholar] [CrossRef]
- Johnson, T.R.; Combs, D.K. Effects of Prepartum Diet, Inert Rumen Bulk, and Dietary Polyethylene Glycol on Dry Matter Intake of Lactating Dairy Cows. J. Dairy Sci. 1991, 74, 933–944. [Google Scholar] [CrossRef]
- Polli, V.A.; Restle, J.; Senna, D.B.; Almeida, S.R.S. Rumination of bovine and bubaline steers in feedlot regimen. Rev. Bras. Zootec. 1996, 25, 987–993. [Google Scholar]
- Bürger, P.J.; Pereira, J.C.; De Queiroz, A.C.; Da Silva, J.F.C.; Filho, S.D.C.V.; Cecon, P.R.; Casali, A.D.P. Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado. Rev. Bras. de Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Cézar, M.F.; Sousa, W.H. Sheep and Goat Carcasses: Production, Evaluation and Classification; Agropecuária Tropical ed.: Uberaba, Brazil, 2007. [Google Scholar]
- Miltenburg, G.A.J.; Wensing, T.; Smulders, F.J.M.; Breukink, H.J. Relationship between blood hemoglobin, plasma and tissue iron, muscle heme pigment, and carcass color of veal1. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef]
- Duckett, S.; Klein, T.; Dodson, M.; Snowder, G. Tenderness of normal and callipyge lamb aged fresh or after freezing. Meat Sci. 1998, 49, 19–26. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Shackelford, S.D.; Johnson, L.P.; Miller, M.F.; Miller, R.K.; Koohmaraie, M. A comparison of Warner-Bratzler shear force assessment within and among institutions. J. Anim. Sci. 1997, 75, 2423–2432. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 2002. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 1990. [Google Scholar]
- Magalhães, T.S.; Carvalho, G.G.P.; Santos, E.M.; Júnior, J.E.F.; Pina, D.S.; Pinto, L.F.B.; Mourão, G.B.; Soares, F.D.S.; Eiras, C.E.; Cirne, L.G.A.; et al. Effect of cottonseed processing and chitosan supplementation on lamb performance, digestibility and nitrogen digestion. J. Agric. Sci. 2019, 157, 636–642. [Google Scholar] [CrossRef]
- Albuquerque, I.; Araújo, G.; Santos, F.; Carvalho, G.; Santos, E.; Nobre, I.; Bezerra, L.; Silva-Júnior, J.; Silva-Filho, E.; Oliveira, R. Performance, Body Water Balance, Ingestive Behavior and Blood Metabolites in Goats Fed with Cactus Pear (Opuntia ficus-indica L. Miller) Silage Subjected to An Intermittent Water Supply. Sustainability 2020, 12, 2881. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, T.D.S.; Santos, E.M.; Júnior, J.E.D.F.; Santos, S.A.; Pina, D.D.S.; Cirne, L.G.A.; Pinto, L.F.B.; Mourão, G.B.; Soares, F.D.D.S.; Leite, L.C.; et al. Chitosan and cottonseed processing method association on carcass traits and meat quality of feedlot lambs. PLoS ONE 2020, 15, e0242822. [Google Scholar] [CrossRef]
- De Oliveira, H.R.; Veloso, C.M.; Siqueira, O.H.G.B.D.; Ferreira, M.F.L.; Lovatti, J.V.R.; Oliveira, H.R.; Cunha, C.S.; Gionbelli, T.R.S.; Espeschit, C.J.B.; Alba, H.D.R.; et al. Use of Castor Bean Meal, Biodiesel Industry Coproduct, in A Lamb Production System Using Creep-Feeding in Brazil. Animals 2020, 10, 1250. [Google Scholar] [CrossRef]
- Nascimento, C.D.O.; Santos, S.; Pina, D.D.S.; Tosto, M.; Pinto, L.; Eiras, D.; De Assis, D.; Perazzo, A.; De Araújo, M.; Azevêdo, J.; et al. Effect of roughage-to-concentrate ratios combined with different preserved tropical forages on the productive performance of feedlot lambs. Small Rumin. Res. 2019, 182, 15–21. [Google Scholar] [CrossRef]
- Devries, T.; von Keyserlingk, M.; Beauchemin, K. Frequency of Feed Delivery Affects the Behavior of Lactating Dairy Cows. J. Dairy Sci. 2005, 88, 3553–3562. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, E.; Mizubuti, I.; Silva, L.D.D.F.; Paiva, F.; Sousa, C.; Castro, F. Desempenho, comportamento ingestivo e características de carcaça de cordeiros confinados submetidos a diferentes frequências de alimentação. Rev. Bras. de Zootec. 2011, 40, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Robles, V.; González, L.A.; Ferret, A.; Manteca, X.; Calsamiglia, S. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets1. J. Anim. Sci. 2007, 85, 2538–2547. [Google Scholar] [CrossRef] [Green Version]
- Zebeli, Q.; Tafaj, M.; Weber, I.; Dijkstra, J.; Steingass, H.; Drochner, W. Effects of Varying Dietary Forage Particle Size in Two Concentrate Levels on Chewing Activity, Ruminal Mat Characteristics, and Passage in Dairy Cows. J. Dairy Sci. 2007, 90, 1929–1942. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S. Drives and limits to feed intake in ruminants. Anim. Prod. Sci. 2014, 54, 1513–1524. [Google Scholar] [CrossRef]
- Weiss, C.P.; Gentry, W.W.; Meredith, C.M.; Meyer, B.E.; Cole, N.A.; Tedeschi, L.O.; Mccollum, F.T.; Jennings, J.S. Effects of roughage inclusion and particle size on digestion and ruminal fermentation characteristics of beef steers1. J. Anim. Sci. 2017, 95, 1707–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkstra, J.; Ellis, J.; Kebreab, E.; Strathe, A.; Lopez, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed. Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Chibisa, G.E.; Beauchemin, K.A.; Penner, G.B. Relative contribution of ruminal buffering systems to pH regulation in feedlot cattle fed either low- or high-forage diets. Animals 2016, 10, 1164–1172. [Google Scholar] [CrossRef]
- Castillo-Lopez, E.; Petri, R.M.; Ricci, S.; Rivera-Chacon, R.; Sener-Aydemir, A.; Sharma, S.; Reisinger, N.; Zebeli, Q. Dynamic changes in salivation, salivary composition, and rumen fermentation associated with duration of high-grain feeding in cows. J. Dairy Sci. 2021, 104, 4875–4892. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhou, F.; Nan, Z.; Zhou, N. Comparative Grain Yield, Straw Yield, Chemical Composition, Carbohydrate and Protein Fractions, In Vitro Digestibility and Rumen Degradability of Four Common Vetch Varieties Grown on the Qinghai-Tibetan Plateau. Animals 2019, 9, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulart, R.S.; Vieira, R.; Daniel, J.L.P.; Amaral, R.C.; Santos, V.P.; Filho, S.G.T.; Cabezas-Garcia, E.H.; Tedeschi, L.; Nussio, L.G. Effects of source and concentration of neutral detergent fiber from roughage in beef cattle diets on feed intake, ingestive behavior, and ruminal kinetics. J. Anim. Sci. 2020, 98, skaa107. [Google Scholar] [CrossRef]
- Beltrão, E.S.; Silva, A.M.D.A.; Filho, J.M.P.; de Moura, J.F.P.; de Oliveira, J.P.F.; Oliveira, R.L.; Dias-Silva, T.P.; Bezerra, L.R. Effect of different blend levels of spineless cactus and Mombasa hay as roughage on intake, digestibility, ingestive behavior, and performance of lambs. Trop. Anim. Health Prod. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- Filho, A.E.; de Carvalho, G.G.P.; Pires, A.J.V.; Silva, R.R.; Santos, P.E.F.; Murta, R.M.; Pereira, F.M. Ingestive Behavior of Lambs Confined in Individual and Group Stalls. Asian-Australasian J. Anim. Sci. 2014, 27, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Van, D.T.T.; Mui, N.T.; Ledin, I.; Mùi, N.T. Effect of group size on feed intake, aggressive behaviour and growth rate in goat kids and lambs. Small Rumin. Res. 2007, 72, 187–196. [Google Scholar] [CrossRef]
- Alemneh, T.; Getabalew, M. Factors influencing the growth and development of meat animals. Int. J. Anim. Sci. 2019, 3, 1048. [Google Scholar]
- Hocquette, J.-F. Endocrine and metabolic regulation of muscle growth and body composition in cattle. Animals 2010, 4, 1797–1809. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Huang, Y.; Du, M. Farm animals for studying muscle development and metabolism: Dual purposes for animal production and human health. Anim. Front. 2019, 9, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, N.; Bomberger, R.; Matamoros, C.; Harvatine, K. Effect of dietary supplementation of sodium acetate and calcium butyrate on milk fat synthesis in lactating dairy cows. J. Dairy Sci. 2019, 102, 5172–5181. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in fatty acids nutrition in dairy cows: From gut to cells and effects on performance. J. Anim. Sci. Biotechnol. 2020, 11, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Dehority, B.A.; Tirabasso, P.A. Effect of feeding frequency on bacterial and fungal concentrations, pH, and other parameters in the rumen. J. Anim. Sci. 2001, 79, 2908–2912. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.; Carrara, T.V.B.; Pereira, M.; De Oliveira, C.A.; Júnior, I.C.B.; Watanabe, D.H.M.; Rigueiro, A.L.N.; Arrigoni, M.; Millen, D.D. Feedlot performance, feeding behavior and rumen morphometrics of Nellore cattle submitted to different feeding frequencies. Sci. Agricola 2018, 75, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Przemysław, S.; Cezary, P.; Stanisław, M.; Krzysztof, L.; Barbara, P.; Zofia, A.; Maja, F.; Katarzyna, Ż.; Ząbek, K. The effect of nutritional and fermentational characteristics of grass and legume silages on feed intake, growth performance and blood indices of lambs. Small Rumin. Res. 2015, 123, 1–7. [Google Scholar] [CrossRef]
- Gobindram, M.N.N.-E.; Bognanno, M.; Luciano, G.; Lanza, M.; Biondi, L. Carob pulp inclusion in lamb diets: Effect on intake, performance, feeding behaviour and blood metabolites. Anim. Prod. Sci. 2016, 56, 850–858. [Google Scholar] [CrossRef]
- Shakeri, P. Pistachio by-product as an alternative forage source for male lambs: Effects on performance, blood metabolites, and urine characteristics. Anim. Feed. Sci. Technol. 2015, 211, 92–99. [Google Scholar] [CrossRef]
- Costa, R.G.; Ribeiro, N.L.; Nobre, P.T.; Carvalho, F.; Medeiros, A.N.; Cruz, G.R.B.; Freire, L.F.S. Biochemical and hormonal parameters of lambs using guava (Psidium guajava L.) agro-industrial waste in the diet. Trop. Anim. Health Prod. 2017, 50, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Odhaib, K.J.; Adeyemi, K.; Ahmed, M.A.; Jahromi, M.F.; Jusoh, S.; Samsudin, A.A.; Alimon, A.R.; Yaakub, H.; Sazili, A.Q. Influence of Nigella sativa seeds, Rosmarinus officinalis leaves and their combination on growth performance, immune response and rumen metabolism in Dorper lambs. Trop. Anim. Health Prod. 2018, 50, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.C.G.D.C.; Freitas, P.M.; Santos, E.M.; De Araújo, G.G.L.; Pires, A.J.V.; Ayres, M.C.C.; De Carvalho, L.M.; Souza, J.; De Carvalho, G.G.P. Effects of ammoniated pearl millet silage on intake, feeding behavior, and blood metabolites in feedlot lambs. Trop. Anim. Health Prod. 2019, 51, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
Ingredient | g/kg Dry Matter |
Soybean meal | 245.0 |
Ground corn | 234.0 |
Mineral mixture 1 | 15.0 |
Urea | 6.0 |
Tifton-85 hay | 500.0 |
Composition Chemical | g/kg Dry Matter |
Dry matter (g/kg as-fed) | 880.1 |
Ash | 53.9 |
Crude protein | 152.0 |
Ether extract | 15.0 |
Neutral detergent fiber | 419.3 |
Non-fibrous carbohydrates | 251.7 |
Total digestible nutrients | 695.9 |
Items | Feeding Frequency (Number/Day) | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Intake (kg/day) | ||||||
Dry matter | 1.006 | 1.058 | 1.130 | 1.238 | 0.07 | 0.137 |
Organic matter | 0.913 | 0.980 | 1.060 | 1.069 | 0.06 | 0.180 |
Crude protein | 0.259 | 0.271 | 0.291 | 0.310 | 0.02 | 0.172 |
Ether extract | 0.017 | 0.018 | 0.020 | 0.021 | 0.00 | 0.139 |
Neutral detergent fiber | 0.394 | 0.422 | 0.448 | 0.492 | 0.03 | 0.083 |
Non-fibrous carbohydrates | 0.263 | 0.273 | 0.287 | 0.316 | 0.02 | 0.203 |
Apparent total tract digestibility (%) | ||||||
Dry matter | 73.28 | 76.58 | 82.24 | 82.2 | 2.91 | 0.161 |
Organic matter | 74.28 | 78.68 | 81.98 | 81.01 | 2.51 | 0.051 |
Crude protein | 83.42 b | 86.99 a,b | 91.88 a | 89.31 a,b | 1.96 | 0.005 |
Ether extract | 73.54 | 83.59 | 76.09 | 77.77 | 3.69 | 0.262 |
Neutral detergent fiber | 60.99 b | 69.63 a,b | 73.47 a | 72.18 a | 3.22 | 0.008 |
Non-fibrous carbohydrates | 87.49 | 91.25 | 87.40 | 90.12 | 1.79 | 0.232 |
Total digestible nutrients | 69.59 b | 78.47 a,b | 84.29 a | 80.31 a | 3.29 | 0.002 |
Performance (kg) | ||||||
Initial body weight | 24.95 | 25.77 | 24.91 | 24.21 | 0.90 | - |
Final body weight | 36.91 | 38.39 | 37.89 | 37.41 | 1.56 | 0.881 |
Total weight gain | 11.96 | 13.16 | 12.98 | 13.20 | 0.97 | 0.875 |
Average daily gain (g/day) | 0.171 | 0.188 | 0.185 | 0.190 | 0.01 | 0.869 |
Feed conversion 3 | 8.76 | 8.61 | 9.03 | 9.07 | 0.84 | 0.894 |
Items 1 | Feeding Frequency (Number/Day) | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Feeding | ||||||
Minutes/day | 287.9 | 289.6 | 290.5 | 305.7 | 14.44 | 0.750 |
Minutes/kg DM | 292.4 | 288.4 | 262.1 | 264.9 | 22.64 | 0.633 |
Minutes/kg NDF | 744.7 | 717.7 | 657.1 | 665.0 | 55.22 | 0.546 |
Rumination | ||||||
Minutes/day | 505.7 | 452.9 | 456.5 | 486.0 | 25.42 | 0.325 |
Minutes/kg DM | 502.7 a | 439.4 a,b | 407.6 b | 401.5 b | 28.85 | 0.029 |
Minutes/kg NDF | 1210.2 | 1099.5 | 1023.8 | 1010.2 | 72.04 | 0.147 |
Idleness | ||||||
Minutes/day | 638.2 | 697.9 | 693.6 | 634.0 | 33.04 | 0.245 |
Chews | ||||||
Number/bolus | 63.5 | 57.9 | 66.3 | 64.9 | 2.83 | 0.164 |
Seconds/bolus | 47.8 | 44.3 | 46.1 | 43.5 | 2.99 | 0.768 |
Number/day | 29,473 | 30,973 | 29,236 | 27,521 | 3095 | 0.716 |
Hours/day | 17.8 | 18.6 | 19.9 | 21.6 | 0.55 | 0.127 |
Minutes/kg DM | 768.7 | 690.2 | 669.7 | 666.4 | 47.04 | 0.206 |
Minutes/kg NDF | 1955 | 1817 | 1681 | 1676 | 115.74 | 0.183 |
Feeding efficiency | ||||||
g DM/hour | 210.8 | 207.5 | 236.7 | 226.5 | 16.85 | 0.544 |
g NDF/hour | 82.3 | 83.3 | 94.0 | 89.9 | 6.37 | 0.488 |
Rumination efficiency | ||||||
g DM/hour | 123.7 | 140.4 | 150.4 | 144.4 | 8.89 | 0.139 |
g NDF/hour | 48.6 | 56.3 | 59.8 | 57.3 | 3.47 | 0.117 |
g DM/bolus | 1.59 | 1.73 | 1.92 | 1.74 | 0.18 | 0.535 |
g NDF/bolus | 0.629 | 0.695 | 0.768 | 0.691 | 0.07 | 0.541 |
Bolus (number/day) | 684.3 | 650.8 | 625.4 | 688.1 | 59.28 | 0.853 |
Items | Feeding Frequency (Number/Day) | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Weight (kg) | ||||||
Slaughter | 36.02 | 37.04 | 38.26 | 38.46 | 1.86 | 0.799 |
Hot carcass | 16.80 | 17.13 | 17.70 | 17.57 | 0.95 | 0.898 |
Cold carcass | 16.71 | 17.07 | 17.62 | 17.17 | 0.97 | 0.922 |
Yield (%) | ||||||
Hot carcass | 46.60 | 46.23 | 46.30 | 46.48 | 0.88 | 0.984 |
Cold carcass | 45.69 | 46.05 | 46.10 | 46.50 | 0.69 | 0.879 |
Commercial cuts yield (%) | ||||||
Neck | 9.09 | 10.09 | 9.86 | 9.99 | 0.25 | 0.062 |
Shoulder | 19.28 | 19.40 | 18.71 | 19.51 | 0.27 | 0.196 |
Rib | 35.85 | 34.95 | 36.19 | 35.87 | 0.55 | 0.529 |
Loin | 4.82 | 5.16 | 5.17 | 5.11 | 0.22 | 0.629 |
Leg | 30.63 | 30.34 | 29.80 | 28.94 | 0.42 | 0.059 |
Subjective measurements | ||||||
Conformation | 2.19 | 2.42 | 2.20 | 2.36 | 0.07 | 0.085 |
Finishing | 2.25 | 2.30 | 2.30 | 2.22 | 0.06 | 0.707 |
Fattening | 2.22 | 2.40 | 2.30 | 2.20 | 0.19 | 0.891 |
Marbling | 1.11 | 1.30 | 1.00 | 1.60 | 0.65 | 0.159 |
Eye loin area (cm2) | 14.20 | 13.51 | 12.83 | 12.52 | 0.11 | 0.307 |
SFT (mm) 3 | 1.22 b | 1.66 a | 1.41 a,b | 1.58 a | 0.19 | 0.009 |
Morphometric measurements (cm) | ||||||
Internal length | 68.45 | 68.70 | 69.00 | 67.20 | 1.20 | 0.744 |
External length | 60.00 | 59.60 | 59.80 | 58.62 | 0.96 | 0.714 |
Leg length | 35.11 | 34.50 | 34.30 | 34.50 | 0.67 | 0.866 |
Leg circumference | 34.50 | 34.40 | 34.10 | 34.10 | 0.89 | 0.983 |
Rump width | 26.00 | 25.30 | 25.50 | 25.00 | 0.61 | 0.744 |
Chest width | 20.00 | 20.30 | 19.70 | 20.20 | 0.80 | 0.925 |
Chest depth | 23.12 | 22.90 | 23.80 | 22.44 | 2.73 | 0.117 |
Rump circumference | 63.45 | 65.50 | 67.60 | 68.11 | 3.71 | 0.206 |
Chest perimeter | 72.25 | 73.55 | 74.00 | 74.90 | 1.54 | 0.578 |
Items | Feeding Frequency (Number/Day) | SEM 1 | p-Value | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Color | ||||||
Brightness (L*) | 46.69 | 48.70 | 50.12 | 50.43 | 1.27 | 0.103 |
Redness (a*) | 25.91 | 26.29 | 27.70 | 26.33 | 0.68 | 0.320 |
Yellowness (b*) | 9.46 | 10.16 | 11.15 | 11.57 | 0.62 | 0.074 |
Cooking losses (%) | 17.74 | 16.41 | 18.26 | 16.94 | 2.55 | 0.941 |
Shear force (kgf/cm2) | 1.17 | 1.06 | 1.16 | 1.19 | 0.12 | 0.882 |
Proximate composition (%) | ||||||
Moisture | 73.07 | 72.94 | 70.77 | 72.52 | 0.62 | 0.088 |
Protein | 22.13 | 22.13 | 22.31 | 22.00 | 0.31 | 0.948 |
Dry matter | 1.20 | 0.99 | 1.10 | 1.18 | 0.16 | 0.852 |
Fat | 3.79 | 4.10 | 5.41 | 4.35 | 0.48 | 0.206 |
Collagen | 1.44 | 1.90 | 1.45 | 1.51 | 0.14 | 0.158 |
Items | Feeding Frequency (Number/Day) | SEM 1 | p-Value | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Blood metabolites and liver enzyme activity (UI/L) | ||||||
Urea (mg/dL) | 60.00 | 58.60 | 56.11 | 55.11 | 3.08 | 0.629 |
Total proteins (g/dL) | 5.48 | 5.18 | 5.26 | 5.67 | 0.35 | 0.081 |
Gamma-glutamyl transferase | 52.35 | 57.66 | 58.33 | 56.21 | 2.67 | 0.477 |
Aspartate aminotransferase | 89.11 | 91.20 | 110.10 | 93.89 | 6.01 | 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldanha, R.B.; dos Santos, A.C.P.; Alba, H.D.R.; Rodrigues, C.S.; Pina, D.d.S.; Cirne, L.G.A.; Santos, S.A.; Pires, A.J.V.; Silva, R.R.; Tosto, M.S.L.; et al. Effect of Feeding Frequency on Intake, Digestibility, Ingestive Behavior, Performance, Carcass Characteristics, and Meat Quality of Male Feedlot Lambs. Agriculture 2021, 11, 776. https://doi.org/10.3390/agriculture11080776
Saldanha RB, dos Santos ACP, Alba HDR, Rodrigues CS, Pina DdS, Cirne LGA, Santos SA, Pires AJV, Silva RR, Tosto MSL, et al. Effect of Feeding Frequency on Intake, Digestibility, Ingestive Behavior, Performance, Carcass Characteristics, and Meat Quality of Male Feedlot Lambs. Agriculture. 2021; 11(8):776. https://doi.org/10.3390/agriculture11080776
Chicago/Turabian StyleSaldanha, Rodrigo B., Ana C. P. dos Santos, Henry D. R. Alba, Carlindo S. Rodrigues, Douglas dos S. Pina, Luis G. A. Cirne, Stefanie A. Santos, Aureliano J. V. Pires, Robério R. Silva, Manuela S. L. Tosto, and et al. 2021. "Effect of Feeding Frequency on Intake, Digestibility, Ingestive Behavior, Performance, Carcass Characteristics, and Meat Quality of Male Feedlot Lambs" Agriculture 11, no. 8: 776. https://doi.org/10.3390/agriculture11080776
APA StyleSaldanha, R. B., dos Santos, A. C. P., Alba, H. D. R., Rodrigues, C. S., Pina, D. d. S., Cirne, L. G. A., Santos, S. A., Pires, A. J. V., Silva, R. R., Tosto, M. S. L., Bento, S. C., Grimaldi, A. B., Becker, C. A., & de Carvalho, G. G. P. (2021). Effect of Feeding Frequency on Intake, Digestibility, Ingestive Behavior, Performance, Carcass Characteristics, and Meat Quality of Male Feedlot Lambs. Agriculture, 11(8), 776. https://doi.org/10.3390/agriculture11080776