Evaluation of Proximate Composition, Mineral Elements and Bioactive Compounds in Skin and Flesh of Beetroot Grown in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Total Soluble Solids and Dry Matter Analysis
2.3. Sample Preparation for Fiber, Ash, Proteins, Total Sugars, Macro- and Micro-Elements Determination
2.3.1. Fiber, Ash, Proteins and Totals Sugars Analysis
2.3.2. Macro- and Microelement Analysis
2.4. Sample Preparation for Bioactive Compounds Determination
2.4.1. Total Phenolic Amount Analysis
2.4.2. Total Anthocyanins Amount Analysis
2.4.3. Betalains Analyses
2.5. Statistical and Multivariate Analysis
3. Results
3.1. Proximate Composition
3.2. Mineral Elements
3.3. Bioactive Compounds
3.4. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ceclu, L.; Oana-Viorela, N. Red beetroot: Composition and health effects—A review. J. Nutri. Med. Diet Care 2020, 6, 1–9. [Google Scholar]
- Jasmitha, S.K.; Shenoy, A.; Hegde, K. A review on Beta Vulgaris (beet root). Int. J. Pharma Chem. Res. 2018, 4, 136–140. [Google Scholar]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Chawla, K.; Parle, M.; Sharma, K.; Yadav, M. Beetroot: A health promoting functional food. Inventi Rapid Nutraceuticals 2016, 1, 0976–3872. [Google Scholar]
- Kugler, F.; Graneis, S.; Stintzing, F.C.; Carle, R. Studies on betaxanthin profiles of vegetables and fruits from the Chenopodiaceae and Cactaceae. Z. Nat. C J. Biosci. 2007, 62, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalain in plants, food and in human nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Lazar, S.; Constantin, O.E.; Stănciuc, N.; Aprodu, I.; Croitoru, C.; Râpeanu, G. Optimization of betalain pigments extraction using beetroot by-products as a valuable source. Inventions 2021, 6, 50. [Google Scholar] [CrossRef]
- Kale, R.G.; Sawate, A.R.; Kshirsagar, R.B.; Patil, B.M.; Mane, R.P. Studies on evaluation of physical and chemical composition of beetroot (Beta vulgaris L.). Int. J. Chem. Stud. 2018, 6, 2977–2979. [Google Scholar]
- Sawicki, T.; Baczek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Costa, A.P.D.; Hermes, V.S.; Rios, A.O.; Flôres, S.H. Minimally processed beetroot waste as an alternative source to obtain functional ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Penner, M.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different genotypes of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Lazar, S.; Constantin, O.E.; Horincar, G.; Andronoiu, D.G.; Stanciuc, N.; Muresan, C.; Râpeanu, G. Beetroot by-product as a functional ingredient for obtaining value-added mayonnaise. Processes 2022, 10, 227. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; El-Mogy, M.M.; Parmar, A.; Mansour, A.T.; Shalaby, T.A.; Ali, M.R. Phytochemical characterization and utilization of dried red beetroot (Beta vulgaris) peel extract in maintaining the quality of Nile tilapia fish fillet. Antioxidants 2022, 11, 906. [Google Scholar] [CrossRef]
- Maqbool, H.; Safeena, M.P.; Abubacker, Z.; Azhar, M.; Kumar, S. Effect of beetroot peel dip treatment on the quality preservation of Deccan mahseer (Tor khudree) steaks during frozen storage (−18 °C). LWT 2021, 151, 112222. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Jokić, S.; Huđek, A.; Vojvodić Cebin, A.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of banana and red beetroot peels: Determination of basic macrocomponent composition, application of novel extraction methodology and assessment of biological activity in vitro. Sustainability 2020, 12, 4539. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta Vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- LST ISO 751: 2000; Fruit and Vegetable Products. Determination of Water—Insoluble Solids. Lithuanian Standards Board: Vilnius, Lithuania, 2000; p. 9.
- Latimer, G.W. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W., Jr., Ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- First Commission Directive of 15 June 1971 Establishing Community Methods of Analysis for the Official Control of Feeding-Stuffs (71/250/EEC). p. 22. Available online: http://data.europa.eu/eli/dir/1971/250/2005-02-16 (accessed on 20 September 2022).
- LST EN 15510:2017; Animal Feeding Stuffs: Methods of Sampling and Analysis—Determination of Calcium, Sodium, Phosphorus, Magnesium, Potassium, Iron, Zinc, Copper, Manganese, Cobalt, Molybdenum and Lead by ICP-AES. Lithuanian Standards Board: Vilnius, Lithuania, 2017; p. 29.
- Tamilselvi, N.; Krishnamoorthy, P.; Dhamotharan, R.; Arumugam, P.; Sagadevan, E. Analysis of total phenols, total tannins and screening of phytocomponents in Indigofera aspalathoides (Shivanar Vembu) Vahl EX DC. J. Chem. Pharm. Res. 2012, 4, 3259–3262. [Google Scholar]
- Tonutare, T.; Moor, U.; Szajdak, L. Strawberry anthocyanin determination by ph differential spectroscopic method—How to get true results? Acta Sci. Pol. Hortorum. Cultus 2014, 13, 35–47. [Google Scholar]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.A.; Gabr, A.M.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Yasaminshirazi, K.; Hartung, J.; Fleck, M.; Graeff-Hoenninger, S. Bioactive compounds and total sugar contents of different open-pollinated beetroot genotypes grown organically. Molecules 2020, 25, 4884. [Google Scholar] [CrossRef] [PubMed]
- Šlosár, M.; Kopta, T.; Hegedűs, O.; Hegedűsová, A.; Mezeyová, I.; Timoracká, M.; Mezey, J. Yield parameters, antioxidant activity, polyphenol and total soluble solids content of beetroot cultivars with different flesh colours. Folia Hortic. 2020, 32, 351–362. [Google Scholar] [CrossRef]
- Shuaibu, B.S.; Aremu, M.O.; Kalifa, U.J. Chemical composition and antioxidant activities of beetroot peel. Afr. J. Eng. Environ. Res. 2021, 2, 62–73. [Google Scholar]
- Ekholm, P.; Reinivuo, H.; Mattila, P.; Pakkala, H.; Koponen, J.; Happonen, A.; Hellström, J.; Ovaskainen, M.L. Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J. Food Compos. Anal. 2007, 20, 487–495. [Google Scholar] [CrossRef]
- Petek, M.; Herak Ćustić, M.; Toth, N.; Slunjski, S.; Čoga, L.; Pavlović, I.; Karažija, T.; Lazarević, B.; Cvetković, S. Nitrogen and crude proteins in beetroot (Beta vulgaris var. conditiva) under different fertilization treatments. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Petek, M.; Toth, N.; Pecina, M.; Karažija, T.; Lazarević, B.; Palčić, I.; Veres, S.; Herak Ćustić, M. Beetroot mineral composition affected by mineral and organic fertilization. PLoS ONE 2019, 14, e0221767. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Gawęda, M. Influence of cultivar on the content of selected minerals in red beet roots (Beta vulgaris L.). Folia Hortic. 2016, 28, 143–150. [Google Scholar] [CrossRef] [Green Version]
- EU Regulation no.1169/2011. EU Regulation of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Union 2011, 304, 18–63. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (accessed on 25 September 2022).
- Szekely, D.; Furulyás, D.; Stéger-Máté, M. Investigation of Mineral and Vitamin C Contents in Different Parts of Beetroots (Beta vulgaris L.). Not. Bot. Horti. Agrobo. 2019, 47, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef] [Green Version]
- Zin, M.M.; Alsobh, A.; Nath, A.; Csighy, A.; Bánvölgyi, S. Concentrations of beetroot (Beta vulgaris L.) peel and flesh extracts by reverse osmosis membrane. Appl. Sci. 2022, 12, 6360. [Google Scholar] [CrossRef]
- Kujala, T.; Loponen, J.; Pihlaja, K. Betalain and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation. Z. Naturforsch C J. Biosci. 2001, 56, 343–348. [Google Scholar] [CrossRef]
- Carrillo, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. LWT 2019, 116, 108552. [Google Scholar] [CrossRef]
- Kavalcová, P.; Bystrická, J.; Tomáš, J.; Karovičová, J.; Kovarovič, J.; Lenkova, M. The content of total polyphenols and antioxidant activityin red beetroot. Potravinarstvo 2015, 9, 77–83. [Google Scholar] [CrossRef]
- Kisiriko, M.; Anastasiadi, M.; Terry, L.A.; Yasri, A.; Beale, M.H.; Ward, J.L. Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules 2021, 26, 6343. [Google Scholar] [CrossRef]
- Monica, J.; Neelakantan, V.; Seenappa, D. A Novel method of stabilization of anthocyanins using beetroot peel and red cabbage. Int. J. Sci. Res. 2018, 8, 558–562. [Google Scholar] [CrossRef]
- Kovarovič, J.; Bystrická, J.; Tomáš, J.; Lenková, M. The influence of genotype on the content of bioactive compounds in beetroot (Beta vulgaris L.). Potravinárstvo Slovak J. Food Sci. 2017, 11, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Guiné, R.P.F.; Gonçalves, F.; Lerat, C.; Idrissi, T.E.; Rodrigi, E.; Correia, P.M.R.; Gonçalves, J.C. Extraction of Phenolic Compounds withAntioxidant Activity from Beetroot (Beta Vulgaris L.). Curr. Nutr. Food Sci. 2018, 14, 350–357. [Google Scholar] [CrossRef]
- Strack, D.; Vogt, T.; Schliemann, W. Recent advances in betalain research. Phytochemistry 2003, 62, 247–269. [Google Scholar] [CrossRef]
- Slatnar, A.; Stampar, F.; Veberic, R.; Jakopic, J. HPLC-MSn identification of betalain profile of different beetroot (Beta Vulgaris L. Ssp. Vulgaris) parts and cultivars. J. Food Sci. 2015, 80, 1952–1958. [Google Scholar] [CrossRef]
- Bárta, J.; Bártová, V.; Šindelková, T.; Jarošová, M.; Linhartová, Z.; Mráz, J.; Bedrníček, J.; Smetana, P.; Samková, E.; Laknerová, I. Effect of boiling on colour, contents of betalains and total phenolics and on antioxidant activity of colourful powder derived from six different beetroot (Beta vulgaris L. var. conditiva) cultivars. Pol. J. Food Nutr. Sci. 2020, 70, 377–385. [Google Scholar] [CrossRef]
Beetroot Genotype | Root Part | Dry Matter (%) | TSS (°Brix FM) | Protein (% DM) | Fiber (% DM) | Ash (% DM) | Total Sugars (% FM) |
---|---|---|---|---|---|---|---|
‘Alto F1’ | flesh | 8.80 ± 0.06 d * | 8.40 ± 0.01 b | 10.8 ± 0.0 f | 6.27 ± 0.03 d | 8.66 ± 0.04 c | 4.90 ± 0.03 d |
skin | 13.3 ± 0.4 b | 7.20 ± 0.14 d | 15.8 ± 0.1 a | 12.4 ± 0.4 a | 11.4 ± 0.1 a | 7.26 ± 0.04 b | |
‘Kosak’ | flesh | 11.0 ± 0.1 c | 9.90 ± 0.01 a | 12.5 ± 0.0 d | 5.41 ± 0.20 ef | 8.05 ± 0.07 cd | 6.06 ± 0.05 c |
skin | 15.0 ± 0.7 a | 7.85 ± 0.07 c | 15.5 ± 0.1 b | 9.44 ± 0.56 c | 10.2 ± 0.0 b | 8.23 ± 0.05 a | |
‘Pablo F1’ | flesh | 10.4 ± 0.1 c | 8.35 ± 0.07 b | 11.7 ± 0.1 e | 5.14 ± 0.06 f | 7.65 ± 0.03 d | 2.65 ± 0.03 g |
skin | 13.8 ± 0.1 b | 6.45 ± 0.07 e | 13.1 ± 0.1 c | 10.6 ± 0.0 b | 10.1 ± 0.0 b | 4.00 ± 0.04 e | |
‘Taunus F1’ | flesh | 9.44 ± 0.17 d | 8.53 ± 0.11 b | 11.6 ± 0.2 e | 6.04 ± 0.39 de | 8.86 ± 0.04 c | 2.62 ± 0.03 g |
skin | 14.0 ± 0.3 b | 7.50 ± 0.42 dc | 13.2 ± 0.1 c | 10.9 ± 0.3 b | 10.2 ± 0.0 b | 3.60 ± 0.04 e | |
p-Value: Genotype Root part Interactions of genotype × root part | <0.001 <0.001 NS | <0.001 <0.001 0.006 | <0.001 <0.001 <0.001 | <0.001 <0.001 0.009 | 0.011 <0.001 NS | <0.001 <0.001 <0.001 | |
Average | flesh | 10 ± 1 b | 8.8 ± 0.7 a | 11.6 ± 0.7 b | 5.72 ± 0.53 b | 8.31 ± 0.56 b | 4.06 ± 1.71 a |
skin | 14.0 ± 0.7 a | 7.25 ± 0.60 b | 14.4 ± 1.0 a | 10.8 ± 1.2 a | 10.5 ± 0.6 a | 5.77 ± 2.32 a |
Beetroot Genotype | Root Part | Macroelements (mg 100 g−1 DM) | ||||
---|---|---|---|---|---|---|
Potassium (K) | Nitrogen (N) | Phosphorus (P) | Calcium (Ca) | Magnesium (Mg) | ||
‘Alto F1’ | flesh | 3331 ± 30 b * | 1720 ± 57 e | 211 ± 14 d | 151 ± 9 c | 310 ± 11 g |
skin | 3200 ± 78 c | 2720 ± 49 a | 380 ± 7 b | 400 ± 21 b | 831 ± 13 a | |
‘Kosak’ | flesh | 3283 ± 24 b | 1901 ± 13 d | 310 ± 13 c | 140 ± 4 cd | 401 ± 16 e |
skin | 3602 ± 11 a | 2462 ± 54 b | 472 ± 18 a | 450 ± 14 a | 661 ± 11 d | |
‘Pablo F1’ | flesh | 3000 ± 28 d | 1772 ± 139 de | 323 ± 32 c | 120 ± 4 d | 292 ± 11 g |
skin | 3151 ± 12 c | 2150 ± 57 c | 456 ± 5 a | 381 ± 16 b | 701 ± 13 c | |
‘Taunus F1’ | flesh | 2901 ± 16 e | 1504 ± 9 f | 221 ± 12 d | 125 ± 4 cd | 370 ± 14 f |
skin | 2803 ± 10 f | 2131 ± 41 c | 390 ± 9 b | 390 ± 6 b | 762 ± 17 b | |
p-Value: Genotype Root part Interactions of beetroot genotype × root part | <0.001 0.007 <0.001 | <0.001 <0.001 <0.001 | <0.001 <0.001 NS | 0.002 <0.001 0.025 | <0.001 <0.001 <0.001 | |
Average | flesh | 3129 ± 210 a | 1724 ± 166 b | 266 ± 58 b | 134 ± 14 b | 344 ± 51 b |
skin | 3189 ± 33 a | 2366 ± 281 a | 425 ± 46 a | 406 ± 31 a | 739 ± 74 a | |
Beetroot genotype | Root part | Microelements (mg kg−1 DM) | ||||
Iron (Fe) | Zinc (Zn) | Boron (B) | Manganese (Mn) | Copper (Cu) | ||
‘Alto F1’ | flesh | 45.8 ± 1.0 d | 23.9 ± 1.3 d | 20.74 ± 0.9 d | 15.3 ± 0.4 d | 10.4 ± 04 c |
skin | 564 ± 14 c | 78.8 ± 0.3 a | 27.4 ± 0.0 b | 47.9 ± 1.3 c | 18.7 ± 0.5 b | |
‘Kosak’ | flesh | 53.0 ± 0.2 d | 25.7 ± 1.0 d | 19.3 ± 0.4 e | 17.3 ± 0.1 d | 10.4 ± 0.4 c |
skin | 759 ± 20 a | 64.5 ± 1.0 b | 27.3 ± 0.6 b | 52.3 ± 1.9 a | 17.7 ± 0.3 b | |
‘Pablo F1’ | flesh | 49.3 ± 0.3 d | 21.7 ± 1.0 e | 19.3 ± 0.7 e | 11.9 ± 0.4 e | 8.58 ± 0.82 d |
skin | 646 ± 14 b | 79.0 ± 1.4 a | 29.0 ± 0.5 a | 49.6 ± 0.9 cb | 17.5 ± 0.1 b | |
‘Taunus F1’ | flesh | 35.6 ± 0.8 e | 24.6 ± 0.5 d | 19.5 ± 0.7 de | 15.9 ± 0.4 d | 10.4 ± 0.4 c |
skin | 785 ± 16 a | 56.3 ± 0.4 c | 25.5 ± 0.4 c | 51.3 ± 1.6 ab | 20.4 ± 1.3 a | |
p-Value: Genotype Root part Interactions of beetroot genotype × root part | <0.001 <0.001 <0.001 | <0.001 <0.001 <0.001 | 0.013 <0.001 0.010 | 0.002 <0.001 NS | 0.004 <0.001 NS | |
Average | flesh | 45.9 ± 7.5 b | 24.0 ± 1.7 b | 19.7 ± 0.7 b | 15.1 ± 2.3 b | 9.98 ± 0.94 b |
skin | 689 ± 103 a | 69.7 ± 11.2 a | 27.3 ± 1.5 a | 50.3 ± 2.0 a | 18.6 ± 1.3 a |
Beetroot Genotype | Root Part | Total Phenolics (mg g−1 DM) | Total Anthocyanins (mg kg−1 DM) | Betacyanins | Betaxanthins | Total Betalains |
---|---|---|---|---|---|---|
(mg g−1 DM) | ||||||
‘Alto F1’ | flesh | 19.5 ± 0.9 d * | 41.7 ± 1.0 d | 8.31 ± 0.01 d | 4.26 ± 0.03 e | 12.6 ± 0.0 e |
skin | 24.9 ± 1.1 c | 58.7 ± 3.0 c | 8.51 ± 0.03 c | 4.92 ± 0.01 b | 13.4 ± 0.0 c | |
‘Kosak’ | flesh | 17.9 ± 0.1 e | 28.3 ± 4.2 e | 8.10 ± 0.02 e | 4.47 ± 0.04 d | 12.6 ± 0.0 e |
skin | 35.5 ± 0.2 a | 108 ± 2.8 a | 9.04 ± 0.01 a | 5.09 ± 0.01 a | 14.1 ± 0.0 a | |
‘Pablo F1’ | flesh | 15.2 ± 0.0 f | 42.6 ± 2.5 d | 7.90 ± 0.01 f | 4.24 ± 0.01 e | 12.2 ± 0.0 f |
skin | 36.1 ± 1.1 a | 63.9 ± 3.6 c | 8.84 ± 0.01 b | 4.93 ± 0.01 b | 13.8 ± 0.0 b | |
‘Taunus F1’ | flesh | 14.4 ± 0.1 f | 27.8 ± 3.3 e | 8.12 ± 0.02 e | 4.41 ± 0.03 d | 12.5 ± 0.0 e |
skin | 27.5 ± 0.0 b | 78.0 ± 1.7 b | 8.55 ± 0.05 c | 4.73 ± 0.01 c | 13.3 ± 0.1 d | |
p-Value: Genotype Root part Interactions of beetroot genotype × root part | <0.001 <0.001 <0.001 | 0.002 <0.001 <0.001 | <0.001 <0.001 <0.001 | <0.001 <0.001 <0.001 | <0.001 <0.001 <0.001 | |
Average | flesh | 16.8 ± 2.2 b | 35.1 ± 9.9 b | 8.11 ±0.15 b | 4.34 ± 0.10 b | 12.4 ± 0.2 b |
skin | 31.0 ± 5.2 a | 77.2 ± 20.9 a | 8.74 ± 0.23 a | 4.91 ± 0.13 a | 13.6 ± 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaitkevičienė, N.; Sapronaitė, A.; Kulaitienė, J. Evaluation of Proximate Composition, Mineral Elements and Bioactive Compounds in Skin and Flesh of Beetroot Grown in Lithuania. Agriculture 2022, 12, 1833. https://doi.org/10.3390/agriculture12111833
Vaitkevičienė N, Sapronaitė A, Kulaitienė J. Evaluation of Proximate Composition, Mineral Elements and Bioactive Compounds in Skin and Flesh of Beetroot Grown in Lithuania. Agriculture. 2022; 12(11):1833. https://doi.org/10.3390/agriculture12111833
Chicago/Turabian StyleVaitkevičienė, Nijolė, Akvilė Sapronaitė, and Jurgita Kulaitienė. 2022. "Evaluation of Proximate Composition, Mineral Elements and Bioactive Compounds in Skin and Flesh of Beetroot Grown in Lithuania" Agriculture 12, no. 11: 1833. https://doi.org/10.3390/agriculture12111833
APA StyleVaitkevičienė, N., Sapronaitė, A., & Kulaitienė, J. (2022). Evaluation of Proximate Composition, Mineral Elements and Bioactive Compounds in Skin and Flesh of Beetroot Grown in Lithuania. Agriculture, 12(11), 1833. https://doi.org/10.3390/agriculture12111833