What If the World Went Vegan? A Review of the Impact on Natural Resources, Climate Change, and Economies
Abstract
:1. Introduction
2. Climate Change and Agri-Food Production
3. Livestock Production as One Key Driver of Climate Change
4. Merits and Demerits of Global Veganism
5. Health and Nutrition: Vegan Versus Conventional Diet
6. Socio-Economic Implications of Global Veganism
7. Environmental Risks of the Veganism Paradigm
8. Agricultural Policies as a Support for Plant-Based Production
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. (Eds.) World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018.
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations, Rome and Earthscan: London, UK, 2011. [Google Scholar]
- FAO. Climate-Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029; FAO, Rome/OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Molden, D.; Vithanage, M.; Fraiture, C.d.; Faures, J.M.; Finlayson, C.; Gordon, L.; Molle, F.; Peden, D.; Stentiford, D. Water Availability and Its Use in Agriculture; Wilderer, P., Ed.; Treatise on water science; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 35–59. [Google Scholar] [CrossRef]
- Palmer, A.R.; Ainslie, A. Grasslands of South Africa; Suttie, J.M., Reynolds, S.G., Batello, C., Eds.; Grasslands of the World; Plant production and protection series (34); Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Chapter 3; pp. 77–120. ISBN 9251053375. [Google Scholar]
- IPCC. Climate Change 2007; Mitigation, B., Metz, O.R., Davidson, P.R., Bosch, R.D., Meyer, L.A., Eds.; Contribution of Working Group III to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Perrings, C.; Halkos, G. Agriculture and the threat to biodiversity in sub-saharan Africa. Environ. Res. Lett. 2015, 10, 095015. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- PETA. Fight the Climate Crisis by Going Vegan. 2021. Available online: http://www.peta.org/issues/animals-used-for-food/climate-crisis/ (accessed on 29 December 2021).
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.; Takle, G.; Grotjahn, R.; Holden, P.; Izaurralde, R.C.; Mader, T.; Marshall, E.; Liverman, D. Ch. 6: Agriculture. Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 150–174. [CrossRef]
- Crowder, D.W.; Illan, J.G. Expansion of organic agriculture. Nat. Food 2011, 2, 324–325. [Google Scholar] [CrossRef]
- LaCanne, C.; Lundgren, J. Regenerative agriculture: Merging farming and natural resource conservation profitably. Peer J. 2018, 6, e4428. [Google Scholar] [CrossRef]
- Fuss, S.; Havlík, P.; Szolgayova, J.; Schmid, E.; Obersteiner, M. Large-Scale Modelling of Global Food Security and Adaptation under Crop Yield Uncertainty. In Proceedings of the Conference Paper EAAE 2011 Congress Change and Uncertainty Challenges for Agriculture, Food and Natural Resources, ETH Zurich, Zurich, Switzerland, 30 August–2 September 2011. [Google Scholar]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Alghamdi, S.S.; Migdadi, H.H.; El-Harty, E.; Al-Faifi, S.A. Agronomical and Physiological Responses of Faba Bean Genotypes to Salt Stress. Agriculture 2022, 12, 235. [Google Scholar] [CrossRef]
- Rust, J.M. The impact of climate change on extensive and intensive livestock production systems. Anim. Front. 2018, 9, 20–25. [Google Scholar] [CrossRef]
- Wolfenson, D.; Roth, Z. Impact of heat stress on cow reproduction and fertility. Anim. Front. 2018, 9, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2018, 9, 26–31. [Google Scholar] [CrossRef]
- Rötter, R.; Van de Geijn, S.C. Climate change effects on plant growth, crop yield and livestock. Clim. Chang. 1999, 43, 651–681. [Google Scholar] [CrossRef]
- FAO. Global Livestock Environmental Assessment Model (GLEAM). 2017. Available online: Rome.www.fao.org/gleam/en/ (accessed on 17 November 2021).
- United Nations Environment Programme and Climate and Clean Air Coalition (UNEP). Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021; ISBN 978-92-807-3854-4. [Google Scholar]
- FAO. Global Forest Resources Assessment 2010: Main Report; FAO Forestry Papers 163; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Raihan, F.; Ondrasek, G.; Islam, M.S.; Maina, J.M.; Beaumont, L.J. Combined Impacts of Climate and Land Use Changes on Long-Term Streamflow in the Upper Halda Basin, Bangladesh. Sustainability 2021, 13, 12067. [Google Scholar] [CrossRef]
- Montagnini, F.; Jordan, C.F. Tropical Forest Ecology; Tropical Forestry; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Vuichard, N.; Ciais, P.; Belelli, L.; Smith, P.; Valentini, R. Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- West, P.C.; Gibbs, H.K.; Monfreda, C.; Wagner, J.; Barford, C.C.; Carpenter, S.R.; Foley, J.A. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. USA 2010, 107, 19645–19648. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Rounsevell, M.D.A.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 2015, 35, 138–147. [Google Scholar] [CrossRef]
- European Commission. Analysis of the Life Cycle Environmental Impacts Related to the Final Consumption of the EU-25. Environmental Impact of Products (EIPRO). 2006. Available online: http://ec.europa.eu/environment/ipp/pdf/eipro-report.pdf (accessed on 14 April 2021).
- Tuti, M.D.; Rapolu, M.K.; Sreedevi, B.; Bandumula, N.; Kuchi, S.; Bandeppa, S.; Saha, S.; Parmar, B.; Rathod, S.; Ondrasek, G.; et al. Sustainable Intensification of a Rice–Maize System through Conservation Agriculture to Enhance System Productivity in Southern India. Plants 2022, 11, 1229. [Google Scholar] [CrossRef] [PubMed]
- Ondrasek, G.; Bakić Begić, H.; Romić, D.; Brkić, Ž.; Husnjak, S.; Bubalo Kovačić, M. A novel LUMNAqSoP approach for prioritising groundwater monitoring stations for implementation of the Nitrates Directive. Environ. Sci. Eur. 2021, 33, 23. [Google Scholar] [CrossRef]
- Dagevos, H.; Voordouw, J. Sustainability and meat consumption: Is reduction realistic? Sustain. Sci. Pract. Policy 2013, 9, 60–69. [Google Scholar] [CrossRef]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Adesogan, T.A.; Havelaar, A.; McKune, S.; Eilitta, M.; Dahl, G. Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob. Food Sec. 2019, 25, 100325. [Google Scholar] [CrossRef]
- Bruinsma, J. World Agriculture: Towards 2015/2030: An FAO Perspective; Earthscan: London, UK, 2003; Available online: http://www.fao.org/docrep/005/y4252e/y4252e00.htm (accessed on 8 August 2021).
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.; Van Vuuren, D.P.; Willems, J.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, O. Sustainability: A meaty issue. Nature 2017, 544, S18–S20. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Savic, R.; Stajic, M.; Blagojević, B.; Bezdan, A.; Vranesevic, M.; Nikolić Jokanović, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
- Robinson, T.P.; Thornton, P.K.; Franceschini, G.; Kruska, R.L.; Chiozza, F.; Notenbaert, A.; Cecchi, G.; Herrero, M.; Epprecht, M.; Fritz, S.; et al. Global Livestock Production Systems; FAO: Rome, Italy; ILRI: Nairobi, Kenya, 2011. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM (accessed on 19 November 2019).
- FAO. Responding to the Livestock Revolution—The Case for Livestock Public Policies; Livestock Policy Brief 01; Food and Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Westoby, M.; Walker, B.; Noy-Meir, I. Opportunistic Management for Rangelands Not at Equilibrium. J. Range Manag. 1989, 42, 266. [Google Scholar] [CrossRef]
- DiTomaso, J.M. Invasive weeds in rangelands: Species, impacts, and management. Weed Sci. 2000, 48, 255–265. [Google Scholar] [CrossRef] [Green Version]
- FAO; New Zealand Agricultural Greenhouse Gas Research Centre. Reducing Enteric Methane for Improving Food Security and Livelihoods; Project Highlights 2015–2017; FAO: Rome, Italy, 2019; 18p. [Google Scholar]
- Hassler, M.; World Plants. (2004–2021): Synonymic Checklist and Distribution of the World Flora. Version 12.4; Last Update 6 August 2021. Available online: www.worldplants.de (accessed on 20 July 2021).
- FAO. Women: Users, Preservers and Managers of Agrobiodiversity. 1999. Available online: www.fao.org/FOCUS/E/Women/Biodiv-e.htm (accessed on 14 May 2021).
- Leahy, E.; Lyons, S.; Tol., R.S.J. An Estimate of the Number of Vegetarians in the World; ESRI working paper; The Economic and Social Research Institute: Dublin, Ireland, 2010. [Google Scholar]
- De Boer, J.; Schösler, H.; Aiking, H. Towards a reduced meat diet: Mindset and motivation of young vegetarians, low, medium and high meat-eaters. Appetite 2017, 113, 387–397. [Google Scholar] [CrossRef] [PubMed]
- VeganBits. Vegan Demographics 2017—USA, and the World. 2017. Available online: http://veganbits.com/vegan-demographics-2017/ (accessed on 11 January 2021).
- Wild, F.; Czerny, M.; Janssen, A.M.; Kole, A.P.W.; Zunabovic, W.; Domig, K.J. The evolution of a plant-based alternative to meat. From niche markets to widely accepted meat alternatives. Agro Food Ind. Hi-Tech 2014, 20140, 45–49. [Google Scholar]
- Matolcsy, G.; Nádasy, M.; Andriska, V. Pesticide Chemistry; Elsevier: Amsterdam, The Netherlands, 2002; pp. 21–22. ISBN 0-444-98903-X. [Google Scholar]
- Coluccia, B.; Agnusdei, G.P.; De Leo, F.; Vecchio, Y.; La Fata, C.M.; Miglietta, P.P. Assessing the carbon footprint across the supply chain: Cow milk vs soy drink. Sci. Total Environ. 2022, 806, 151200, ISSN 0048-9697. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.G.; Atkinson, A.; Montague, B. Perceptions about Veganism; The Vegan Society: Birmingham, UK, 2020. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Garnett, T.; Godfray, C.; Gollin, D.; Rayner, M.; Ballon, P.; Scarborough, P. Global and regional health effects of future food production under climate change: A modelling study. Lancet 2016, 387, 1937–1946. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 7, e002408. [Google Scholar] [CrossRef]
- Messina, V.; Melina, V.; Mangels, A.R. A new food guide for North American vegetarians. J. Am. Diets Assoc. 2003, 103, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Frank, J. Meat as a bad habit: A case for positive feedback in consumption preferences leading to lock-in. Rev. Soc. Econ. 2007, 65, 319–348. [Google Scholar] [CrossRef]
- Mann, S.; Necula, R. Are vegetarianism and veganism just half the story? Empirical insights from Switzerland. Br. Food J. 2020, 122, 1056–1067. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Sastry, S.K.; Mandal, B.; Hammond, J.; Scott, S.W.; Briddon, R.W. Encyclopedia of Plant Viruses and Viroids; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Nicaise, V. Crop immunity against viruses: Outcomes and future challenges. Front. Plant Sci. 2014, 5, 660. [Google Scholar] [CrossRef]
- FAOSTAT. (2021) FAOSTAT: Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 5 September 2021).
- ELD Initiative. The Rewards of Investing in Sustainable Land Management. Interim Report for the Economics of Land Degradation Initiative: A Global Strategy for Sustainable Land Management. 2013. Available online: http://www.eld-initiative.org/fileadmin/pdf/ELD_interim_report_2015_web.pdf (accessed on 14 April 2020).
- Global Harvest Initiative. Global Agricultural Productivity Report. 2016. Available online: http://www.globalharvestinitiative.org/index.php/gap-report-gap-index/2016-gap-report/ (accessed on 20 June 2021).
- Ondrasek, G. Water Scarcity and Water Stress in Agriculture. In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment; Ahmad, P., Wani, M., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Bandumula, N.; Rathod, S.; Ondrasek, G.; Pillai, M.P.; Sundaram, R.M. An Economic Evaluation of Improved Rice Production Technology in Telangana State, India. Agriculture 2022, 12, 1387. [Google Scholar] [CrossRef]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.-M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- OECD. Water Use in Agriculture. 2016. Available online: http://www.oecd.org/agriculture/wateruseinagriculture.htm (accessed on 3 December 2016).
- Guyennon, N.; Romano, E.; Portoghese, I. Long-term climate sensitivity of an integrated water supply system: The role of irrigation. Sci. Total Environ. 2016, 565, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level 2010-2010/11; IFA: Paris, France, 2013; Available online: https://www.fertilizer.org/images/Library_Downloads/AgCom.13.39-FUBCassessment2010.pdf (accessed on 8 February 2020).
- Farifteh, J.; Farshad, A.; George, R.J. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 2006, 130, 191–206. [Google Scholar] [CrossRef]
- Bationo, A.; Lamers, J.; Lehmann, J. Recent achievement of sustainable soil management in Sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 2015, 102, 1–3. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Food, Agriculture & the Environment: Can We Feed the World & Save the Earth? Daedalus 2015, 144, 8–23. [Google Scholar] [CrossRef]
- Institute for Agriculture and Trade Policy. Iatp.org. Document Library Archived from the original on 23 August 2010. 2012. Retrieved 28 March 2012.
- Kuehne, G.; Llewellyn, R.; Pannell, D.J.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Kristjanson, P.; Reid, R.S.; Dickson, N.; Clark, W.C.; Romney, D.; Puskur, R. Linking international agricultural research knowledge with action for sustainable development. Proc. Natl. Acad. Sci. USA 2009, 106, 5047–5052. [Google Scholar] [CrossRef]
- FAO. Livestock Sector Development for Poverty Reduction: An Economic and Policy Perspective—Livestock’s Many Virtues; Otte, J., Costales, A., Dijkman, J., Pica-Ciamarra, U., Robinson, T., Ahuja, V., Ly, C., Roland-Holst, D., Eds.; FAO: Rome, Italy, 2012; p. 161. [Google Scholar]
- FAO. Reducing Enteric Methane for Improving Food Security and Livelihoods. 2016. Available online: http://www.fao.org/3/i5902e/i5902e.pdf (accessed on 1 October 2020).
- LD4D. Livestock Data for Decisions. 2019. Available online: https://ld4d.org/ (accessed on 14 May 2019).
- Mehrabi, Z.; Gill, M.; Van Wijk, M.; Herrero, M.; Ramankutty, N. Livestock policy for sustainable development. Nat. Food 2020, 1, 160–165. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Sun, S.; Zhao, X.; Wang, Y. Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China. Agriculture 2022, 12, 1114. [Google Scholar] [CrossRef]
- Shahid, M.A.; Chauhdary, J.N.; Usman, M.; Qamar, M.U.; Shabbir, A. Assessment of Water Productivity Enhancement and Sustainability Potential of Different Resource Conservation Technologies: A Review in the Context of Pakistan. Agriculture 2022, 12, 1058. [Google Scholar] [CrossRef]
- Kubisz, P.; Dalton, G.; Majewski, E.; Pogodzińska, K. Facts and Myths about GM Food—The Case of Poland. Agriculture 2021, 11, 791. [Google Scholar] [CrossRef]
- Santillán-Fernández, A.; Salinas-Moreno, Y.; Valdez-Lazalde, J.R.; Pereira-Lorenzo, S. Spatial-Temporal Evolution of Scientific Production about Genetically Modified Maize. Agriculture 2021, 11, 246. [Google Scholar] [CrossRef]
- Savić, R.; Ondrasek, G.; Zemunac, R.; Kovacčić, M.B.; Kranjcec, F.; Jokanović, V.N.; Bezdan, A. Longitudinal distribution of macronutrients in the sediments of Jegricka watercourse in Vojvodina, Serbia. Sci. Total Environ. 2021, 754, 142138. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorgbetor, I.K.; Ondrasek, G.; Kutnjak, H.; Mikuš, O. What If the World Went Vegan? A Review of the Impact on Natural Resources, Climate Change, and Economies. Agriculture 2022, 12, 1518. https://doi.org/10.3390/agriculture12101518
Dorgbetor IK, Ondrasek G, Kutnjak H, Mikuš O. What If the World Went Vegan? A Review of the Impact on Natural Resources, Climate Change, and Economies. Agriculture. 2022; 12(10):1518. https://doi.org/10.3390/agriculture12101518
Chicago/Turabian StyleDorgbetor, Isaac Korku, Gabrijel Ondrasek, Hrvoje Kutnjak, and Ornella Mikuš. 2022. "What If the World Went Vegan? A Review of the Impact on Natural Resources, Climate Change, and Economies" Agriculture 12, no. 10: 1518. https://doi.org/10.3390/agriculture12101518
APA StyleDorgbetor, I. K., Ondrasek, G., Kutnjak, H., & Mikuš, O. (2022). What If the World Went Vegan? A Review of the Impact on Natural Resources, Climate Change, and Economies. Agriculture, 12(10), 1518. https://doi.org/10.3390/agriculture12101518