Influence of Soil Chemical Features on Aromatic Profile of V. vinifera cv. Corvina Grapes and Wines: A Study-Case in Valpolicella Area (Italy) in a Calcareous and Non-Calcareous Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Soil Site Characterisation
2.3. Analysis of Wine Must at the End of Withering, Polyphenols, and Glycosidic Aroma Compounds
2.4. Winemaking and Tasting
2.5. Statistical Analysis
3. Results
3.1. Soil Classification of the Two Experimental Sites
3.2. Glycosidic Aroma Precursors
3.3. Wine Tasting
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, D.I.; Lombard, P.B.; Kabinett, L.Q. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Jackson, R.S. Specific and Distinctive Wine Styles. In Wine Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 725–812. [Google Scholar]
- Gladstones, J. Viticulture and Environment; Winetitles: Broadview, SA, Australia, 1992; ISBN 9781875130122. [Google Scholar]
- Mian, G.; Belfiore, N.; Musetti, R.; Tomasi, D.; Cantone, P.; Lovat, L.; Lupinelli, S.; Iacumin, L.; Celotti, E.; Golinelli, F. Effect of a Triacontanol-Rich Biostimulant on the Ripening Dynamic and Wine Must Technological Parameters in Vitis vinifera Cv. ‘Ribolla Gialla’. Plant Physiol. Biochem. 2022, 188, 60–69. [Google Scholar] [CrossRef] [PubMed]
- De Andrés-De Prado, R.; Yuste-Rojas, M.; Sort, X.; Andrés-Lacueva, C.; Torres, M.; Lamuela-Raventós, R.M. Effect of Soil Type on Wines Produced from Vitis vinifera L Cv. Grenache in Commercial Vineyards. J. Agric. Food Chem. 2007, 55, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil, and Cultivar on Terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Fayolle, E.; Follain, S.; Marchal, P.; Chéry, P.; Colin, F. Identification of Environmental Factors Controlling Wine Quality: A Case Study in Saint-Emilion Grand Cru Appellation, France. Sci. Total Environ. 2019, 694, 133718. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.B. The Emerging Cool Climate Wine Regions of Eastern Canada. J. Wine Res. 1999, 10, 79–94. [Google Scholar] [CrossRef]
- Choné, X.; Van Leeuwen, C.; Chery, P.H.; Ribéreau-Gayon, P. Terroir influence on water status and nitrogen status of non-irrigated Cabernet Sauvignon (Vitis vinifera). Vegetative development, must and wine composition (example of a Medoc top estate vineyard, Saint Julien area, Bordeaux, 1997). S. Afr. J. Enol. Vitic. 2004, 22, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; Van Leeuwen, C. Influence of Vineyard Location and Vine Water Status on Fruit Maturation of Nonirrigated Cv. Agiorgitiko (Vitis vinifera, L.). Effects on Wine Phenolic and Aroma Components. ACS Publ. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Mian, G.; Celotti, E.; Falginella, L.; de O Cantão, F.R.; Belfiore, N. Effect of Manure Application Timing on Roots, Canopy and Must Quality in Vitis vinifera “Merlot”: A Case Study in Italy, North-East. VITIS—J. Grapevine Res. 2022, 61, 87–92. [Google Scholar] [CrossRef]
- Tomasi, D.; Gaiotti, F.; Petoumenou, D.; Lovat, L.; Belfiore, N.; Boscaro, D.; Mian, G. Winter Pruning: Effect on Root Density, Root Distribution and Root/Canopy Ratio in Vitis vinifera Cv. Pinot Gris. Agronomy 2020, 10, 1509. [Google Scholar] [CrossRef]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, Phenolics, and Color of Cabernet Franc, Merlot, and Pinot Noir Wines from British Columbia. ACS Publ. 1999, 47, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of Sunlight and Temperature Effects on the Composition of Vitis vinifera Cv. Merlot Berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar] [CrossRef]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight Exposure and Temperature Effects on Berry Growth and Composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. Am. J. Enol. Vitic. 2001, 52, 1–7. [Google Scholar]
- Ritter, M.E. The physical environment: An introduction to physical geography. Date Visit. July 2006, 25, 2008. [Google Scholar]
- Morlat, R.; Guilbault, P.; Thelier-Huche, L.; Rioux, D. Etude integree et allegee des terroirs viticoles en Anjou: Caracterisation et zonage de l’Unite de Terroir de Base, en relation avec une enquete parcellaire. In Proceedings of the 2^ International Symposium: Territorio e Vino, Siena, Italy, 19–24 May 1998; pp. 197–220. [Google Scholar]
- Arnó, J.; Rosell, J.R.; Blanco, R.; Ramos, M.C.; Martínez-Casasnovas, J.A. Spatial Variability in Grape Yield and Quality Influenced by Soil and Crop Nutrition Characteristics. Precis. Agric. 2012, 13, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Scarlett, N.J.; Bramley, R.G.V.; Siebert, T.E. Within-Vineyard Variation in the ‘Pepper’Compound Rotundone Is Spatially Structured and Related to Variation in the Land Underlying the Vineyard. Aust. J. Grape Wine Res. 2014, 20, 214–222. [Google Scholar] [CrossRef]
- Bramley, R. g. v.; Siebert, T. e.; Herderich, M. j.; Krstic, M. p. Patterns of Within-Vineyard Spatial Variation in the ‘Pepper’ Compound Rotundone Are Temporally Stable from Year to Year. Aust. J. Grape Wine Res. 2017, 23, 42–47. [Google Scholar] [CrossRef]
- Ferrarini, R.; Guantieri, V.; Mattivi, F.; Carlin, S.; Vrhovsek, U.; Lonardi, F. Determinazione Del Rotundone, l’aroma Pepato, Nelle Varietà Principi Della Valpolicella: Corvina e Corvinone. L’enologo 2015, N° 1-2, 79–83, ISSN: 1593-6112. [Google Scholar]
- Tomasi, D.; Lonardi, A.; Boscaro, D.; Nardi, T.; Marangon, C.M.; De Rosso, M.; Flamini, R.; Lovat, L.; Mian, G. Effects of Traditional and Modern Post-Harvest Withering Processes on the Composition of the Vitis v. Corvina Grape and the Sensory Profile of Amarone Wines. Molecules 2021, 26, 5198. [Google Scholar] [CrossRef]
- Mian, G.; Cantone, P.; Golinelli, F. First Evidence of the Effect of a New Biostimulant Made by Fabaceae Tissue on Ripening Dynamics and Must Technological Main Parameters in Vitis vinifera ‘Ribolla Gialla’. Acta Hortic. 2022, 1333, 317–322. [Google Scholar] [CrossRef]
- Mian, G.; Cipriani, G.; Saro, S.; Martini, M.; Ermacora, P. Evaluation of Germplasm Resources for Resistance to Kiwifruit Vine Decline Syndrome (KVDS). Acta Hortic. 2022, 1332, 125–130. [Google Scholar] [CrossRef]
- Falginella, L.; Gaiotti, F.; Belfiore, N.; Mian, G.; Lovat, L.; Tomasi, D. Effect of Early Cane Pruning on Yield Components, Grape Composition, Carbohydrates Storage and Phenology in Vitis vinifera, L. Cv. Merlot. OENO One 2022, 56, 19–28. [Google Scholar] [CrossRef]
- Di Stefano, R.; Cravero, M. Methods for the Study of Wine Polyphenols. L’enotecnico 1989, 25, 83–89. [Google Scholar]
- Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D’Onofrio, C.; Tomasi, D. Influence of Vineyard Altitude on Glera Grape Ripening (Vitis vinifera, L.): Effects on Aroma Evolution and Wine Sensory Profile. J. Sci. Food Agric. 2017, 97, 2695–2705. [Google Scholar] [CrossRef]
- Zenoni, S.; Fasoli, M.; Guzzo, F.; Dal Santo, S.; Amato, A.; Anesi, A.; Commisso, M.; Herderich, M.; Ceoldo, S.; Avesani, L.; et al. Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes. Plant Physiol. 2016, 172, 1821–1843. [Google Scholar] [CrossRef]
- Fasoli, M.; Dell’Anna, R.; Amato, A.; Balestrini, R.; Dal Santo, S.; Monti, F.; Zenoni, S. Active Rearrangements in the Cell Wall Follow Polymer Concentration during Postharvest Withering in the Berry Skin of Vitis vinifera Cv. Corvina. Plant Physiol. Biochem. 2019, 135, 411–422. [Google Scholar] [CrossRef]
- Venturini, L.; Ferrarini, A.; Zenoni, S.; Tornielli, G.B.; Fasoli, M.; Santo, S.D.; Minio, A.; Buson, G.; Tononi, P.; Zago, E.D.; et al. De Novo Transcriptome Characterization of Vitis vinifera Cv. Corvina Unveils Varietal Diversity. BMC Genom. 2013, 14, 41. [Google Scholar] [CrossRef] [Green Version]
- Josep, M.U.; Sort, X.; Zayas, A.; Rosa, M.P. Effects of Soil and Climatic Conditions on Grape Ripening and Wine Quality of Cabernet Sauvignon. J. Wine Res. 2010, 21, 1–17. [Google Scholar] [CrossRef]
- Tomasi, D.; Gaiotti, F.; Jones, G. The Power of the Terroir: The Case Study of Prosecco Wine; Springer: New York, NY, USA, 2013. [Google Scholar]
- Seguin, G. “Terroirs” and Pedology of Wine Growing. Experientia 1986, 42, 861–873. [Google Scholar] [CrossRef]
- Hilbert, G.; Soyer, J.; Molot, C.; Giraudon, J.; Vitis, S.M. Effects of Nitrogen Supply on Must Quality and Anthocyanin Accumulation in Berries of Cv. Merlot. Vitis 2003, 42, 69–76. [Google Scholar]
- Mackenzie, D.E.; Christy, A.G. The Role of Soil Chemistry in Wine Grape Quality and Sustainable Soil Management in Vineyards. Water Sci. Technol. 2005, 51, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Salomé, C.; Coll, P.; Lardo, E.; Metay, A.; Villenave, C.; Marsden, C.; Blanchart, E.; Hinsinger, P.; Le Cadre, E. The Soil Quality Concept as a Framework to Assess Management Practices in Vulnerable Agroecosystems: A Case Study in Mediterranean Vineyards. Ecol. Indic. 2016, 61, 456–465. [Google Scholar] [CrossRef]
- Paronetto, L.; Dellaglio, F. Amarone: A Modern Wine Coming from an Ancient Production Technology. Adv. Food Nutr. Res. 2011, 63, 285–306. [Google Scholar] [CrossRef] [PubMed]
- Lampreave, M.; Mateos, A.; Valls, J.; Nadal, M.; Sánchez-Ortiz, A. Carbonated Irrigation Assessment of Grapevine Growth, Nutrient Absorption, and Sugar Accumulation in a Tempranillo (Vitis vinifera L.) Vineyard. Agriculture 2022, 12, 792. [Google Scholar] [CrossRef]
- Bavaresco, L.; Poni, S. Effect of Calcareous Soil on Photosynthesis Rate, Mineral Nutrition, and Source-Sink Ratio of Table Grape. J. Plant Nutr. 2003, 26, 2123–2135. [Google Scholar] [CrossRef]
- Huggett, J.M. Geology and Wine: A Review. Proc. Geol. Assoc. 2006, 117, 239–247. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Evolution of the Aromatic Profile in Garnacha Tintorera Grapes during Raisining and Comparison with That of the Naturally Sweet Wine Obtained. Food Chem. 2013, 139, 1052–1061. [Google Scholar] [CrossRef]
Experimental Site Characteristics | ||
---|---|---|
Parameter | Q | C |
Sand (%) | 38.05 | 25.00 * |
Silt (%) | 43.00 | 41.00 |
Clay (%) | 19.04 | 34.00 * |
Organic matter (g kg−1) | 2.68 | 2.86 |
Total nitrogen (N%) | 1.87 | 1.89 |
pH (soil/water ratio= 1:2.5) | 7.01 | 7.86 |
Total carbonates (CaCO3, %) | 3.03 | 45.02 *** |
Active carbonates (CaCO3, %) | 2.10 | 13.90 *** |
Available P2O5 (ppm) | 103.00 | 57.00 |
Exchangeable K2O (ppm) | 258.04 | 280 |
Exchangeable MgO (ppm) | 285.00 | 231.00 |
Exchangeable CaO (ppm) | 5782.08 | 5221.06 |
Exchangeable Na (ppm) | 26.02 | 21.00 |
Ratio Ca/Mg (meq) | 12.30 | 24.17 ** |
Ratio Mg/K (meq) | 2.40 | 1.82 |
Ratio Ca/K (meq) | 29.53 | 43.72 * |
Ratio C/N | 8.31 | 8.78 |
CSC (capacity of cationic exchange) (meq/100 gr) | 32.29 | 27.82 |
Organic C | 1.55 | 1.66 |
2016 | 2017 | |||
---|---|---|---|---|
C | Q | C | Q | |
Sugar (Brix) | 32.1 | 33.2 | 25.4 | 27.5 |
Acidity (g L−1) | 7.7 | 7.2 | 8.7 | 8.8 |
pH | 3.1 | 3.24 | 3.15 | 3.18 |
Tartaric acid (g L−1) | 6.4 | 6.1 | 9.2 | 8.9 |
Malic acid (g L−1) | 2 | 1.2* | 1.5 | 1.7 |
Anthocyanin Content at 30% WL | ||
---|---|---|
2016 | C | 614 |
Q | 886 ** | |
2017 | C | 335 |
Q | 441 * |
2016 Harvest | 30% WL | |
---|---|---|
Q | C | |
Σ aliphatic alcohols | 491.85 | 621.19 * |
Σ C-6-aldehydes | 34.84 | 35.05 |
Σ monoterpenols | 721.41 | 997.10 * |
Σ C13-norisoprenoids | 1022.32 | 1326.45 * |
Σ benzenoids | 4734.00 | 6340.39 ** |
Σ furan derivates | 137.72 | 105.87 |
TOTAL | 7142.14 | 9416.05 ** |
Harvest 2017 | 30% WL | |
Q | C | |
Σ aliphatic alcohols | 760.35 | 850.05 * |
Σ C-6-aldehydes | 73.48 | 120.23 ** |
Σ monoterpenols | 977.13 | 854.16 |
Σ C13-norisoprenoids | 1458.69 | 3324.27 *** |
Σ benzenoids | 6133.46 | 9979.90 ** |
Σ furan derivates | 68.92 | 85.05 * |
TOTAL | 9472.02 | 15,213.67 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasi, D.; Marcuzzo, P.; Nardi, T.; Lonardi, A.; Lovat, L.; Flamini, R.; Mian, G. Influence of Soil Chemical Features on Aromatic Profile of V. vinifera cv. Corvina Grapes and Wines: A Study-Case in Valpolicella Area (Italy) in a Calcareous and Non-Calcareous Soil. Agriculture 2022, 12, 1980. https://doi.org/10.3390/agriculture12121980
Tomasi D, Marcuzzo P, Nardi T, Lonardi A, Lovat L, Flamini R, Mian G. Influence of Soil Chemical Features on Aromatic Profile of V. vinifera cv. Corvina Grapes and Wines: A Study-Case in Valpolicella Area (Italy) in a Calcareous and Non-Calcareous Soil. Agriculture. 2022; 12(12):1980. https://doi.org/10.3390/agriculture12121980
Chicago/Turabian StyleTomasi, Diego, Patrick Marcuzzo, Tiziana Nardi, Andrea Lonardi, Lorenzo Lovat, Riccardo Flamini, and Giovanni Mian. 2022. "Influence of Soil Chemical Features on Aromatic Profile of V. vinifera cv. Corvina Grapes and Wines: A Study-Case in Valpolicella Area (Italy) in a Calcareous and Non-Calcareous Soil" Agriculture 12, no. 12: 1980. https://doi.org/10.3390/agriculture12121980
APA StyleTomasi, D., Marcuzzo, P., Nardi, T., Lonardi, A., Lovat, L., Flamini, R., & Mian, G. (2022). Influence of Soil Chemical Features on Aromatic Profile of V. vinifera cv. Corvina Grapes and Wines: A Study-Case in Valpolicella Area (Italy) in a Calcareous and Non-Calcareous Soil. Agriculture, 12(12), 1980. https://doi.org/10.3390/agriculture12121980