Comparative Evaluation of Physicochemical Properties, Microstructure, and Antioxidant Activity of Jujube Polysaccharides Subjected to Hot Air, Infrared, Radio Frequency, and Freeze Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Drying Procedures
2.3. Extraction of Polysaccharides from Jujube
2.4. Determination of Physicochemical Properties of Polysaccharides
2.4.1. Analysis of Chemical Components
2.4.2. Monosaccharide Composition and Content of JPSs
2.4.3. Molecular Weight of JPSs
2.4.4. Thermogravimetric Analysis (TGA)
2.4.5. Determination of Rheological Properties
2.4.6. FT-IR Spectroscopy Analysis
2.5. Scanning Electron Microscopy (SEM)
2.6. Antioxidant Activities of JPS
2.6.1. Determination of DPPH Radical-Scavenging Assay
2.6.2. Determination of ABTS Radical-Scavenging Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yields and Chemical Compositions of JPSs
3.2. Monosaccharide Compositions and Molecular Weights of JPSs
3.3. Thermal Properties of JPSs
3.4. Rheological Properties of JPSs
3.5. FT-IR Spectra of JPSs
3.6. Surface Morphology of JPSs
3.7. Antioxidant Activity of JPSs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.M.; Liu, Y.; Shan, C.H.; Yang, X.Q.; Zhang, Q.; Xu, N.; Xu, L.Y.; Song, W. Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chem. X 2022, 14, 100287. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xiao, J.; Jiang, D.; Liu, Y.; Gou, Z.; Li, J.; Shi, M.; Wang, X.; Guo, Y.; Ma, L.; et al. Inhibitory effects of a water-soluble jujube polysaccharide against biofilm-forming oral pathogenic bacteria. Int. J. Biol. Macromol. 2022, 208, 1046–1062. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liao, Y.; Guo, M.; Zhang, W.; Sang, Y.; Wang, H.; Cheng, S.; Chen, G. Comparative elucidation of bioactive and volatile components in dry mature jujube fruit (Ziziphus jujuba Mill.) subjected to different drying methods. Food Chem. X 2022, 14, 100311. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Han, Y.; Kennedy, J.F.; Jiang, H.; Cao, H.; Zhang, Y.; Wang, T. A review on polysaccharides from jujube and their pharmacological activities. Carbohydr. Polym. Technol. Appl. 2022, 3, 100220. [Google Scholar] [CrossRef]
- Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT Food Sci. Technol. 2015, 64, 759–766. [Google Scholar] [CrossRef]
- Gong, C.; Zhao, Y.; Zhang, H.; Yue, J.; Miao, Y.; Jiao, S. Investigation of radio frequency heating as a dry-blanching method for carrot cubes. J. Food Eng. 2019, 245, 53–56. [Google Scholar] [CrossRef]
- Chen, C.; Wongso, I.; Putnam, D.; Khir, R.; Pan, Z. Effect of hot air and infrared drying on the retention of cannabidiol and terpenes in industrial hemp (Cannabis sativa L.). Ind. Crops Prod. 2021, 172, 114051. [Google Scholar] [CrossRef]
- Fu, Y.; Feng, K.L.; Wei, S.Y.; Xiang, X.R.; Ding, Y.; Li, H.Y.; Zhao, L.; Qin, W.; Gan, R.Y.; Wu, D.T. Comparison of structural characteristics and bioactivities of polysaccharides from loquat leaves prepared by different drying techniques. Int. J. Biol. Macromol. 2020, 145, 611–619. [Google Scholar] [CrossRef]
- Li, F.; Feng, K.L.; Yang, J.C.; He, Y.S.; Guo, H.; Wang, S.P.; Gan, R.Y.; Wu, D.T. Polysaccharides from dandelion (Taraxacum mongolicum) leaves: Insights into innovative drying techniques on their structural characteristics and biological activities. Int. J. Biol. Macromol. 2021, 167, 995–1005. [Google Scholar] [CrossRef]
- Ma, Q.; Santhanam, R.K.; Xue, Z.; Guo, Q.; Gao, X.; Chen, H. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int. J. Biol. Macromol. 2018, 119, 1137–1143. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Q.; Luo, Y.; Yang, Q.; Wei, X.; Kan, J. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic. Int. J. Biol. Macromol. 2019, 137, 676–687. [Google Scholar] [CrossRef]
- Chen, S.; Qin, L.; Xie, L.; Yu, Q.; Chen, Y.; Chen, T.; Lu, H.; Xie, J. Physicochemical characterization, rheological and antioxidant properties of three alkali-extracted polysaccharides from mung bean skin. Food Hydrocoll. 2022, 132, 107867. [Google Scholar] [CrossRef]
- Lester, G.E.; Lewers, K.S.; Medina, M.B.; Saftner, R.A. Comparative analysis of strawberry total phenolics via Fast Blue BB vs. Folin–Ciocalteu: Assay interference by ascorbic acid. J. Food Compos. Anal. 2012, 27, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-X.; Gu, L.-B.; Zhang, G.-J.; Liu, H.-M.; Zhang, Y.-T.; Zhang, K.-P. Structural characterization and antioxidant activity of polysaccharides extracted from Chinese yam by a cellulase-assisted method. Process Biochem. 2022, 121, 178–187. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, H.; Zhang, J.; Wen, C.; Zhou, J.; Yao, H.; He, Y.; Ma, H.; Duan, Y. Optimization, characterization, rheological study and immune activities of polysaccharide from Sagittaria sagittifolia L. Carbohydr. Polym. 2020, 246, 116595. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Yu, H.-Y.; Liu, Y.-Z.; Qin, Z.; Liu, H.-M.; Ma, Y.-X.; Wang, X.-D. Isolation and structural characterization of cell wall polysaccharides from sesame kernel. LWT 2022, 163, 113574. [Google Scholar] [CrossRef]
- Du, Q.; Ji, X.; Lyu, F.; Liu, J.; Ding, Y. Heat stability and rheology of high-calorie whey protein emulsion: Effects of calcium ions. Food Hydrocoll. 2021, 114, 106583. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Huo, J.; Zhaoa, X.; Zheng, J.; Wei, X. Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides. Int. J. Biol. Macromol. 2013, 62, 714–719. [Google Scholar] [CrossRef]
- Shang, H.; Cao, Z.; Zhang, H.; Guo, Y.; Zhao, J.; Wu, H. Physicochemical characterization and in vitro biological activities of polysaccharides from alfalfa (Medicago sativa L.) as affected by different drying methods. Process Biochem. 2021, 103, 39–49. [Google Scholar] [CrossRef]
- Chen, X.M.; Ma, Z.; Kitts, D.D. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chem. 2018, 249, 143–153. [Google Scholar] [CrossRef]
- Yan, J.K.; Wu, L.X.; Qiao, Z.R.; Cai, W.D.; Ma, H. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 2019, 271, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wan, Y.; Li, O.; Zhang, X.; Xie, M.; Nie, S.; Yin, J. Two-step hydrolysis method for monosaccharide composition analysis of natural polysaccharides rich in uronic acids. Food Hydrocoll. 2020, 101, 105524. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Yong, H.; Kan, J.; Jin, C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int. J. Biol. Macromol. 2018, 116, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.L.; Wang, C.; Ma, H.; Ma, Y.; Yan, J.K. Physicochemical and functional characteristics of polysaccharides from okra extracted by using ultrasound at different frequencies. Food Chem. 2021, 361, 130138. [Google Scholar] [CrossRef]
- Chen, G.J.; Hong, Q.Y.; Ji, N.; Wu, W.N.; Ma, L.Z. Influences of different drying methods on the structural characteristics and prebiotic activity of polysaccharides from bamboo shoot (Chimonobambusa quadrangularis) residues. Int. J. Biol. Macromol. 2020, 155, 674–684. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, F.; Liu, R.; Tang, X.; Zhang, Q.; Zhang, Z. Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum polysaccharides. LWT Food Sci. Technol. 2014, 58, 594–601. [Google Scholar] [CrossRef]
- Sila, D.; Doungla, E.; Smout, C.; Van Loey, A.; Hendrickx, M. Pectin Fraction Interconversions: Insight into Understanding Texture Evolution of Thermally Processed Carrots. J. Agric. Food Chem. 2006, 54, 8471–8479. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, N.; Fu, X.; Wang, L.; Yang, Y.; Ren, Y.; Liu, J.; Wang, L. Structural characteristics, biological, rheological and thermal properties of the polysaccharide and the degraded polysaccharide from raspberry fruits. Int. J. Biol. Macromol. 2019, 132, 109–118. [Google Scholar] [CrossRef]
- Yuan, Q.; He, Y.; Xiang, P.-Y.; Huang, Y.-J.; Cao, Z.-W.; Shen, S.-W.; Zhao, L.; Zhang, Q.; Qin, W.; Wu, D.-T. Influences of different drying methods on the structural characteristics and multiple bioactivities of polysaccharides from okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 2020, 147, 1053–1063. [Google Scholar] [CrossRef]
- Lammers, K.; Arbuckle-Keil, G.; Dighton, J. FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biol. Biochem. 2009, 41, 340–347. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Li, J.; Deng, K.; Ai, L. Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydr. Polym. 2012, 87, 1849–1854. [Google Scholar] [CrossRef]
Sample | JPS-HA | JPS-F | JPS-IR | JPS-RF |
---|---|---|---|---|
Yield (%) | 2.95 ± 0.08 a | 4.52 ± 0.19 c | 3.10 ± 0.19 a | 3.55 ± 0.21 b |
Step 1 drying time (h) | 4.25 ± 0.35 b | 48.00 ± 0.00 c | 0.88 ± 0.06 a | 0.71 ± 0.06 a |
Step 2 drying time (h) | 5.10 ± 0.14 b | 48.00 ± 0.00 c | 1.42 ± 0.12 a | 1.19 ± 0.02 a |
Total sugar content (%) | 66.19 ± 0.81 a | 76.06 ± 1.24 d | 69.33 ± 0.93 b | 74.26 ± 0.98 c |
Total uronic acid content (%) | 11.95 ± 0.004 a | 15.65 ± 0.005 b | 18.78 ± 0.002 c | 19.18 ± 0.003 c |
Total phenol content (%) | 0.55 ± 0.07 a | 1.17 ± 0.10 b | 0.61 ± 0.07 a | 1.04 ± 0.13 b |
Protein content (%) | 2.93 ± 0.13 b | 1.41 ± 0.13 a | 2.83 ± 0.54 a | 1.69 ± 0.27 c |
Sample | JPS-HA | JPS-F | JPS-IR | JPS-RF |
---|---|---|---|---|
Mw (×105 Da) | 1.62 (±1.38%) | 0.87 (±1.11%) | 1.26 (±1.33%) | 1.20 (±1.87%) |
Mn (×105 Da) | 1.20 (±6.09%); | 0.77 (±4.93%) | 0.93 (±6.02%) | 0.92 (±1.85%) |
Mw/Mn | 1.34 (±6.24%) | 1.13 (±5.05%) | 1.36 (±6.17%) | 1.30 (±2.63%) |
Rg (nm) | 38.7 (±0.1%) | 27.9 (±0.2%) | 38.0 (±0.1%) | 30.1 (±0.1%) |
Mal | 40.81 ± 1.54 b | 36.18 ± 0.00 ab | 39.41 ± 0.65 ab | 34.73 ± 3.51 a |
Rha | 3.89 ± 0.00 b | 3.74 ± 0.06 b | 3.39 ± 0.18 a | 3.44 ± 0.06 a |
Gal | 6.81 ± 0.02 b | 6.90 ± 0.02 b | 5.87 ± 0.32 a | 6.26 ± 0.03 a |
Ara | 10.33 ± 0.15 c | 9.18 ± 0.36 b | 8.35 ± 0.35 a | 8.36 ± 0.11 a |
Glu | 5.03 ± 0.05 c | 3.37 ± 0.03 a | 4.09 ± 0.20 b | 3.15 ± 0.06 a |
GluA | 3.52 ± 0.03 a | 4.36 ± 0.35 a | 2.31 ± 1.55 a | 3.11 ± 1.57 a |
Man | 1.69 ± 0.00 b | 1.75 ± 0.00 c | 1.55 ± 0.04 a | 1.70 ± 0.00 bc |
Xyl | 1.91 ± 0.04 a | 1.95 ± 0.09 a | 1.82 ± 0.02 a | 1.90 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Qiu, C.; Guo, Y.; Zhang, C.; Li, D.; Gao, K.; Ma, Y.; Ma, H. Comparative Evaluation of Physicochemical Properties, Microstructure, and Antioxidant Activity of Jujube Polysaccharides Subjected to Hot Air, Infrared, Radio Frequency, and Freeze Drying. Agriculture 2022, 12, 1606. https://doi.org/10.3390/agriculture12101606
Wu B, Qiu C, Guo Y, Zhang C, Li D, Gao K, Ma Y, Ma H. Comparative Evaluation of Physicochemical Properties, Microstructure, and Antioxidant Activity of Jujube Polysaccharides Subjected to Hot Air, Infrared, Radio Frequency, and Freeze Drying. Agriculture. 2022; 12(10):1606. https://doi.org/10.3390/agriculture12101606
Chicago/Turabian StyleWu, Bengang, Chengcheng Qiu, Yiting Guo, Chunhong Zhang, Dan Li, Kun Gao, Yuanjin Ma, and Haile Ma. 2022. "Comparative Evaluation of Physicochemical Properties, Microstructure, and Antioxidant Activity of Jujube Polysaccharides Subjected to Hot Air, Infrared, Radio Frequency, and Freeze Drying" Agriculture 12, no. 10: 1606. https://doi.org/10.3390/agriculture12101606
APA StyleWu, B., Qiu, C., Guo, Y., Zhang, C., Li, D., Gao, K., Ma, Y., & Ma, H. (2022). Comparative Evaluation of Physicochemical Properties, Microstructure, and Antioxidant Activity of Jujube Polysaccharides Subjected to Hot Air, Infrared, Radio Frequency, and Freeze Drying. Agriculture, 12(10), 1606. https://doi.org/10.3390/agriculture12101606