Antigenotoxic and Antimutagenic Potentials of Proline in Allium cepa Exposed to the Toxicity of Cadmium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Comet Assay
2.2.1. Preparation of the Slides for the Comet Assay
2.2.2. Preparation of Plant Cell Nuclei
2.2.3. Single-Cell Gel Electrophoresis
2.2.4. DNA Damage Evaluation
2.3. Cytogenetic Test
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Toppi, L.S.; Gabbrielli, R. Response to Cadmium in Higher Plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Bell, M.J.; Wright, G.C.; Cozens, G.D. Uptake and Partitioning of Cadmium by Cultivars of Peanut (Arachis hypogaea L.). Plant Soil 2000, 222, 51–58. [Google Scholar] [CrossRef]
- Shah, K.; Kumar, R.G.; Verma, S.; Dubey, R.S. Effect of Cadmium on Lipid Peroxidation, Superoxide Anion Generation and Activities of Antioxidant Enzymes in Growing Rice Seedlings. Plant Sci. 2001, 161, 1135–1144. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Rodríguez-Serrano, M.; Corpas, F.J.; del Gomez, M.; Del Rio, L.A.; Sandalio, L.M. Cadmium-induced Subcellular Accumulation of O2− and H2O2 in Pea Leaves. Plant Cell Environ. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- Fojtová, M.; Kovařík, A. Genotoxic Effect of Cadmium Is Associated with Apoptotic Changes in Tobacco Cells. Plant Cell Environ. 2000, 23, 531–537. [Google Scholar] [CrossRef]
- Hernández, L.E.; Cooke, D.T. Modification of the Root Plasma Membrane Lipid Composition of Cadmium-Treated Pisum sativum. J. Exp. Bot. 1997, 48, 1375–1381. [Google Scholar] [CrossRef]
- Baryla, A.; Carrier, P.; Franck, F.; Coulomb, C.; Sahut, C.; Havaux, M. Leaf Chlorosis in Oilseed Rape Plants (Brassica napus) Grown on Cadmium-Polluted Soil: Causes and Consequences for Photosynthesis and Growth. Planta 2001, 212, 696–709. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Moustakas, M.; Eleftheriou, E.P. Physiological and Ultrastructural Effects of Cadmium on Wheat (Triticum aestivum L.) Leaves. Arch. Environ. Contam. Toxicol. 1997, 32, 154–160. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Gunse, B.; Barcelo, J. Influence of Cadmium on Water Relations, Stomatal Resistance, and Abscisic Acid Content in Expanding Bean Leaves. Plant Physiol. 1989, 90, 1365–1371. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Kemble, A.R.; Macpherson, H.T. Determination of Monoamino Monocarboxylic Acids by Quantitative Paper Chromatography. Biochem. J. 1954, 56, 548. [Google Scholar] [CrossRef]
- Delauney, A.J.; Verma, D.P.S. Proline Biosynthesis and Osmoregulation in Plants. Plant J. 1993, 4, 215–223. [Google Scholar] [CrossRef]
- Chen, C.; Dickman, M.B. Proline Suppresses Apoptosis in the Fungal Pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA 2005, 102, 3459–3464. [Google Scholar] [CrossRef]
- Savouré, A.; Hua, X.-J.; Bertauche, N.; Montagu, M.V.; Verbruggen, N. Abscisic Acid-Independent and Abscisic Acid-Dependent Regulation of Proline Biosynthesis Following Cold and Osmotic Stresses in Arabidopsis thaliana. Mol. Gen. Genet. MGG 1997, 254, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhigang, L.; Yunzhao, C.; Yuguo, W. Effects of Exogenous Proline on the Physiological Properties and the Mitochondria Ultrastructure in Soybean Regenerated Plantlets from Embryos in Vitro under NaCl Stress. Soybean Sci. 2000, 19, 314–319. [Google Scholar]
- Szabados, L.; Savouré, A. Proline: A Multifunctional Amino Acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Teh, C.-Y.; Shaharuddin, N.A.; Ho, C.-L.; Mahmood, M. Exogenous Proline Significantly Affects the Plant Growth and Nitrogen Assimilation Enzymes Activities in Rice (Oryza sativa) under Salt Stress. Acta Physiol. Plant. 2016, 38, 151. [Google Scholar] [CrossRef]
- Islam, M.M.; Hoque, A.; Okuma, E.; Banu, M.N.A.; Shimoishi, Y.; Nakamura, Y.; Murata, Y. Exogenous Proline and Glycinebetaine Increase Antioxidant Enzyme Activities and Confer Tolerance to Cadmium Stress in Cultured Tobacco Cells. J. Plant Physiol. 2009, 166, 1587–1597. [Google Scholar] [CrossRef]
- Handa, S.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A. Proline Accumulation and the Adaptation of Cultured Plant Cells to Water Stress. Plant Physiol. 1986, 80, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Hoque, A.; Banu, M.N.A.; Nakamura, Y.; Shimoishi, Y.; Murata, Y. Proline and Glycinebetaine Enhance Antioxidant Defense and Methylglyoxal Detoxification Systems and Reduce NaCl-Induced Damage in Cultured Tobacco Cells. J. Plant Physiol. 2008, 165, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline Mechanisms of Stress Survival. Antioxid. Redox Signal. 2013, 19, 998–1011. [Google Scholar] [CrossRef] [Green Version]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of Proline under Changing Environments: A Review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Sharma, S.S.; Schat, H.; Vooijs, R. In Vitro Alleviation of Heavy Metal-Induced Enzyme Inhibition by Proline. Phytochemistry 1998, 49, 1531–1535. [Google Scholar] [CrossRef]
- Cappelletti, P.; Tallarita, E.; Rabattoni, V.; Campomenosi, P.; Sacchi, S.; Pollegioni, L. Proline Oxidase Controls Proline, Glutamate, and Glutamine Cellular Concentrations in a U87 Glioblastoma Cell Line. PLoS ONE 2018, 13, e0196283. [Google Scholar] [CrossRef]
- da Silva Lobato, A.K.; de Oliveira Neto, C.F.; dos Santos Filho, B.G.; Da Costa, R.C.L.; Cruz, F.J.R.; Neves, H.K.B.; dos Santos Lopes, M.J. Physiological and Biochemical Behavior in Soybean (Glycine max Cv. sambaiba) Plants under Water Deficit. Aust. J. Crop Sci. 2008, 2, 25–32. [Google Scholar]
- Ali, Q.; Anwar, F.; Ashraf, M.; Saari, N.; Perveen, R. Ameliorating Effects of Exogenously Applied Proline on Seed Composition, Seed Oil Quality and Oil Antioxidant Activity of Maize (Zea mays L.) under Drought Stress. IJMS 2013, 14, 818–835. [Google Scholar] [CrossRef]
- Sabagh, A.E.; Sorour, S.; Ragab, A.; Saneoka, H.; Islam, M.S. The Effect of Exogenous Application of Proline and Glycine Betaineon the Nodule Activity of Soybean under Saline Condition. J. Agric. Biotechnol. 2017, 2, 1–5. [Google Scholar] [CrossRef]
- Navarrete, M.H.; Carrera, P.; de Miguel, M.; de la Torre, C. A Fast Comet Assay Variant for Solid Tissue Cells. The Assessment of DNA Damage in Higher Plants. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 1997, 389, 271–277. [Google Scholar] [CrossRef]
- Angelis, K.J.; Mcguffie, M.; Menke, M.; Schubert, I. Adaption to Alkylation Damage in DNA Measured by the Comet Assay. Environ. Mol. Mutagen 2000, 36, 146–150. [Google Scholar] [CrossRef]
- Singh, P.K.; Tewari, R.K. Cadmium Toxicity Induced Changes in Plant Water Relations and Oxidative Metabolism of Brassica juncea L. Plants. J. Environ. Biol. 2003, 24, 107–112. [Google Scholar] [PubMed]
- Gichner, T.; Patková, Z.; Száková, J.; Demnerová, K. Cadmium Induces DNA Damage in Tobacco Roots, but No DNA Damage, Somatic Mutations or Homologous Recombination in Tobacco Leaves. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2004, 559, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Seth, C.S.; Misra, V.; Chauhan, L.K.S.; Singh, R.R. Genotoxicity of Cadmium on Root Meristem Cells of Allium Cepa: Cytogenetic and Comet Assay Approach. Ecotoxicol. Environ. Saf. 2008, 71, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Klaude, M.; Eriksson, S.; Nygren, J.; Ahnström, G. The Comet Assay: Mechanisms and Technical Considerations. Mutat. Res. DNA Repair 1996, 363, 89–96. [Google Scholar] [CrossRef]
- Liu, W.; Li, P.J.; Qi, X.M.; Zhou, Q.X.; Zheng, L.; Sun, T.H.; Yang, Y.S. DNA Changes in Barley (Hordeum vulgare) Seedlings Induced by Cadmium Pollution Using RAPD Analysis. Chemosphere 2005, 61, 158–167. [Google Scholar] [CrossRef]
- Ünyayar, S.; Celik, A.; Çekiç, F.Ö.; Gözel, A. Cadmium-Induced Genotoxicity, Cytotoxicity and Lipid Peroxidation in Allium Sativum and Vicia Faba. Mutagenesis 2006, 21, 77–81. [Google Scholar] [CrossRef]
- Fedel-Miyasato, L.E.S.; Formagio, A.S.N.; Auharek, S.A.; Kassuya, C.a.L.; Navarro, S.D.; Cunha-Laura, A.L.; Monreal, A.C.D.; Vieira, M.C.; Oliveira, R.J. Antigenotoxic and Antimutagenic Effects of Schinus Terebinthifolius Raddi in Allium Cepa and Swiss Mice: A Comparative Study. Genet. Mol. Res. 2014, 13, 3411–3425. [Google Scholar] [CrossRef]
- Pourrut, B.; Pinelli, E.; Celiz Mendiola, V.; Silvestre, J.; Douay, F. Recommendations for Increasing Alkaline Comet Assay Reliability in Plants. Mutagenesis 2015, 30, 37–43. [Google Scholar] [CrossRef]
- Wojewódzka, M.; Buraczewska, I.; Kruszewski, M. A Modified Neutral Comet Assay: Elimination of Lysis at High Temperature and Validation of the Assay with Anti-Single-Stranded DNA Antibody. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2002, 518, 9–20. [Google Scholar] [CrossRef]
- Møller, P.; Loft, S.; Ersson, C.; Koppen, G.; Dusinska, M.; Collins, A. On the Search for an Intelligible Comet Assay Descriptor. Front. Genet. 2014, 5, 1–4. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Yang, C. Evaluating In Vitro DNA Damage Using Comet Assay. JoVE 2017, 128, 56450. [Google Scholar] [CrossRef]
- Burlinson, B. The In Vitro and In Vivo Comet Assays. In Genetic Toxicology; Parry, J.M., Parry, E.M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2012; Volume 817, pp. 143–163. ISBN 978-1-61779-420-9. [Google Scholar]
- Speit, G.; Hartmann, A. The Comet Assay. In DNA Repair Protocols; Henderson, D.S., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2006; Volume 314, pp. 275–286. ISBN 978-1-58829-513-2. [Google Scholar]
- Kumaravel, T.S.; Jha, A.N. Reliable Comet Assay Measurements for Detecting DNA Damage Induced by Ionising Radiation and Chemicals. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2006, 605, 7–16. [Google Scholar] [CrossRef]
- Kumaravel, T.S.; Vilhar, B.; Faux, S.P.; Jha, A.N. Comet Assay Measurements: A Perspective. Cell Biol. Toxicol. 2009, 25, 53–64. [Google Scholar] [CrossRef]
- Valverde, M.; Lozano-Salgado, J.; Fortini, P.; Rodriguez-Sastre, M.A.; Rojas, E.; Dogliotti, E. Hydrogen Peroxide-Induced DNA Damage and Repair through the Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Lorenzo, Y.; Costa, S.; Collins, A.R.; Azqueta, A. The Comet Assay, DNA Damage, DNA Repair and Cytotoxicity: Hedgehogs Are Not Always Dead. Mutagenesis 2013, 28, 427–432. [Google Scholar] [CrossRef]
- Valverde, M. Is the Capacity of Lead Acetate and Cadmium Chloride to Induce Genotoxic Damage Due to Direct DNA-Metal Interaction? Mutagenesis 2001, 16, 265–270. [Google Scholar] [CrossRef]
- Hossain, Z.; Huq, F. Studies on the Interaction between Cd2+ Ions and Nucleobases and Nucleotides. J. Inorg. Biochem. 2002, 90, 97–105. [Google Scholar] [CrossRef]
- Hossain, Z.; Huq, F. Studies on the Interaction between Cd2+ Ions and DNA. J. Inorg. Biochem. 2002, 90, 85–96. [Google Scholar] [CrossRef]
- Arya, S.K.; Mukherjee, A. Sensitivity of Allium Cepa and Vicia Faba towards Cadmium Toxicity. J. Soil Sci. Plant Nutr. 2014, 14, 447–458. [Google Scholar] [CrossRef]
- Thangaraja, A.; Ganesan, V.; Raja, P.; Thangaraja, A.; Ganesan, V.; Raja, P. Cadmium-Induced Changes in Mitotic Index and Genotoxicity on Vigna unguiculata (Linn.) Walp. J. Environ. Chem. Ecotoxicol. 2013, 5, 57–62. [Google Scholar]
- Mani, S.; Van de Cotte, B.; Van Montagu, M.; Verbruggen, N. Altered Levels of Proline Dehydrogenase Cause Hypersensitivity to Proline and Its Analogs in Arabidopsis. Plant Physiol. 2002, 128, 73–83. [Google Scholar] [CrossRef]
- Cîntã-Pînzaru, S.; Cavalu, S.; Leopold, N.; Petry, R.; Kiefer, W. Raman and Surface-Enhanced Raman Spectroscopy of Tempyo Spin Labelled Ovalbumin. J. Mol. Struct. 2001, 565–566, 225–229. [Google Scholar] [CrossRef]
- de Freitas, P.A.F.; de Souza Miranda, R.; Marques, E.C.; Prisco, J.T.; Gomes-Filho, E. Salt Tolerance Induced by Exogenous Proline in Maize Is Related to Low Oxidative Damage and Favorable Ionic Homeostasis. J. Plant Growth Regul. 2018, 37, 911–924. [Google Scholar] [CrossRef]
- Schat, H.; Sharma, S.S.; Vooijs, R. Heavy Metal-Induced Accumulation of Free Proline in a Metal-Tolerant and a Nontolerant Ecotype of Silene vulgaris. Physiol. Plant 1997, 101, 477–482. [Google Scholar] [CrossRef]
- Talanova, V.V.; Titov, A.F.; Boeva, N.P. Effect of Increasing Concentrations of Lead and Cadmium on Cucumber Seedlings. Biol. Plant. 2000, 43, 441–444. [Google Scholar] [CrossRef]
- De Knecht, J.A.; Van Dillen, M.; Koevoets, P.L.M.; Schat, H.; Verkleij, J.a.C.; Ernst, W.H.O. Phytochelatins in Cadmium-Sensitive and Cadmium-Tolerant Silene Vulgaris (Chain Length Distribution and Sulfide Incorporation). Plant Physiol. 1994, 104, 255–261. [Google Scholar] [CrossRef]
- Xu, J.; Yin, H.; Li, X. Protective Effects of Proline against Cadmium Toxicity in Micropropagated Hyperaccumulator, Solanum nigrum L. Plant Cell Rep. 2009, 28, 325–333. [Google Scholar] [CrossRef]
- Roy, D.; Basu, N.; Bhunia, A.; Banerjee, S.K. Counteraction of Exogenous L-Proline with NaCl in Salt-Sensitive Cultivar of Rice. Biol. Plant. 1993, 35, 69. [Google Scholar] [CrossRef]
- Jain, M.; Mathur, G.; Koul, S.; Sarin, N. Ameliorative Effects of Proline on Salt Stress-Induced Lipid Peroxidation in Cell Lines of Groundnut (Arachis hypogaea L.). Plant Cell Rep. 2001, 20, 463–468. [Google Scholar] [CrossRef]
- Kada, T. Environmental Desmutagens and Antimutagens. In Environmental Mutagenesis, Carcinogenesis, and Plant Biology; Edward, J.J., Jr., Ed.; Praeger: New York, NY, USA, 1982; Volume 1, pp. 137–151. [Google Scholar]
- Roy, M.K.; Kuwabara, Y.; Hara, K.; Watanabe, Y.; Tamai, Y. Antimutagenic Effect of Amino Acids on the Mutagenicity of N -Methyl-N′-Nitro-N-Nitrosoguanidine (MNNG). Biosci. Biotechnol. Biochem. 2002, 66, 1400–1402. [Google Scholar] [CrossRef]
- Islam, M.M.; Hoque, A.; Okuma, E.; Jannat, R.; Banu, M.N.A.; Jahan, S.; Nakamura, Y.; Murata, Y. Proline and Glycinebetaine Confer Cadmium Tolerance on Tobacco Bright Yellow-2 Cells by Increasing Ascorbate-Glutathione Cycle Enzyme Activities. Biosci. Biotechnol. Biochem. 2009, 73, 2320–2323. [Google Scholar] [CrossRef]
- Sabeen, M.; Mahmood, Q.; Bhatti, Z.A.; Irshad, M.; Bilal, M.; Hayat, M.T.; Irshad, U.; Akbar, T.A.; Arslan, M.; Shahid, N. Allium Cepa Assay Based Comparative Study of Selected Vegetables and the Chromosomal Aberrations Due to Heavy Metal Accumulation. Saudi J. Biol. Sci. 2020, 27, 1368–1374. [Google Scholar] [CrossRef]
- Hassan, M.; Israr, M.; Mansoor, S.; Hussain, S.A.; Basheer, F.; Azizullah, A.; Ur Rehman, S. Acclimation of Cadmium-Induced Genotoxicity and Oxidative Stress in Mung Bean Seedlings by Priming Effect of Phytohormones and Proline. PLoS ONE 2021, 16, e0257924. [Google Scholar] [CrossRef]
CTRL− | CTRL+ | Cd | P10 | P20 | P40 | P10 Cd | P20 Cd | P40 Cd | Cd P10 | Cd P20 | Cd P40 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CTRL− | 1 | <0.0001 | <0.0001 | >0.9999 | 0.9985 | 0.0013 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0016 | 0.0009 |
CTRL+ | **** | 1 | 0.0499 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Cd | **** | * | 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
P10 | ns | **** | **** | 1 | 0.9895 | 0.0005 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0006 | 0.0004 |
P20 | ns | **** | **** | ns | 1 | 0.0318 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0378 | 0.0242 |
P40 | ** | **** | **** | *** | * | 1 | <0.0001 | <0.0001 | <0.0001 | 0.0281 | >0.9999 | >0.9999 |
P10 Cd | **** | **** | **** | **** | **** | **** | 1 | 0.9993 | >0.9999 | <0.0001 | <0.0001 | <0.0001 |
P20 Cd | **** | **** | **** | **** | **** | **** | ns | 1 | >0.9999 | 0.0001 | <0.0001 | <0.0001 |
P40 Cd | **** | **** | **** | **** | **** | **** | ns | ns | 1 | <0.0001 | <0.0001 | <0.0001 |
Cd P10 | **** | **** | **** | **** | **** | * | **** | *** | **** | 1 | 0.0235 | 0.0368 |
Cd P20 | ** | **** | **** | *** | * | ns | **** | **** | **** | * | 1 | >0.9999 |
Cd P40 | *** | **** | **** | *** | * | ns | **** | **** | **** | * | ns | 1 |
Treatment | MI (%) | Interphase | Prophase | Metaphase | Anaphase | Telophase | CAs (%) |
---|---|---|---|---|---|---|---|
CTRL− | 64 ± 1.8 a | 1260 | 1826 | 224 | 114 | 84 | 1.6 ± 0.14 cd |
CTRL+ | 2.4 ± 0.22 e | 3416 | 42 | 23 | 12 | 7 | 4.2 ± 0.30 b |
Cd | 2.8 ± 0.37 e | 3402 | 48 | 19 | 15 | 16 | 5.2 ± 0.58 a |
P10 | 40 ± 1.75 b | 2100 | 386 | 256 | 155 | 98 | 0.0 |
P 20 | 40 ± 1.49 b | 2083 | 870 | 278 | 186 | 65 | 0.0 |
P 40 | 38.1 ± 1.21 b | 2170 | 882 | 248 | 173 | 32 | 0.0 |
Pre-treatment | |||||||
P10Cd | 13 ± 0.82 c | 3045 | 196 | 113 | 101 | 45 | 1.2 ± 0.18 c |
P20Cd | 15.4 ± 0.58 c | 2975 | 214 | 146 | 114 | 51 | 1.4 ± 0.16 c |
P40Cd | 16 ± 1.12 c | 2938 | 210 | 168 | 132 | 50 | 1.2 ± 0.24 c |
Post-treatment | |||||||
CdP10 | 8.4 ± 0.74 d | 3200 | 146 | 79 | 48 | 21 | 2.1 ± 0.23 d |
CdP20 | 9.4 ± 0.43 d | 3169 | 172 | 98 | 40 | 19 | 2.4 ± 0.34 d |
CdP40 | 9.6 ± 0.59 d | 3164 | 194 | 106 | 32 | 4 | 2.4 ± 0.44 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purcarea, C.; Laslo, V.; Memete, A.R.; Agud, E.; Miere, F.; Vicas, S.I. Antigenotoxic and Antimutagenic Potentials of Proline in Allium cepa Exposed to the Toxicity of Cadmium. Agriculture 2022, 12, 1568. https://doi.org/10.3390/agriculture12101568
Purcarea C, Laslo V, Memete AR, Agud E, Miere F, Vicas SI. Antigenotoxic and Antimutagenic Potentials of Proline in Allium cepa Exposed to the Toxicity of Cadmium. Agriculture. 2022; 12(10):1568. https://doi.org/10.3390/agriculture12101568
Chicago/Turabian StylePurcarea, Cornelia, Vasile Laslo, Adriana Ramona Memete, Eliza Agud, Florina Miere (Groza), and Simona Ioana Vicas. 2022. "Antigenotoxic and Antimutagenic Potentials of Proline in Allium cepa Exposed to the Toxicity of Cadmium" Agriculture 12, no. 10: 1568. https://doi.org/10.3390/agriculture12101568
APA StylePurcarea, C., Laslo, V., Memete, A. R., Agud, E., Miere, F., & Vicas, S. I. (2022). Antigenotoxic and Antimutagenic Potentials of Proline in Allium cepa Exposed to the Toxicity of Cadmium. Agriculture, 12(10), 1568. https://doi.org/10.3390/agriculture12101568