Anti-Proliferative and Anti-Metastatic Effects of Ethanol Extract from Cajanus cajan (L.) Millsp. Roots and its Sub-Fractions in Oral Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sub-Fraction from C. cajan
2.3. Determination of Genistein, Cajanol, and Daidzein
2.4. Cell Culture and Cell Anti-Proliferative Assay
2.5. MMP-2 and VEGF-2 Release Assay
2.6. Cell Cycle Analysis via Flow Cytometry
2.7. Measurement of Intracellular Reactive oxygen Species
2.8. Cell Migration and Invasion Assay
2.9. Western Blot Analysis for the Protein Expressions
2.10. Cellular Uptake
2.11. Statistical Analyses
3. Results
3.1. The Contents of Flavonoids of EECR95 and Its Sub-Fractions
3.2. Cytotoxicity Effects of EECR95 and Its Sub-Fractions in SCC-25 Cells
3.3. Anti-Proliferation Effect of EECRp70 in SCC25 Cells
3.4. Effect of EECRp70 on MMP-2 and VEGF-2 Activity of SCC25 Cells
3.5. Synergy of Antiproliferation between EECRp70 and Cisplatin or Taxol
3.6. Effect of EECRp70 on Cell Cycle in SCC25 Cells
3.7. Effect of EECRp70 on ROS Level in SCC25 Cells
3.8. Effect of EECRp70 on Migration and Invasion in SCC25 Cells
3.9. Effect of EECRp70 on Protein Expression in SCC25 Cells
3.10. Cellular Uptake of Genistein
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jhuang, J.-R.; Su, S.-Y.; Chiang, C.-J.; Yang, Y.-W.; Lin, L.-J.; Hsu, T.-H.; Lee, W.-C. Forecast of peak attainment and imminent decline after 2017 of oral cancer incidence in men in Taiwan. Sci. Rep. 2022, 12, 5726. [Google Scholar] [CrossRef] [PubMed]
- Almangush, A.; Leivo, I.; Mäkitie, A.A. Biomarkers for Immunotherapy of Oral Squamous Cell Carcinoma: Current Status and Challenges. Front. Oncol. 2021, 11, 616629. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, W.; Janiak-Kiszka, J.; Nowaczewska, M. Oral squamous cell carcinoma—Clinical characteristics, treatment, and outcomes in a single institution retrospective cohort study. Otolaryngol. Pol. 2022, 76, 12–17. [Google Scholar]
- Lai, W.W.; Hsu, S.C.; Chu, F.S.; Chen, Y.Y.; Yang, J.S.; Lin, J.P.; Lien, J.C.; Tsai, C.H.; Chung, J.G. Quercetin Inhibits Migration and Invasion of SAS Human Oral Cancer Cells through Inhibition of NF-κB and Matrix Metalloproteinase-2/-9 Signaling Pathways. Anticancer Res. 2013, 33, 1941–1950. [Google Scholar] [PubMed]
- Pires, F.R.; Ramos, A.B.; de Oliveira, J.B.C.; Tavares, A.S.; da Luz, P.S.R.; Dos Santos, T.C.R.B. Oral squamous cell carcinoma: Clinicopathological features from 346 cases from a single Oral Pathology service during an 8-year period. J. Appl. Oral Sci. 2013, 21, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.W.; Jayasekara, P.; Amarasinghe, A.H.K. Squamous cell carcinoma and precursor lesions of the oral cavity: Epidemiology and etiology. Periodontology 2000 2011, 57, 19–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marur, S.; D’Souza, G.; Westra, W.H.; Forastiere, A.A. HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 2010, 11, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Almangush, A.; Heikkinen, I.; Mäkitie, A.; Coletta, R.D.; Läärä, E.; Leivo, I.; Salo, T. Prognostic biomarkers for oral tongue squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Cancer 2017, 117, 856–866. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Oliveira, A.K.; Costa, R.A.P.; de Rossi, T.; Leme, A.F.P. Prognostic biomarkers in oral squamous cell carcinoma: A systematic review. Oral Oncol. 2017, 72, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.E.; Vo, T.L.T.; Chen, C.L.; Yang, N.C.; Chen, C.I.; and Song, T.Y. Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan (L.) Millsp. Agriculture 2020, 10, 558. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Hano, C. Cosmetic Potential of Cajanus cajan (L.) Millsp: Botanical Data, Traditional Uses, Phytochemistry and Biological Activities. Cosmetics 2020, 7, 84. [Google Scholar] [CrossRef]
- Fu, Y.J.; Liu, W.; Zu, Y.G.; Tong, M.H.; Li, S.M.; Yan, M.M.; Efferth, T.; Luo, H. Enzyme assisted extraction of luteolin and apigenin from pigeon pean [Cajanus cajan (L.) Millsp.] leaves. Food Chem. 2008, 111, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-Y.; Zhang, S.; Zu, Y.-G.; Fu, Y.-J.; Kong, Y.; Gao, Y.; Zhao, J.-T.; Efferth, T. Negative pressure cavitation extraction and antioxidant activity of genistein and genistin from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. Sep. Purif. Technol. 2010, 74, 261–270. [Google Scholar] [CrossRef]
- Vo, T.L.T.; Yang, N.C.; Yang, S.E.; Chen, C.L.; Wu, C.H.; Song, T.Y. Effects of Cajanus cajan (L.) millsp. roots extracts on the antioxidant and anti-inflammatory activities. Chin. J. Physiol. 2020, 63, 137–148. [Google Scholar]
- Luo, M.; Liu, X.; Zu, Y.; Fu, Y.; Zhang, S.; Yao, L.; Efferth, T. Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem.-Biol. Interact. 2010, 188, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Duker-Eshun, G.; Jaroszewski, J.W.; Asomaning, W.A.; Oppong-Boachie, F.; Brøgger Christensen, S. Antiplasmodial constituents of Cajanus cajan. Phytother. Res. 2004, 18, 128–130. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Yang, J.; Chen, D.H.; Sun, L. Effects of the stilbene extracts from Cajanus cajan L. on ovariectomy-induced bone loss in rats. Acta Pharm. Sin. 2007, 42, 562–565. [Google Scholar]
- Luo, Q.F.; Sun, L.; Si, J.Y.; Chen, D.H. Hypocholesterolemic effect of stilbenes containing extract fraction from Cajanus cajan on diet induced hypercholesterolemia in mice. Phytomedicine 2008, 15, 932–939. [Google Scholar] [CrossRef]
- Qin, J.; Teng, J.; Zhu, Z.; Chen, J.; Huang, W.J. Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells. Pharm. Biol. 2016, 54, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Jin, T.-Y.; Zhou, Y.-F. Inhibitory effect of isoflavones on prostate cancer cells and PTEN gene. Biomed. Environ. Sci. 2006, 19, 35–41. [Google Scholar]
- Tsai, H.-C.; Li, Y.-C.; Hsu, S.-H.; Young, T.-H.; Chen, M.-H. Inhibition of growth and migration of oral and cervical cancer cells by citrus polyphenol. J. Formos. Med. Assoc. 2016, 115, 171–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanaei, M.; Kavoosi, F.; Atashpour, S.; Haghighat, S. Effects of Genistein and Synergistic Action in Combination with Tamoxifen on the HepG2 Human Hepatocellular Carcinoma Cell Line. Asian Pac. J. Cancer Prev. 2017, 18, 2381–2385. [Google Scholar] [PubMed]
- Kikuchi, H.; Yuan, B.; Hu, X.; Okazaki, M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am. J. Cancer Res. 2019, 9, 1517–1535. [Google Scholar]
- Yang, S.E.; Lin, Y.F.; Liao, J.W.; Chen, J.T.; Chen, C.L.; Chen, C.I.; Hsu, S.L.; Song, T.Y. Insulin Sensitizer and Antihyper-lipidemic Effects of Cajanus cajan (L.) Millsp. Root in Methylglyoxal-Induced Diabetic Rats. Chin. J. Physiol. 2022, 65, 125–135. [Google Scholar]
- Ezeifeka, G.O.; Orji, M.U.; Mbata, T.I.; Patrick, A.O. Antimicrobial activities of Cajanus cajan, Garcinia kola and Xylopia aethiopi-ca on pathogenic microorganisms. Biotechnology 2004, 3, 41–43. [Google Scholar]
- Pratima, H.; Mathad, P. Antibacterial activity of various leaf extract of Cajanus cajan L. Bioscan 2011, 6, 111–114. [Google Scholar]
- Sarkar, R.; Hazra, B.; Mandal, S.; Biswas, S.; Mandal, N. Assessment of in vitro antioxidant and free radical scavenging activi-ty of Cajanus cajan. J. Complement. Integr. Med. 2009, 6, 97–103. [Google Scholar] [CrossRef]
- Wu, N.; Fu, K.; Fu, Y.J.; Zu, Y.G.; Chang, F.R.; Chen, Y.H.; Liu, X.L.; Kong, Y.; Liu, W.; Gu, C.B. Antioxidant activities of ex-tracts and main components of pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Molecules 2009, 14, 1032–1043. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Fu, Y.J.; Zu, Y.G.; Liu, W.; Wang, W.; Hua, X.; Yang, M. Ethanol modified supercritical fluid extraction and antioxi-dant activity of cajaninstilbene acid and pinostrobin from pigeonpea [Cajanus cajan (L.) Millsp.]. Food Chem. 2009, 117, 152–159. [Google Scholar] [CrossRef]
- Pal, D.; Sachan, N.; Ghosh, A.K.; Mishra, P. Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J. Adv. Pharm. Technol. Res. 2011, 2, 207–214. [Google Scholar] [CrossRef]
- Song, T.-Y.; Lin, H.-C.; Yang, N.-C.; Hu, M.-L. Antiproliferative and antimetastatic effects of the ethanolic extract of Phellinus igniarius (Linnearus: Fries) Quelet. J. Ethnopharmacol. 2008, 115, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.S.; Heinonen, M.; Frankel, E.N. Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem. 1998, 61, 71–75. [Google Scholar] [CrossRef]
- Gong, X.M.; Smith, J.R.; Swanson, H.M.; Rubin, L.P. Carotenoid Lutein Selectively Inhibits Breast Cancer Cell Growth and Potentiates the Effect of Chemotherapeutic Agents through ROS-Mediated Mechanisms. Molecules 2018, 23, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lautraite, S.; Bigot-Lasserre, D.; Bars, R.; Carmichael, N. Optimization of cell based assays for medium through screening of oxidative stress. Toxicol. Vitr. 2003, 17, 207–220. [Google Scholar] [CrossRef]
- Repesh, L.A. A new in vitro assay for quantitating tumor cell invasion. Invasion Metastasis 1989, 9, 192–208. [Google Scholar]
- Dong, X.; Xu, W.; Sikes, R.A.; Wu, C. Combination of low dose of genistein and daidzein has synergistic preventive effects on isogenic human prostate cancer cells when compared with individual soy isoflavone. Food Chem. 2013, 141, 1923–1933. [Google Scholar] [CrossRef]
- Zasadil, L.M.; Andersen, K.A.; Yeum, D.; Rocque, G.B.; Wilke, L.G.; Tevaarwerk, A.J.; Raines, R.T.; Burkard, M.E.; Weaver, B.A. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci. Transl. Med. 2014, 6, 229ra43. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.C.; Cong, P.F.; Lin, C.J.; Deng, Y.H.; Ling, J.L.; Zhang, M.X. Inhibition of paclitaxel resistance and apoptosis induction by cucurbitacin B in ovarian carcinoma cells. Oncol. Lett. 2017, 14, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Nakakaji, R.; Umemura, M.; Mitsudo, K.J.; Kim, J.H.; Hoshino, Y.; Sato, I.; Masuda, T.; Yamamoto, M.; Kioi, M.; Koizumi, T.; et al. Treatment of oral cancer using magnetized paclitaxel. Oncotarget 2018, 9, 15591–15605. [Google Scholar] [CrossRef]
- Xu, Y.M.; Xin, Y.Q.; Diao, Y.; Lu, C.Y.; Fu, J.; Luo, L.; and Yin, Z.M. Synergistic Effects of Apigenin and Paclitaxel on Apoptosis of Cancer Cells. PLoS ONE 2011, 6, e29169. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, D.S. Taxol in the treatment of lung cancer. J. Natl. Cancer Inst. Monogr. 1993, 15, 177–186. [Google Scholar]
- Yu, W.-D.; Sun, G.; Li, J.; Xu, J.; Wang, X.C. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019, 452, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-F.; Nien, S.; Wu, C.-H.; Liu, C.-L.; Chang, Y.-C.; Lin, Y.-S. Reappraisal of the anticancer efficacy of quercetin in oral cancer cells. J. Chin. Med. Assoc. 2013, 76, 146–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, M.; Yang, H.; Guo, M.; Li, W.; Gong, Z.; Jiang, J.; Li, P. Cajanol Sensitizes A2780/Taxol Cells to Paclitaxel by Inhibiting the PI3K/Akt/NF-κB Signaling Pathway. Front. Pharmacol. 2021, 12, 783317. [Google Scholar] [CrossRef]
- Chan, L.P.; Chou, T.H.; Ding, H.Y.; Chen, P.R.; Chiang, F.Y.; Kuo, P.L.; Liang, C.H. Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcino-ma to 5-fluorouracil and cisplatin. Biochim. Biophys. Acta-Gen. Subj. 2012, 1820, 1081–1091. [Google Scholar] [CrossRef]
- Jhou, B.-Y.; Song, T.-Y.; Lee, I.; Hu, M.; Yang, N.-C. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression. J. Agric. Food Chem. 2017, 65, 6893–6903. [Google Scholar] [CrossRef]
- Long, H.; Xie, R.; Xiang, T.; Zhao, Z.; Lin, S.; Liang, Z.; Chen, Z.; Zhu, B. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells 2012, 30, 2309–2319. [Google Scholar] [CrossRef]
- Kurahara, S.-I.; Shinohara, M.; Ikebe, T.; Nakamura, S.; Beppu, M.; Hiraki, A.; Takeuchi, H.; Shirasuna, K. Expression of MMPs, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: Correlations with tumor invasion and metastasis. Head Neck 1999, 21, 627–638. [Google Scholar] [CrossRef]
- Shimada, T.; Nakamura, H.; Yamashita, K.; Kawata, R.; Murakami, Y.; Fujimoto, N.; Sato, H.; Seiki, M.; Okada, Y. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human oral squamous cell carcinomas: Implications for lymph node metastasis. Clin. Exp. Metastasis 2000, 18, 179–188. [Google Scholar] [CrossRef]
- Belotti, D.; Paganoni, P.; Manenti, L.; Garofalo, A.; Marchini, S.; Taraboletti, G.; Giavazzi, R. Matrix metalloproteinases (MMP-9 and MMP-2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: Implications for ascites formation. Cancer Res. 2003, 63, 5224–5229. [Google Scholar]
- Waas, E.T.; Wobbes, T.; Lomme, R.M.; DeGroot, J.; Ruers, T.; Hendriks, T. Matrix metalloproteinase-2 and -9 activity in patients with colorectal cancer liver metastasis. J. Br. Surg. 2003, 90, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A Review on its Anti-Inflammatory Properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef] [PubMed]
- Borras, C.; Gambini, J.; Gomez Cabrera, M.C.; Sastre, J.; Pallardo, F.V.; Mann, G.E.; Viña, J. Genistein, a soy isoflavone, up-regulates expression of anti-oxidant genes: Involvement of estrogen receptors, ERK1/2, and NF kappa B. FASEB J. 2006, 20, 2136–2144. [Google Scholar] [CrossRef]
- Park, J.S.; Woo, M.S.; Kim, D.H.; Hyun, J.W.; Kim, W.K.; Lee, J.C.; Kim, H.S. Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells. J. Pharmacol. Exp. Ther. 2007, 320, 1237–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Lee, A.S. Mechanism for the suppression of the mammalian stress response by genistein, an anticancer phytoestrogen from soy. J. Natl. Cancer Inst. 1998, 90, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.J.; Jung, J.Y.; Kim, G.H. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp. Ther. Med. 2014, 8, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, H.; Minutoli, L.; Polito, F.; Bitto, A.; Altavilla, D.; Atteritano, M.; Gaudio, A.; Mazzaferro, S.; Frisina, A.; Frisina, N.; et al. Effects of the Phytoestrogen Genistein on Bone Metabolism in Osteopenic Postmenopausal Women: A Randomized Trial. Ann. Intern. Med. 2007, 146, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as Potential Therapeutic Candidate for Menopausal Symptoms and Other Related Diseases. Molecules 2019, 24, 3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibi, G.V.S.; Goddavula, G. Variability in the Distribution of Daidzein and Genistein in Legume Sprouts and Their Anticancer Activity with MCF-7 Breast Cancer Cells. Acad. J. Cancer Res. 2014, 7, 173–177. [Google Scholar]
- Zhao, J.; Li, C.; Wang, W.; Zhao, C.; Luo, M.; Mu, F.; Fu, Y.; Zu, Y.; Yao, M. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.). J. Appl. Microbiol. 2013, 115, 102–113. [Google Scholar] [CrossRef]
- Spencer, J.P.E.; Abd El Mohsen, M.M.; Rice-Evans, C. Cellular uptake and metabolism of flavonoids and their metabolites: Implications for their bioactivity. Arch. Biochem. Biophys. 2004, 423, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Salucci, M.; Stivala, L.A.; Maiani, G.; Bugianesi, R.; Vannini, V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br. J. Cancer 2002, 86, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Song, T.Y. The Development of the Teeth-Protecting Ingredients of Cajanus cajan (L.) Millsp. Root. In Final Report of the Agriculture and Food Administration of the Agriculture Committee of the Executive Yuan (110AS-1.6.1-FD-Z5); Taiwan Committee of Agriculture: Taipei, Taiwan, 2021; pp. 1–30. [Google Scholar]
Sub-Fractions | Flavonoids (mg/g) | ||
---|---|---|---|
Genistein | Cajanol | Daidzein | |
EECR95 | 19.47 ± 1.92 b | 3.72 ± 0.11 a | 2.68 ± 0.14 a |
EECRpw | ND | ND | ND |
EECRp25 | 2.57 ± 0.42 a | ND | ND |
EECRp50 | 10.97 ± 3.02 b | ND | 4.67 ± 1.20 a |
EECRp70 | 101.97 ± 1.28 c | 37.74 ± 0.50 b | ND |
EECRp95 | 14.34 ± 0.21 b | ND | ND |
Treatment | Cell Proliferation (×104) a | Observed Inhibition (%) | Expected Inhibition (%) | Synergistic Effects c | Interaction |
---|---|---|---|---|---|
Control | 61.33 ± 1.26 b | ||||
Taxol 10 nM | 53.67 ± 0.76 | 12.50 ± 1.25 | |||
Cis 100 nM | 66.83 ± 1.26 | 13.83 ± 1.64 | |||
EECRp70 (25 µg/mL) | 57.33 ± 2.08 | 6.52 ± 3.40 | |||
EECRp70 + Cis | 44.83 ± 3.79 | 26.90± 6.17 | 20.11 ± 3.29 | 1.34 | Synergistic |
EECRp70 + Ta | 42.00 ± 2.18 | 31.52 ± 3.55 | 19.02 ± 4.53 | 1.72 | Synergistic |
EECRp70 (50 µg/mL) | 49.00 ±0.50 | 20.11 ± 0.82 | |||
EECRp70 + Cis | 33.50 ± 1.00 | 45.38 ± 1.63 | 33.70 ± 1.41 | 1.36 | Synergistic |
EECRp70 + Ta | 25.50 ± 0.50 | 58.42 ± 0.76 | 32.61 ± 1.70 | 1.54 | Synergistic |
Incubation Time (h) | 25 µM Genistein (6.8 μg Genistein/mL) | 50 µg/mL EECRp70 1 (5.01 μg Genistein/mL) | ||
---|---|---|---|---|
Uptake Level (ng/106 Cells) | Uptake % | Uptake Level (ng/106 Cells) | Uptake % | |
3 | 638.62 ± 18.59 b2 | 5.17 | ND 3 | ND |
6 | 1067.36 ± 11.92 c | 8.63 | 167.47 ± 22.96 a | 1.81 |
12 | 1296.64 ± 67.05 d | 10.49 | 251.05 ± 11.12 c | 2.71 |
24 | 203.50 ± 10.01 a | 1.65 | 77.23 ± 12.17 a | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vo, T.-L.T.; Yang, S.-E.; Huang, L.-G.; Li, P.-H.; Chen, C.-L.; Song, T.-Y. Anti-Proliferative and Anti-Metastatic Effects of Ethanol Extract from Cajanus cajan (L.) Millsp. Roots and its Sub-Fractions in Oral Squamous Cell Carcinoma. Agriculture 2022, 12, 1995. https://doi.org/10.3390/agriculture12121995
Vo T-LT, Yang S-E, Huang L-G, Li P-H, Chen C-L, Song T-Y. Anti-Proliferative and Anti-Metastatic Effects of Ethanol Extract from Cajanus cajan (L.) Millsp. Roots and its Sub-Fractions in Oral Squamous Cell Carcinoma. Agriculture. 2022; 12(12):1995. https://doi.org/10.3390/agriculture12121995
Chicago/Turabian StyleVo, Thuy-Lan Thi, Shu-Er Yang, Liang-Gie Huang, Po-Hsien Li, Chien-Lin Chen, and Tuzz-Ying Song. 2022. "Anti-Proliferative and Anti-Metastatic Effects of Ethanol Extract from Cajanus cajan (L.) Millsp. Roots and its Sub-Fractions in Oral Squamous Cell Carcinoma" Agriculture 12, no. 12: 1995. https://doi.org/10.3390/agriculture12121995
APA StyleVo, T.-L. T., Yang, S.-E., Huang, L.-G., Li, P.-H., Chen, C.-L., & Song, T.-Y. (2022). Anti-Proliferative and Anti-Metastatic Effects of Ethanol Extract from Cajanus cajan (L.) Millsp. Roots and its Sub-Fractions in Oral Squamous Cell Carcinoma. Agriculture, 12(12), 1995. https://doi.org/10.3390/agriculture12121995