Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference In Situ Data Measurements
2.2. Pre-Processing of Sentinel-2 MSI and Landsat OLI Imagery
2.3. Leaf Area Index Retrieval Approach
2.3.1. Generation of Look-Up Tables
2.3.2. Harmonization of Vegetation Indices across Satellite Systems
2.3.3. Regression Model
2.3.4. Validation of Results
3. Results
3.1. Harmonized Sentinel-2 and Landsat-Based Vegetation Indices
3.2. Validation of LAI Quantitative Estimation from Sentinel-2 MSI and Landsat OLI Spectra
3.3. Harmonized Sentinel-2 and Landsat-Derived LAI Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Crop | LCC | LWC | LAI | SLW | N | LIDFA | LIDFB | HSPOT | SA | SZ | SKYL | SWR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μg/cm2 | cm | m2/m−2 | g/cm2 | - | - | - | m/m | deg. | deg. | - | - | ||
Winter wheat | min | 0 | 0.0005 | 0 | 0.0009 | 1.44 | −1 | −1 | 0.01 | 150 | 25 | 0.2 | 0 |
max | 80 | 0.07 | 8 | 0.0197 | 1.44 | 0 | 1 | 0.5 | 170 | 70 | 0.2 | 1 | |
Spring barley | min | 0 | 0.0005 | 0 | 0.001 | 1.57 | −1 | −1 | 0.01 | 150 | 25 | 0.2 | 0 |
max | 80 | 0.07 | 8 | 0.0138 | 1.57 | 0 | 1 | 0.5 | 170 | 70 | 0.2 | 1 | |
Winter rapeseed | min | 0 | 0.0005 | 0 | 0.0005 | 1.78 | −1 | −1 | 0.5 | 150 | 25 | 0.2 | 0 |
max | 80 | 0.07 | 10 | 0.01 | 1.78 | 1 | 1 | 0.5 | 170 | 70 | 0.2 | 1 | |
Alfalfa | min | 0 | 0.0005 | 0 | 0.003 | 1.53 | −1 | −1 | 0.01 | 150 | 25 | 0.2 | 0 |
max | 80 | 0.07 | 10 | 0.008 | 1.53 | 1 | 1 | 0.5 | 170 | 70 | 0.2 | 1 | |
Sugar beetroot | min | 0 | 0.0005 | 0 | 0.003 | 1.67 | −1 | −1 | 0.1 | 150 | 25 | 0.2 | 0 |
max | 80 | 0.07 | 8 | 0.008 | 1.67 | 0 | 1 | 0.5 | 170 | 70 | 0.2 | 1 | |
Corn | min | 0 | 0.0005 | 0 | 0.003 | 1.28 | −1 | −1 | 0.2 | 150 | 25 | 0.2 | 0 |
max | 80 | 0.07 | 8 | 0.008 | 1.28 | 1 | 1 | 0.5 | 170 | 70 | 0.2 | 1 |
References
- Alvarez-Vanhard, E.; Corpetti, T.; Houet, T. UAV & satellite synergies for optical remote sensing applications: A literature review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Loveland, T.R.; Herold, M.; Bauer, M.E. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sens. Environ. 2020, 238, 111558. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Ciudad, C.; Marchamalo, M.; et al. Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest-Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sens. 2019, 11, 904. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Liang, S.; Zhang, N.; Wei, X.; Gu, X.; Zhao, X.; Yao, Y.; Xie, X. Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J. Photogramm. Remote Sens. 2014, 93, 49–55. [Google Scholar] [CrossRef]
- Li, X.; Ling, F.; Foody, G.M.; Ge, Y.; Zhang, Y.; Du, Y. Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sens. Environ. 2017, 196, 293–311. [Google Scholar] [CrossRef]
- Waldner, F.; Horan, H.; Chen, Y.; Hochman, Z. High temporal resolution of leaf area data improves empirical estimation of grain yield. Sci. Rep. 2019, 9, 15714. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [Green Version]
- Stern, W.R.; Donald, C.M. Relationship of Radiation, Leaf Area Index and Crop Growth-Rate. Nature 1961, 189, 597–598. [Google Scholar] [CrossRef]
- Qiao, K.; Zhu, W.; Xie, Z.; Li, P. Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sens. 2019, 11, 689. [Google Scholar] [CrossRef]
- Casa, R.; Varella, H.; Buis, S.; Guérif, M.; De Solan, B.; Baret, F. Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach. Eur. J. Agron. 2012, 37, 1–10. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Radočaj, D.; Jurišić, M.; Gašparović, M. The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in Precision Agriculture. Remote Sens. 2022, 14, 778. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S.; Wagner, W. Remote Sensing Time Series: Revealing Land Surface Dynamics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 22. [Google Scholar]
- Copernicus. Europe’s Eyes on Earth. Available online: https://www.copernicus.eu/en (accessed on 16 October 2022).
- ESA Sentinel-2. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2 (accessed on 23 November 2022).
- NASA Landsat 9. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-9/ (accessed on 23 November 2022).
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Clevers, J. The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sens. Environ. 1988, 25, 53–69. [Google Scholar] [CrossRef]
- Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [Google Scholar] [CrossRef]
- Verhoef, W. Theory of Radiative Transfer Models Applied in Optical Remote Sensing of Vegetation Canopies. 1998. Available online: https://research.wur.nl/en/publications/theory-of-radiative-transfer-models-applied-in-optical-remote-sen (accessed on 16 October 2022).
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113 (Suppl. S1), S56–S66. [Google Scholar] [CrossRef]
- Webb, N.; Nicholl, C.; Wood, J.; Potter, E. SunScan Manual, Version 3.3; Delta-T Devices Ltd.: Cambridge, UK, 2016; pp. 1–82.
- Weiss, M.; Baret, F. Can_Eye V6.4.91 User Manual; INRA: Paris, France, 2017; p. 56. [Google Scholar]
- Tomíček, J.; Mišurec, J.; Lukeš, P. Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations. Remote Sens. 2021, 13, 3659. [Google Scholar] [CrossRef]
- ESA Sen2Cor 2.2.5. Available online: https://step.esa.int/main/snap-supported-plugins/sen2cor/ (accessed on 30 July 2021).
- Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI). Available online: https://github.com/remotesensinginfo/arcsi (accessed on 16 October 2022).
- Python Fmask. Available online: https://www.pythonfmask.org/en/latest/ (accessed on 16 October 2022).
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Jacquemoud, S. Inversion of the PROSPECT + SAIL canopy reflectance model from AVIRIS equivalent spectra: Theoretical study. Remote Sens. Environ. 1993, 44, 281–292. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wu, H.; Tang, B.-H.; Ma, L.; Zhao, E.; Li, C. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 12–20. [Google Scholar] [CrossRef]
- Nieto, H. GitHub-Hectornieto/PyPro4Sail: ProspectD and 4SAIL Radiative Transfer Models for Simulating the Transmission of Radiation in Leaves and Canopies. Available online: https://github.com/hectornieto/pyPro4Sail (accessed on 6 December 2017).
- ESA Sentinel 2 Document Library-Sentinel-2 Spectral Response Functions (S2-SRF). Available online: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses (accessed on 3 April 2021).
- Spectral Response of the Operational Land Imager in-Band, Band-Average Relative Spectral Re-Sponse. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/operational-land-imager/spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response/ (accessed on 16 October 2022).
- Tucker, C.J. Asymptotic nature of grass canopy spectral reflectance. Appl. Opt. 1977, 16, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.S. Spectral reflectance characteristics of vegetation and their use in estimating productive potential. Proc. Indian Acad. Sci.-Sect. A. Part 3 Math. Sci. 1989, 99, 59–81. [Google Scholar] [CrossRef]
- Fernandez, S.; Vidal, D.; Simon, E.; Soll3-Sugranes, L. Radiometric characteristics of Triticum aestivum cv, Astral under water and nitrogen stress. Int. J. Remote Sens. 1994, 15, 1867–1884. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z. Remote Sensing Indicators for Crop Growth Monitoring at Different Scales. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping. Remote Sens. 2012, 4, 561–582. [Google Scholar] [CrossRef]
- Qiu, F.; Jensen, J.R. Opening the black box of neural networks for remote sensing image classification. Int. J. Remote Sens. 2004, 25, 1749–1768. [Google Scholar] [CrossRef]
- Upreti, D.; Huang, W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Wolanin, A.; Camps-Valls, G.; Gómez-Chova, L.; Mateo-García, G.; van der Tol, C.; Zhang, Y.; Guanter, L. Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sens. Environ. 2019, 225, 441–457. [Google Scholar] [CrossRef]
- Xu, J.; Quackenbush, L.J.; Volk, T.A.; Im, J. Estimation of shrub willow biophysical parameters across time and space from Sentinel-2 and unmanned aerial system (UAS) data. Field Crop. Res. 2022, 287, 108655. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Qian, B.; He, L.; Liu, J.; Wang, R.; Jing, Q.; Champagne, C.; McNairn, H.; Powers, J.; et al. Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. ISPRS J. Photogramm. Remote Sens. 2020, 168, 236–250. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
Crop | Count | Min | Max | Mean | SD |
---|---|---|---|---|---|
Winter wheat | 180 | 0.31 | 6.31 | 3.68 | 1.56 |
Spring barley | 60 | 0.24 | 7.67 | 4.19 | 1.90 |
Winter rapeseed | 107 | 0.61 | 8.62 | 3.45 | 2.23 |
Alfalfa | 57 | 0.09 | 10.16 | 2.78 | 2.48 |
Sugar beetroot | 62 | 0.86 | 6.72 | 4.33 | 1.66 |
Corn | 71 | 0.70 | 5.78 | 3.46 | 1.32 |
In Situ Campaign Date | Reference Sentinel-2 Scene Acquisition Date | Reference Landsat Scene Acquisition Date |
---|---|---|
29–31 March 2017 | 1 April 2017 | 1 April 2017 |
17–19 May 2017 | 14 May 2017 and 21 May 2017 | 19 May 2017 |
19–21 June 2017 | 20 June 2017 | 20 June 2017 |
4–5 April 2018 | 6 April 2018 | Not Available |
27–30 April 2018 | 26 April 2018 | 28 April 2018 |
21 May 2018 | 21 May 2018 | 22 May 2018 |
20–21 June 2018 | 20 June 2018 | Not Available |
26 July 2018 | 28 July 2018 | 25 July 2018 |
Crop | S2-LAI | LS-LAI | ||||||
---|---|---|---|---|---|---|---|---|
RMSE | rRMSE | r | R2 | RMSE | rRMSE | r | R2 | |
Winter wheat | 1.28 | 0.40 | 0.91 | 0.82 | 0.96 | 0.26 | 0.82 | 0.67 |
Spring barley | 0.92 | 0.28 | 0.97 | 0.94 | 1.36 | 0.32 | 0.69 | 0.48 |
Winter rapeseed | 2.34 | 0.75 | 0.89 | 0.79 | 2.38 | 0.77 | 0.85 | 0.73 |
Alfalfa | 1.43 | 0.50 | 0.84 | 0.70 | 0.83 | 0.20 | 0.98 | 0.95 |
Sugar beetroot | 0.80 | 0.18 | 0.90 | 0.80 | 0.55 | 0.16 | 0.98 | 0.95 |
Corn | 0.70 | 0.21 | 0.87 | 0.76 | 0.82 | 0.21 | 0.87 | 0.75 |
Crop | RMSE | rRMSE | r | R2 |
---|---|---|---|---|
Winter wheat | 0.63 | 0.14 | 0.98 | 0.96 |
Spring barley | 0.59 | 0.14 | 0.95 | 0.90 |
Winter rapeseed | 0.56 | 0.11 | 0.97 | 0.94 |
Alfalfa | 0.86 | 0.21 | 0.96 | 0.93 |
Sugar beetroot | 0.24 | 0.07 | 0.99 | 0.98 |
Corn | 0.49 | 0.15 | 0.75 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomíček, J.; Mišurec, J.; Lukeš, P.; Potůčková, M. Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series. Agriculture 2022, 12, 2080. https://doi.org/10.3390/agriculture12122080
Tomíček J, Mišurec J, Lukeš P, Potůčková M. Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series. Agriculture. 2022; 12(12):2080. https://doi.org/10.3390/agriculture12122080
Chicago/Turabian StyleTomíček, Jiří, Jan Mišurec, Petr Lukeš, and Markéta Potůčková. 2022. "Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series" Agriculture 12, no. 12: 2080. https://doi.org/10.3390/agriculture12122080