Selected Soil Physicochemical Properties under Different Tillage Practices and N Fertilizer Application in Maize Mono-Cropping
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Soil Sampling Procedure
2.3. Laboratory Analyses
2.4. Statistical Analyses
3. Results
3.1. Soil Properties at 0–10 cm Depth
3.2. Soil Properties at 10–20 cm Depth
3.3. Soil Properties at 20–30 cm Depth
3.4. Relationship between Fertilizer Application Rates and Soil Properties
3.5. Amount of Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- Ishaq, M.; Ibrahim, M.; Lal, R. Tillage effects on soil properties at different levels of fertilizer application in Punjab, Pakistan. Soil Tillage Res. 2002, 68, 93–99. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Peterson, G.A.; Reule, C.A. Tillage system and crop rotation effects on dryland crop yields and soil carbon in the central Great Plains. Agron. J. 2002, 94, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.F.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation—A review. Plant Soil Environ. 2006, 52, 531. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Kurshid, K.; Igbal, M.; Arif, M.S.; Nawaz, A. Effect of tillage and mulch on soil, physical properties and growth of maize. Int. J. Agric. Biol. 2006, 5, 593–596. [Google Scholar]
- Malhi, S.S.; Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-year rotation cycle. Soil Tillage Res. 2007, 96, 269–283. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Song, W.; Wen, S.; Wang, B.; Zhu, C.; Shen, R. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol. Biochem. 2017, 113, 240–249. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosystems 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Lado, M.; Bar-Tal, A.; Azenkot, A.; Assouline, S.; Ravina, I.; Erner, Y.; Fine, P.; Dasberg, S.; Ben-Hur, M. Changes in chemical properties of semiarid soils under long-term secondary treated wastewater irrigation. Soil Sci. Soc. Am. J. 2012, 76, 1358–1369. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Obour, A.K.; Mikha, M.M.; Holman, J.D.; Stahlman, P.W. Changes in soil surface chemistry after fifty years of tillage and nitrogen fertilization. Geoderma 2017, 308, 46–53. [Google Scholar] [CrossRef]
- Soil Classification Working Group. Soil classification: A taxonomic system for South Africa. Mem. Agric. Nat. Resour. South Afr. 1991, 15, 1–262. [Google Scholar]
- Vilakazi, B.S. Indigenous Knowledge Systems Available to Conserve Soil and Water and Their Effects on Physico—Chemical Properties on Selected Smallholder Farms of KwaZulu-Natal. Masters Dissertation, University of KwaZulu Natal, Pietermaritzburg, South Africa, 2017. [Google Scholar]
- Díez, J.A.; Hernaiz, P.; Muñoz, M.J.; De la Torre, A.; Vallejo, A. Impact of pig slurry on soil properties, water salinization, nitrate leaching and crop yield in a four-year experiment in Central Spain. Soil Use Manag. 2004, 20, 444–450. [Google Scholar] [CrossRef] [Green Version]
- LECO Corporation. TruMac CNS/NS Determinators; LECO Corporation: St Joseph, MI, USA, 2012. [Google Scholar]
- Lourenzi, C.R.; Ceretta, C.A.; Silva, L.S.D.; Trentin, G.; Girotto, E.; Lorensini, F.; Tiecher, T.L.; Brunetto, G. Soil chemical properties related to acidity under successive pig slurry application. Rev. Bras. De Ciência Do Solo 2011, 35, 1827–1836. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.; Duncan, M. The use of pig manure—A study at Wollun, NSW. In Proceedings of the 24th Annual conference of the Grassland Society of NSW; Brouwer, D., Griffiths, N., Blackwood, I., Eds.; The Grassland Society NSW: Orange, NSW, 2009; pp. 79–81. [Google Scholar]
- Ngoze, S.; Buresh, R.J.; Jama, B.A.; Okaleb, J.R. Evaluation of fertiliser products derived from Busumbu phosphates rock in Eastern Uganda. In Participatory technology development by small holders in Kenya: Proceedings of the 2nd scientific conference of the soil management and legume research network projects; KARI: Nairobi, Kenya, 2002. [Google Scholar]
- Blake, G.R. Bulk density. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 1965, 9, 374–390. [Google Scholar]
- Walter, N.F.; Hallberg, G.R.; Fenton, T.E. Particle-size analysis by the Iowa State University soil survey laboratory. Stand. Proced. Eval. Quat. Mater. Iowa. Tech. Inf. Ser. 1978, 8, 61–74. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; International Soil Reference and Information Centre (ISRIC): Wageningen, The Netherlands, 2002. [Google Scholar]
- VSN International. Genst at for Windows; VSN International: Hemel Hempstead, UK, 2011. [Google Scholar]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Cantero-Martínez, C.; Lampurlanés, J. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 2003, 95, 526–536. [Google Scholar]
- Salem, H.M.; Valero, C.; Muñoz, M.Á.; Rodríguez, M.G.; Silva, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 2015, 237, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Yang, X.M.; Kay, B.D. Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in Southern Ontario. Soil Tillage Res. 2001, 59, 107–114. [Google Scholar] [CrossRef]
- Mgolozeli, S.; Nciizah, A.D.; Wakindiki, I.I.; Mudau, F.N. Innovative pro-smallholder farmers’ permanent mulch for better soil quality and food security under conservation agriculture. Agronomy 2020, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Mufradi, I.; Klitman, S.; Asido, S. Wheat grain yield and soil profile water distribution in a no-till arid environment. Agron. J. 1999, 91, 368–373. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Ismail, I.; Blevins, R.L.; Frye, W.W. Long-term no-tillage effects on soil properties and continuous corn yields. Soil Sci. Soc. Am. J. 1994, 58, 193–198. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.A.A.; Doran, J.W.; Drijber, R.A.; Dobermann, A. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. J. Environ. Qual. 2006, 35, 1999–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigenberg, R.A.; Doran, J.W.; Nienaber, J.A.; Ferguson, R.B.; Woodbury, B.L. Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agric. Ecosyst. Environ. 2002, 88, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Vilakazi, B.S.; Zengeni, R.; Mafongoya, P. Tillage and Urea Fertilizer Application Impacts on Soil C Fractions and Sequestration. Agronomy 2022, 12, 1725. [Google Scholar] [CrossRef]
Rates (kg N ha−1) | Tillage | pHw | pHKCI | Acidity (cmolc kg−1) | Bases (cmolc kg−1) | C:N | GWC (g g−1) | Bulk Density (kg m−3) |
---|---|---|---|---|---|---|---|---|
0 | NT | 5.6 bc | 4.68 bcd | 0.1 a | 13.9 g | 18.3 a | 0.18 fg | 1294 abc |
CT-Y5 | 6.0 bc | 4.71 bcd | 0.1 a | 5.1 bc | 40.4 ab | 0.17 efg | 940 a | |
CT-A | 6.3 c | 5.19 cd | 0.3 a | 7.4 cde | 32.7 ab | 0.14 cd | 1529 bc | |
60 | NT | 6.4 c | 5.31 d | 0.04 a | 11.4 f | 16.5 a | 0.18 fg | 1448 abc |
CT-Y5 | 6.0 bc | 4.70 bcd | 0.04 a | 5.8 bcd | 22.3 a | 0.15 de | 1846 c | |
CT-A | 5.9 bc | 4.60 bcd | 0.3 a | 5.0 b | 27.9 ab | 0.14 cd | 1307 abc | |
120 | NT | 6.3 c | 4.71 bcd | 0.1 a | 8.5 e | 19.7 a | 0.16 ef | 1360 abc |
CT-Y5 | 5.4 b | 4.60 bcd | 0.1 a | 4.6 b | 32.5 ab | 0.19 g | 1422 abc | |
CT-A | 6.4 c | 5.15 cd | 0.04 a | 6.8 bcde | 51.2 b | 0.15 de | 1339 abc | |
240 | NT | 5.4 b | 4.33 abc | 0.1 a | 8.0 de | 17.8 a | 0.12 ab | 1398 abc |
CT-Y5 | 4.4 a | 3.44 a | 3.9 b | 0.7 a | 24.8 a | 0.10 a | 1338 abc | |
CT-A | 5.9 bc | 4.19 ab | 0.2 a | 4.8 b | 36.4 ab | 0.13 bc | 1187 ab |
Rates (kg N ha−1) | Tillage | pHw | pHKCI | Acidity (cmolc kg−1) | Bases (cmolc kg−1) | C:N | GMC (g g−1) | Bulk Density (kg m−3) |
---|---|---|---|---|---|---|---|---|
0 | NT | 6.4 bc | 5.28 bc | 0.1 a | 7.8 bcd | 24.2 a | 0.11 a | 1860 b |
CT-Y5 | 6.1 bc | 4.72 abc | 0.2 a | 5.0 abc | 35.4 a | 0.17 b | 1416 ab | |
CT-A | 6.4 bc | 5.17 bc | 0.3 a | 7.2 bcd | 32.2 a | 0.13 ab | 1772 ab | |
60 | NT | 6.4 bc | 5.30 bc | 0.01 a | 9.1 d | 25.2 a | 0.16 b | 1560 ab |
CT-Y5 | 6.4 bc | 5.21 b | 0.03 a | 8.4 cd | 28.0 a | 0.16 ab | 1626 ab | |
CT-A | 5.8 bc | 4.59 abc | 0.03 a | 6.5 abcd | 35.1 a | 0.15 ab | 1704 ab | |
120 | NT | 6.2 bc | 5.04 bc | 0.05 a | 7.3 bcd | 25.3 a | 0.15 ab | 1633 ab |
CT-Y5 | 5.7 bc | 4.56 abc | 0.1 a | 4.9 ab | 31.0 a | 0.17 b | 1663 ab | |
CT-A | 4.8 a | 3.85 a | 1.0 b | 5.1 abc | 26.8 a | 0.15 ab | 1526 ab | |
240 | NT | 6.3 bc | 5.26 bc | 0.1 a | 7.8 bcd | 80.8 b | 0.14 ab | 1706 ab |
CT-Y5 | 5.6 ab | 4.37 ab | 0.2 a | 3.3 a | 34.0 a | 0.15 ab | 1343 a | |
CT-A | 5.9 bc | 4.78 bc | 0.02 a | 5.8 abcd | 35.9 a | 0.14 ab | 1415 ab |
Rates (kg N ha−1) | Tillage | pHw | pHKCI | Acidity (cmolc kg−1) | Bases (cmolckg−1) | C:N | GWC (g g−1) | Bulk Density (kg m−3) |
---|---|---|---|---|---|---|---|---|
0 | NT | 5.31 ab | 4.08 ab | 0.96 f | 4.29 abcde | 60.52 a | 0.18 d | 1918 ab |
CT-Y5 | 5.47 abc | 4.27 c | 0.34 abcd | 3.59 abcd | 46.40 a | 0.17 cd | 1762 ab | |
CT-A | 5.86 abcd | 4.61 d | 0.95 ef | 4.74 bcde | 57.80 a | 0.17 cd | 1602 ab | |
60 | NT | 6.46 d | 5.04 f | 0.09 a | 6.45 e | 27.79 a | 0.17 cd | 1994 b |
CT-Y5 | 5.64 abc | 4.33 c | 0.38 bcd | 2.77 ab | 33.30 a | 0.15 abc | 1779 ab | |
CT-A | 5.57 abc | 4.76 e | 0.39 bcd | 6.11 e | 50.57 a | 0.15 abc | 1734 ab | |
120 | NT | 5.91 bcd | 4.85 e | 0.03 a | 5.75 de | 24.11 a | 0.15 abc | 1878 ab |
CT-Y5 | 5.27 ab | 3.98 a | 0.56 de | 1.91 a | 77.18 a | 0.17 cd | 1516 a | |
CT-A | 5.15 a | 4.21 bc | 0.88 ef | 2.86 ab | 81.40 a | 0.15 abc | 1523 a | |
240 | NT | 5.48 abc | 4.61 d | 0.11 a | 5.35 cde | 104.34 a | 0.13 a | 1746 ab |
CT-Y5 | 5.34 abc | 4.34 c | 0.46 cde | 2.31 a | 37.07 a | 0.16 bcd | 1648 ab | |
CT-A | 6.06 bcd | 5.00 f | 0.10 a | 3.20 abc | 72.98 a | 0.14 ab | 1737 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilakazi, B.S.; Zengeni, R.; Mafongoya, P. Selected Soil Physicochemical Properties under Different Tillage Practices and N Fertilizer Application in Maize Mono-Cropping. Agriculture 2022, 12, 1738. https://doi.org/10.3390/agriculture12101738
Vilakazi BS, Zengeni R, Mafongoya P. Selected Soil Physicochemical Properties under Different Tillage Practices and N Fertilizer Application in Maize Mono-Cropping. Agriculture. 2022; 12(10):1738. https://doi.org/10.3390/agriculture12101738
Chicago/Turabian StyleVilakazi, Bonginkosi S., Rebecca Zengeni, and Paramu Mafongoya. 2022. "Selected Soil Physicochemical Properties under Different Tillage Practices and N Fertilizer Application in Maize Mono-Cropping" Agriculture 12, no. 10: 1738. https://doi.org/10.3390/agriculture12101738
APA StyleVilakazi, B. S., Zengeni, R., & Mafongoya, P. (2022). Selected Soil Physicochemical Properties under Different Tillage Practices and N Fertilizer Application in Maize Mono-Cropping. Agriculture, 12(10), 1738. https://doi.org/10.3390/agriculture12101738