Yield and Chemical Composition of Raw Material from Meadow Arnica (Arnica chamissonis Less.) Depending on Soil Conditions and Nitrogen Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Morphology
2.2. Experimental Conditions
2.3. Plant Material
2.4. Chemical Analyses
2.4.1. Sesquiterpene Lactones
2.4.2. Flavonoids
2.4.3. Essential Oil
2.5. Theoretical Yield of Metabolites per Unit Area
2.6. Statistical Analysis
2.7. Meteorological Conditions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maguire, B. A monograph of the genus arnica (Senecioneae, Compositae). Brittonia 1943, 4, 386–510. [Google Scholar]
- Scoggan, H.J. The Flora of Canada. Part 4. Dicotyledoneae (Loasaceae to Compositae); National Museum of Natural Sciences Publications in Botany: Ottawa, ON, Canada, 1979. [Google Scholar]
- Wenk, E. Wildflowers of the High Sierra and John Muir Trail; Wilderness Press: Birmingham, AL, USA, 2015; pp. 91–92. [Google Scholar]
- Denver Botanic Gardens. Wildflowers of the Rocky Mountain Region; Timber Press Inc.: Portland, OR, USA, 2018; p. 416. [Google Scholar]
- Johnson, R.L.; Andreson, V.J.; Yeankee, A.T.; Anderson, Z. Seed predation in wild populations of Chamisso arnica (Arnica chamissonis Less: Asteraceae) and new host records for Campiglossa snowi (Hering) (Diptera: Tephritidae). West. N. Am. Nat. 2017, 77, 14–21. [Google Scholar] [CrossRef]
- Radanović, D.; Marković, T.; Antić-Mladenović, S.; Pljevljakušić, D.; Ristić, M.; Krivokuća-Dokić, D. Yield and quality of Arnica (Arnica montana and Arnica chamissonis var. foliosa) cultivated in Serbia. In Proceedings of the 1st International Scientific Conference on Medicinal, Aromatic and Spice Plants, Nitra, Slovakia, 5–6 December 2007; pp. 157–161. [Google Scholar]
- Sugier, D. The flowering pattern of Arnica montana L. and A. chamissonis Less. under field cultivation conditions with successive flower head collection. Acta Agrobot. 2007, 60, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Judžentienė, A.; Būdienė, J. Analysis of the chemical composition of flower essential oils from Arnica montana of Lithuanian origin. Chemija 2009, 20, 190–194. [Google Scholar]
- Kowalski, R.; Sugier, D.; Sugier, P.; Kołodziej, B. Evaluation of the chemical composition of essential oils with respect to the maturity of flower heads of Arnica montana L. and Arnica chamissonis Less. cultivated for industry. Ind. Crop. Prod. 2015, 76, 857–865. [Google Scholar] [CrossRef]
- Sugier, D.; Olesińska, K.; Sugier, P.; Wójcik, M. Chemical composition of essential oil from flower heads of Arnica chamissonis Less. under a nitrogen impact. Molecules 2019, 24, 4454. [Google Scholar] [CrossRef] [Green Version]
- Gawlik-Dziki, U.; Świeca, M.; Sugier, D.; Cichocka, J. Seeds of Arnica montana and Arnica chamissonis as a potential source of natural antioxidants. Herba Pol. 2009, 55, 60–71. [Google Scholar]
- Gawlik-Dziki, U.; Świeca, M.; Sugier, D.; Cichocka, J. Comparison of in vitro lipoxygenase, xanthine oxidase inhibitory and antioxidant activity of Arnica montana and Arnica chamissonis tinctures. Acta Sci. Pol. Hortorum Cultus 2011, 10, 15–27. [Google Scholar]
- Korneck, D.; Schnittler, M.; Vollmer, I. Red list of pteridophyta and spermatophyta in Germany. In Red List of Endangered Plants in Germany; Ludwig, G., Schnittler, M., Eds.; Bundesamt für Naturschutz: Bonn, Germany, 1996; Volume 28, pp. 21–187. [Google Scholar]
- Ekenäs, C. Phylogenies and Secondary Chemistry in Arnica (Asteraceae). Ph.D. Thesis, Faculty of Science and Technology, Uppsala University, Uppsala, Sweden, 2008; pp. 40–42. [Google Scholar]
- Falniowski, A.; Bazos, I.; Hodálová, I.; Lansdown, R.; Petrova, A. Arnica montana. In IUCN 2012. IUCN Red List of Threatened Species, Version 2012.2; IUCN: Gland, Switzerland, 2012. [Google Scholar]
- Sugier, P.; Kołos, A.; Wołkowycki, D.; Sugier, D.; Plak, A.; Sozinov, O. Evaluation of species inter-relations and soil conditions in Arnica montana L. habitats: A step towards active protection of endangered and high-valued medicinal plant species in NE Poland. Acta Soc. Bot. Pol. 2018, 87, 3592. [Google Scholar] [CrossRef]
- Mardari, C.; Birsan, C.; Stefanache, C.; Schiopu, R.; Grigoras, V.; Balaes, T.; Tanase, C. Population structure and habitat characteristics of Arnica montana L. in the NE Carpathians (Romania). Tuexenia 2019, 39, 401–421. [Google Scholar] [CrossRef]
- Sugier, P.; Sugier, D.; Sozinov, O.; Kołos, A.; Wołkowycki, D.; Plak, A.; Budnyk, O. Characteristics of plant communities, population features, and edaphic conditions of Arnica montana L. populations in pine forests of mid-eastern Europe. Acta Soc. Bot. Pol. 2019, 88, 3640. [Google Scholar] [CrossRef]
- Kathe, W. Conservation of Eastern-European medicinal plants: Arnica montana in Romania. In Medicinal and Aromatic Plants: Agricultural, Cultivated, Ecological, Legal, Pharmacological and Social Aspects; Bogers, R.J., Craker, L.E., Dagmar, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 17, pp. 203–211. [Google Scholar]
- Pasquier, B.; Godin, M. L’arnica des montagnes, entre culture et cueillette. Jard. Fr. 2014, 630, 19–21. Available online: https://www.jardinsdefrance.org/wp-content/uploads/jdf-medias/images/JdF630/JdF630_1F.pdf (accessed on 12 August 2021).
- Stefanache, C.P.; Peter, S.; Meier, B.; Danila, D.; Tanase, C.; Wolfram, E. Phytochemical composition of Arnicae flos from wild populations in the northern area of the Romanian eastern Carpathians. Rev. Chim. 2015, 66, 784–787. [Google Scholar]
- Leoni, V.; Borgonovo, G.; Giupponi, L.; Bassoli, A.; Pedrali, D.; Zuccolo, M.; Rodari, A.; Giorgi, A. Comparing Wild and Cultivated Arnica montana L. from the Italian Alps to Explore the Possibility of Sustainable Production Using Local Seeds. Sustainability 2021, 13, 3382. [Google Scholar] [CrossRef]
- Nowak, T. Arnika nizinna—Uprawy w rejonie gostyńsko-leszczyńskim. Wiad. Zielar. 2002, 44, 18–19. [Google Scholar]
- Nowak, K.; KAWON-HURT, Gostyń, Poland. Personal Communication, 2021.
- Kromer, K.; Kreitschitz, A.; Kleinteich, T.; Gorb, S.N.; Szumny, A. Oil secretory system in vegetative organs of three Arnica taxa: Essential oil synthesis, distribution and accumulation. Plant Cell Physiol. 2016, 57, 1020–1037. [Google Scholar] [CrossRef] [Green Version]
- Sugier, D.; Sugier, P.; Jakubowicz-Gil, J.; Winiarczyk, K.; Kowalski, R. Essential oil from Arnica montana achenes: Chemical characteristics and anticancer activity. Molecules 2019, 24, 4158. [Google Scholar] [CrossRef] [Green Version]
- Kimel, K.; Krauze-Baranowska, M.; Godlewska, S.; Pobłocka-Olech, L. HPLC-DAD-ESI/MS comparison of the chemical composition of flowers from two Arnica species grown in Poland. Herba Pol. 2020, 66, 1–10. [Google Scholar] [CrossRef]
- Sugier, P.; Jakubowicz-Gil, J.; Sugier, D.; Kowalski, R.; Gawlik-Dziki, U.; Kołodziej, B.; Dziki, D. Chemical characteristics and anticancer activity of essential oil from Arnica montana L. rhizomes and roots. Molecules 2020, 25, 1284. [Google Scholar] [CrossRef] [Green Version]
- Cassells, A.C.; Walsh, C.; Belin, M.; Robin, J.R.; Lubrano, C. Establishment of a plantation from micropropagated Arnica chamissonis a pharmaceutical substitute for the endangered A. montana. Plant Cell Tissue Organ Cult. 1999, 56, 139–144. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Sugier, D.; Cichocka, J. Comparison of antioxidant properties of infusions from different parts of Arnica montana and Arnica chamissonis var. foliosa Less. Herba Pol. 2010, 56, 59–68. [Google Scholar]
- Oleszek, M.; Kozachok, S. Antioxidant activity of plant extracts and their effect on methane fermentation in bioreactors. Int. Agrophys. 2018, 32, 395–401. [Google Scholar] [CrossRef]
- Olesińska, K. Antioxidant properties of Chamisso arnica (Arnica chamissonis Less.) water infusions. Agron. Sci. 2020, 75, 85–94. [Google Scholar] [CrossRef]
- Lim, C.B.; Fu, P.Y.; Ky, N.; Zhu, H.S.; Feng, X.; Li, J.; Srinivasan, K.G.; Hamza, M.S.; Zhao, J. NF-κB p65 repression by the sesquiterpene lactone, helenalin, contributes to the induction of autophagy cell death. BMC Complement. Altern. Med. 2012, 12, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemali, S.; Nejati-Koshki, K.; Tafsiri, E.; Rahmati-Yamchi, M.; Akbarzadeh, A.; Alizadeh, E.; Abbasi, M.; Barkhordari, A.; Tozihi, M.; Kordi, S.; et al. Inhibitory effects of β-cyclodextrin-helenalin complexes on H-TERT gene expression in the T47D breast cancer cell line—Results of real time quantitative PCR. Asian Pac. J. Cancer Prev. 2013, 14, 6949–6953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, P.; Frustaci, A.; Del Bufalo, A.; Fini, M.; Cesario, A. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer’s disease: Acetylcholinesterase inhibitors. Curr. Med. Chem. 2013, 20, 976–983. [Google Scholar] [CrossRef]
- Nichterlein, K. Arnica montana (mountain arnica): In vitro culture and the production of sesquiterpene lactones and other metabolites. Biotechnol. Agric. For. 1995, 33, 47–61. [Google Scholar] [CrossRef]
- Olesińska, K.; Sugier, D. Row spacing and the term of harvest of flower heads as determinants of crop yield and chemical composition of raw material of chamisso arnica (Arnica chamissonis Less.). Acta Sci. Pol. Agric. 2020, 19, 83–95. [Google Scholar] [CrossRef]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [Green Version]
- Erasto, P.; Grierson, D.S.; Afolayan, A.J. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J. Ethnopharmacol. 2006, 106, 117–120. [Google Scholar] [CrossRef]
- Nowak, G. Surowce roślinne stosowane w chorobach układu krążenia i serca. Herba Pol. 2009, 55, 100–120. [Google Scholar]
- Libiszewska, K. Laktony jako związki biologicznie czynne. Biotechnol. Food Sci. 2011, 75, 45–53. [Google Scholar] [CrossRef]
- Olesińska, K. Sesquiterpene lactones—Occurrence and biological properties. Agron. Sci. 2018, 73, 83–95. [Google Scholar] [CrossRef]
- Merfort, I. Flavonoids from Arnica montana and Arnica chamissonis [Flavonoids aus Arnica montana und Arnica chamissonis]. Planta Med. 1985, 2, 136–138. [Google Scholar] [CrossRef]
- Willuhn, G.; Junior, I.; Kresken, J. Sesquiterpene lactones from Arnica chamissonis. IV. Ivalin and other sesquiterpene lactones from flowers of the subspecies genuine [Aesquiterpenlactone aus Arnica chamissonis. Iv. Ivalin und andere sesquiterpenlactone aus den blutenkorbchen der subspecies genuina]. Planta Med. 1985, 5, 398–401. [Google Scholar]
- Merfort, I.; Marcinek, C.; Eggert, A. Flavonoid distribution in Arnica subgenus chamissonis. Phytochemistry 1986, 25, 2901–2903. [Google Scholar] [CrossRef]
- Merfort, I.; Wendisch, D. Flavonoid glycosides from Arnica montana and Arnica chamissonis. Planta Med. 1987, 53, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Merfort, I. Acetylated and other flavonoid glycosides from Arnica chamissonis. Phytochemistry 1988, 27, 3281–3284. [Google Scholar] [CrossRef]
- Willuhn, G.; Kresken, J.; Leven, W. Further helenanolides from the flowers of Arnica chamissonis subsp. foliosa [Weitere helenanolide aus den bluten von Arnica chamissonis subsp. Foliosa]. Planta Med. 1990, 56, 111–114. [Google Scholar] [CrossRef]
- Merfort, I. Caffeoylquinic acids from flowers of Arnica montana and Arnica chamissonis. Phytochemistry 1992, 31, 2111–2113. [Google Scholar] [CrossRef]
- Roki, D.; Menković, N.; Šavikin-Fodulović, K.; Krivokuća-Dokić, D.; Ristić, M.; Grubišić, D. Flavonoids and essential oil in flower heads of introduced Arnica chamissonis. J. Herbs Spices Med. Plants 2001, 8, 19–27. [Google Scholar] [CrossRef]
- Skubij, N.; Dzida, K. Influence of nitrogen dose and harvesting date on the yield and biological value of raw garden savory (Satureja hortensis L.) of Saturn cv. Acta Sci. Pol. Hortorum Cultus 2019, 18, 171–180. [Google Scholar] [CrossRef]
- Sonmez, C.; Bayram, E. The influence of different water and nitrogen applications on some yield parameters and antioxidant activity in sage (Salvia officinalis L.). Turk. J. Field Crop. 2017, 22, 96–103. [Google Scholar] [CrossRef]
- Shahhoseini, R.; Saeidi, K.; Babaahmadi, H.; Ebadi, M.T. Effect of fertilizers and superabsorbent hydrogel on the yield, essential oil content and composition of lemon verbena (Lippia citriodora Kunth.) cultivated in Iran. J. Essent. Oil Bear. Plants 2018, 21, 230–236. [Google Scholar] [CrossRef]
- Heikal, A.A.M.; Helmy, S.S. Effect of nitrogen fertilization and ascorbic acid on growth, essential oil and chemical composition of rosemary plant. Zagazig J. Agric. Res. 2018, 45, 87–103. [Google Scholar] [CrossRef]
- Foladvand, F.; Khoshkhabar, H.; Naghdi, N.; Hosseinabadi, M.; Bahamin, S.; Fathi, A. The effect of sowing date and nitrogen on yield, and essential oil of German chamomile. Sci. Agric. 2017, 19, 85–92. [Google Scholar] [CrossRef]
- Król, B. Influence of nitrogen fertilization on the seed yield and the content and quality of fat in pot marigold (Calendula officinalis L.). Agron. Sci. 2017, 72, 85–98. [Google Scholar] [CrossRef]
- Król, B. The effect of different nitrogen fertilization rates on yield and quality of marigold (Calendula officinalis L. “Tokaj”) raw material. Acta Agrobot. 2011, 64, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Król, B. Yield and the chemical composition of flower heads of pot marigold (Calendula officinalis L. Cv. Orange king) depending on nitrogen fertilization. Acta Sci. Pol. Hortorum Cultus 2011, 10, 235–243. [Google Scholar]
- Özyiğit, Y.; Uçar, E.; Tütüncü, B.; İndibi, İ.; Turgut, K. The effect of different nitrogen doses on yield and some yield components of Melissa officinalis subsp. L. altissima (Sibthr. et Smith) Arcang. Turk. J. Agric. Res. 2016, 3, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Abbaszadeh, B.; Safikhani, F.; Layeghhaghighi, M. Effects of irrigation interval and nitrogen amount on different clary sage (Salvia sclarea L.) characters in Karaj. J. Med. Plants Prod. 2017, 2, 139–144. [Google Scholar] [CrossRef]
- Ninou, E.G.; Paschalidis, K.A.; Mylonas, I.G.; Vasilikiotis, C.; Mavromatis, A.G. The effect of genetic variation and nitrogen fertilization on productive characters of Greek oregano. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 372–379. [Google Scholar] [CrossRef]
- Król, B.; Sęczyk, Ł.; Kołodziej, B.; Paszko, T. Biomass production, active substance content, and bioaccessibility of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) following the application of nitrogen. Ind. Crop. Prod. 2020, 148, 1–11. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Nikolaidou, E.; Stamatakis, A.; Tzortzakis, N. Vegetative, physiological, nutritional and antioxidant behavior of spearmint (Mentha spicata L.) in response to different nitrogen supply in hydroponics. J. Appl. Res. Med. Aromat. Plants 2017, 6, 52–61. [Google Scholar] [CrossRef]
- Tatar, Ö.; Bayram, E.; Gesheva, E.; Sönmez, Ç.; Atasoy, D.; Konakchiev, A.; Gevrek, M.N. Physiological and biochemical responses of Achillea millefolium group-related cultivar Proa to different nitrogen regimes. Biotechnol. Biotechnol. Equip. 2013, 27, 3649–3653. [Google Scholar] [CrossRef] [Green Version]
- Allahdadi, M.; Farzane, P. Influence of different levels of nitrogen fertilizer on some phytochemical characteristics of artichoke (Cynara scolymus L.) leaves. J. Med. Plants Stud. 2018, 6, 109–115. [Google Scholar]
- Mijani, G.A.A.; Sharifabad, H.H.; Panahi, B. Determination of optimum N and P fertilization levels for dry flower yield and essential oil percentage in autumn—Grown German chamomile (Matricaria chamomilla) in Jiroft, Iran. Plant Ecophysiol. 2011, 3, 47–52. [Google Scholar]
- Andrzejewska, J.; Woropaj-Janczak, M. German chamomile performance after stubble catch crops and response to nitrogen fertilization. Ind. Crop. Prod. 2014, 62, 350–358. [Google Scholar] [CrossRef]
- Yang, M.S.; Tawaha, A.R.M.; Lee, K.D. Effects of ammonium concentration on the yield, mineral content and active terpene components of Chrysanthemum coronarium L. in a hydroponic system. Res. J. Agric. Biol. Sci. 2005, 1, 170–175. [Google Scholar]
- Kim, D.K.; Lee, K.D. Effects of nitrogen application on growth and bioactive compounds of Chrysanthemum indicum L. (Gamgug). Korean J. Med. Crop Sci. 2009, 17, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Ghiasy-Oskoee, M.; Aghaalikhani, M.; Sefidkon, F.; Mokhtassi-Bidgoli, A.; Ayyari, M. Blessed thistle agronomic and phytochemical response to nitrogen and plant density. Ind. Crop. Prod. 2018, 122, 566–573. [Google Scholar] [CrossRef]
- Wang, J.W.; Tan, R.X. Artemisinin production in Artemisia annua hairy root cultures with improved growth by altering the nitrogen source in the medium. Biotechnol. Lett. 2002, 24, 1153–1156. [Google Scholar] [CrossRef]
- Sugár, E.; Fodor, N.; Sándor, R.; Bónis, P.; Vida, G.; Árendás, T. Spelt Wheat: An Alternative for Sustainable Plant Production at Low N-Levels. Sustainability 2019, 11, 6726. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.K.; Dubey, P.K.; Chaurasia, R.; Rao, C.S.; Abhilash, P.C. Impact of Integrated Agronomic Practices on Soil Fertiity and Respiration on the Indo-Gangetic Plain of North India. Agronomy 2021, 11, 402. [Google Scholar] [CrossRef]
- EMEA. Guideline on Good Agricultural and Collection Practice (GACP) for Starting Materials of Herbal Origin. London. 2006. Available online: http://www.ema.europa.eu/docs/enGB/documentlibrary/Scientificguideline/2009/09/WC500003362.pdf (accessed on 22 July 2021).
- Willuhn, G.; Kresken, J.; Wendisch, D. Sesquiterpenelactone aus Arnica chamissonis III: 4-0-acetyl-6-desoxychamissonolid und 6-0-propionyl-11,13-dihydrohelenalin. Planta Med. 1983, 47, 157–160. [Google Scholar] [CrossRef]
- Sugier, D.; Sugier, P.; Kowalski, R.; Kołodziej, B.; Olesińska, K. Foliar boron fertilization as factor affecting the essential oil content and yield of oil components from flower heads of Arnica montana L. and Arnica chamissonis Less. cultivated for industry. Ind. Crop. Prod. 2017, 109, 587–597. [Google Scholar] [CrossRef]
- Matławska, I. Farmakognozja; UM: Poznań, Poland, 2008; pp. 128–130. [Google Scholar]
- Polish Pharmacopoeia VIII; The Republic of Poland, The Minister of Health: Warsaw, Poland, 2008.
- Polish Pharmacopoeia VI; The Republic of Poland, The Minister of Health: Warsaw, Poland, 2002.
- Abdi, H.; Williams, L. Principal components analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 439–459. [Google Scholar] [CrossRef]
- Kovach, W.L. MVSP—A Multivariate Statistical Package for Windows Ver. 3.1; Kovach Computing Service: Pentraeth, UK, 1999. [Google Scholar]
- Sugier, D.; Gawlik-Dziki, U. Wpływ nawożenia dolistnego na plonowanie i jakość surowca Arnica montana L. i Arnica chamissonis var. foliosa. Agron. Sci. 2009, 64, 129–139. [Google Scholar] [CrossRef]
- Radanović, D.; Pljevljakušić, D.; Marković, T.; Ristić, M. Influence of fertilization model and PE mulch on yield and quality of arnica (A. montana) at dystric cambisol. Zemlj. Biljke 2007, 56, 85–95. [Google Scholar]
- Giannoulis, K.D.; Kamvoukou, C.A.; Gougoulias, N.; Wogiatzi, E. Matricaria chamomilla L. (German chamomile) flower yield and essential oil affected by irrigation and nitrogen fertilization. Emir. J. Food Agric. 2020, 32, 328–335. [Google Scholar] [CrossRef]
- Polara, N.D.; Gajipara, N.N.; Barad, A.V. Effect of nitrogen and phosphorus nutrition on growth, flowering, flower yield and chlorophyll content of different varieties of African marigold (Tagetes erecta L.). JAH 2015, 17, 44–47. [Google Scholar] [CrossRef]
- Polish Pharmacopoeia XI; The Republic of Poland, The Minister of Health: Warsaw, Poland, 2017.
- Ivanova, D.; Deneva, V.; Zheleva-Dimitrova, D.; Balabanova-Bozushk, V.; Nedeltcheva, D.; Gevrenova, R.; Antonov, L. Quantitative Characterization of Arnicae flos by RP-HPLC-UV and NIR Spectroscopy. Foods 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Özgüven, M.; Şener, B.; Orhan, I.; Şekeroğlu, N.; Kirpik, M.; Kartal, M.; Peşin, I.; Kaya, Z. Effect of varying nitrogen doses on yield, yield components and artemisinin content of Artemisia anuua L. Ind. Crop. Prod. 2008, 27, 60–64. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.Z.; Balabanova, V.; Gevrenova, R.; Doichinova, I.; Vitkova, A. Chemometrics-based approach in analysis of Arnicae flos. Pharmacogn. Mag. 2015, 11, S538–S544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Leithy, A.S.; El-Hanafy, S.H.; Khattab, M.E.; Ahmed, S.S.; El-Ghafour, A.A. Effect of nitrogen fertilization rates, plant spacing and their interaction on essential oil percentage and total flavonoid content of summer savory (Satureja hortensis L.) plant. Egypt. J. Chem. 2017, 60, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Tshivhandekano, I.; Ngezimana, W.; Tshikalange, T.E.; Makunga, N.P.; Mudau, F.N. Nitrogen application influences quality, pharmacological activities and metabolite profiles of Athrixia phylicoides DC. (Bush tea) cultivated under greenhouse and field conditions. Acta Agric. Scand. B Soil Plant Sci. 2018, 68, 388–400. [Google Scholar] [CrossRef]
Content | Unit | Sandy Soil | Loamy Soil | Determination Method |
---|---|---|---|---|
Sand | % | 66.2 | 21.5 | * |
Silt | % | 20.5 | 42.1 | |
Loam | % | 13.3 | 36.4 | |
Organic matter | g∙kg−1 | 16.7 | 20.8 | PB-34—Tiurin method |
Phosphorus | mg∙kg−1 | 60.2 | 112.6 | PN-R-04023: 1996 |
Potassium | mg∙kg−1 | 65.6 | 198.4 | PN-R-04022: 1996 + Az1: 2002 |
Magnesium | mg∙kg−1 | 13.0 | 51.0 | PN-R-04020: 1994 + Az1: 2004 |
pH KCl | - | 4.3 | 6.7 | PN-ISO10390:1997P |
Characteristics | YFH | SLs | Fs | EO |
---|---|---|---|---|
Factors | ||||
Soil type (S) | F = 300.4 p < 0.001 | F = 20.4 p < 0.001 | F = 0.9 p = 0.004 | F = 101.6 p < 0.001 |
Nitrogen (N) | F = 113.8 p < 0.001 | F = 62.1 p < 0.001 | F = 61.8 p < 0.001 | F = 116.6 p < 0.001 |
Years (Y) | F = 618.3 p < 0.001 | F = 187.4 p < 0.001 | F = 188.7 p < 0.001 | F = 127.7 p < 0.001 |
S × N | F = 4.4 p = 0.004 | F = 2.6 p = 0.046 | F = 23.7 p < 0.001 | F = 5.6 p < 0.001 |
S × Y | F = 19.7 p < 0.001 | F = 4.3 p = 0.019 | F = 37.7 p < 0.001 | F = 10.2 p < 0.001 |
N × Y | F = 5.7 p < 0.001 | F = 5.3 p < 0.001 | F = 6.2 p < 0.001 | F = 2.1 p = 0.049 |
S × N × Y | F = 0.7 p = 0.688 | F = 5.3 p < 0.001 | F = 7.0 p < 0.001 | F = 1.6 p = 0.133 |
Nitrogen Doses (kg∙ha−1) | Sandy Soil | Loamy Soil | ||||
---|---|---|---|---|---|---|
2017 II | 2018 III | 2019 IV | 2017 II | 2018 III | 2019 IV | |
Sesquiterpene lactones, kg dihydrohelenalin tiglinate ∙ ha−1 | ||||||
0 | 3.1 bc ± 0.11 | 3.3 bc ± 0.09 | 2.2 a ± 0.03 | 3.9 def ± 0.04 | 4.1 def ± 0.01 | 3.2 bc ± 0.21 |
30 | 4.1 de ± 0.08 | 3.9 de ± 0.03 | 2.6 ab ± 0.28 | 4.7 efg ± 0.12 | 4.5 ef ± 0.18 | 3.5 cd ± 0.10 |
60 | 4.7 efg ± 0.27 | 5.0 fgh ± 0.21 | 3.3 bc ± 0.57 | 5.6 gh ± 0.61 | 7.3 i ± 0.21 | 4.2 de ± 0.18 |
90 | 5.3 fgh ± 0.16 | 5.7 h ± 0.04 | 4.1 de ± 0.01 | 7.0 i ± 0.27 | 8.9 j ± 0.01 | 4.9 fgh ± 0.02 |
120 | 5.8 h ± 0.12 | 5.7 h ± 0.80 | 4.0 de ± 0.02 | 7.6 i ± 0.02 | 9.8 k ± 0.37 | 5.6 gh ± 0.04 |
ANOVA results: Soil type (S)—F = 713.57, p < 0.001; Nitrogen (N)—F = 471.05, p < 0.001; Years (Y)—F = 524.98, p < 0.001; S × N—F = 36.03, p < 0.001; S × Y– F = 49.72, p < 0.001; N × Y—F = 22.58, p < 0.001; S × N × Y—F = 13.69, p < 0.001 | ||||||
Flavonoids, kg quercetin ∙ ha−1 | ||||||
0 | 4.2 de ± 0.01 | 3.8 bcd ± 0.01 | 2.2 a ± 0.02 | 4.7 e ± 0.00 | 5.5 fgh ± 0.11 | 2.8 ab ± 0.01 |
30 | 5.3 fg ± 0.06 | 4.7 ef ± 0.09 | 2.7 ab ± 0.01 | 5.7 fgh ± 0.20 | 5.6 fgh ± 0.17 | 3.2 b ± 0.03 |
60 | 6.6 ij ± 0.19 | 6.0 ghi ± 0.08 | 3.4 bc ± 0.03 | 6.8 j ± 0.08 | 8.8 k ± 0.08 | 3.9 cd ± 0.04 |
90 | 6.3 hij ± 0.00 | 6.2 hij ± 0.04 | 3.4 bc ± 0.02 | 8.3 k ± 0.10 | 9.7 l ± 0.39 | 4.6 de ± 0.02 |
120 | 6.2 ghij ± 0.83 | 5.5 fg ± 0.09 | 3.3 b ± 0.02 | 8.4 k ± 0.39 | 8.9 k ± 0.19 | 4.4 de ± 0.04 |
ANOVA results: Soil type (S)—F = 1077.42, p < 0.001; Nitrogen (N)—F = 508.96, p < 0.001; Years (Y)—F = 2147.6, p < 0.001; S × N—F = 60.4, p < 0.001; S × Y– F = 152.87, p < 0.001; N × Y—F = 33.12, p < 0.001; S × N × Y—F = 12.27, p < 0.001 | ||||||
Essential oils, kg oil ∙ ha−1 | ||||||
0 | 1.4 cd ± 0.01 | 1.3 bc ± 0.04 | 0.9 a ± 0.02 | 1.9 gh ± 0.01 | 1.8 fg ± 0.03 | 1.1 b ± 0.02 |
30 | 1.7 fg ± 0.09 | 1.6 ef ± 0.02 | 1.0 b ± 0.02 | 2.1 jk ± 0.01 | 2.1 ij ± 0.08 | 1.3 cd ± 0.03 |
60 | 2.0 ij ± 0.02 | 1.9 hi ± 0.07 | 1.4 cd ± 0.06 | 2.7 m ± 0.01 | 2.8 m ± 0.10 | 1.7 fg ± 0.04 |
90 | 2.3 kl ± 0.06 | 2.2 jk ± 0.05 | 1.5 de ± 0.04 | 3.2 n ± 0.01 | 3.3 n ± 0.03 | 1.9 gh ± 0.07 |
120 | 2.5 l ± 0.08 | 2.1 ij ± 0.10 | 1.4 de ± 0.04 | 3.5 o ± 0.01 | 3.2 n ± 0.08 | 1.9 gh ± 0.06 |
ANOVA results: Soil type (S)—F = 2967.3, p < 0.001; Nitrogen (N)—F = 1335.9, p < 0.001; Years (Y)—F = 2754.7, p < 0.001; S × N—F = 73.3, p < 0.001; S × Y– F = 203.2, p < 0.001; N × Y—F = 59.3, p < 0.001; S × N × Y– F = 8.6, p < 0.001 |
SLs | −0.31 | |||||
Fs | 0.39 | −0.10 | ||||
EO | −0.30 | 0.89 | −0.13 | |||
YSLs | 0.88 | 0.15 | 0.39 | 0.10 | ||
YFs | 0.97 | −0.30 | 0.60 | −0.29 | 0.87 | |
YEO | 0.96 | −0.07 | 0.37 | −0.04 | 0.96 | 0.94 |
YFH | SLs | Fs | EO | YSLs | YFs |
SLs | −0.17 | |||||
Fs | 0.41 | 0.54 | ||||
EO | 0.13 | 0.78 | 0.54 | |||
YSLs | 0.82 | 0.41 | 0.71 | 0.52 | ||
YFs | 0.94 | 0.08 | 0.69 | 0.30 | 0.92 | |
YEO | 0.97 | 0.04 | 0.52 | 0.35 | 0.91 | 0.96 |
YFH | SLs | Fs | EO | YSLs | YFs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olesińska, K.; Sugier, D.; Kaczmarski, Z. Yield and Chemical Composition of Raw Material from Meadow Arnica (Arnica chamissonis Less.) Depending on Soil Conditions and Nitrogen Fertilization. Agriculture 2021, 11, 810. https://doi.org/10.3390/agriculture11090810
Olesińska K, Sugier D, Kaczmarski Z. Yield and Chemical Composition of Raw Material from Meadow Arnica (Arnica chamissonis Less.) Depending on Soil Conditions and Nitrogen Fertilization. Agriculture. 2021; 11(9):810. https://doi.org/10.3390/agriculture11090810
Chicago/Turabian StyleOlesińska, Katarzyna, Danuta Sugier, and Zdzisław Kaczmarski. 2021. "Yield and Chemical Composition of Raw Material from Meadow Arnica (Arnica chamissonis Less.) Depending on Soil Conditions and Nitrogen Fertilization" Agriculture 11, no. 9: 810. https://doi.org/10.3390/agriculture11090810
APA StyleOlesińska, K., Sugier, D., & Kaczmarski, Z. (2021). Yield and Chemical Composition of Raw Material from Meadow Arnica (Arnica chamissonis Less.) Depending on Soil Conditions and Nitrogen Fertilization. Agriculture, 11(9), 810. https://doi.org/10.3390/agriculture11090810