The Influence of the Bud Stage at Harvest and Cold Storage on the Vase Life of Narcissus poeticus (L.) Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Treatments and Experimental Conditions
- GB: green buds;
- PE: white bud, upright (pencil);
- GN1: white bud, skew (goose neck 1);
- GN2: white bud, horizontal (goose neck 2);
- GN3: big white bud, horizontal, maximum with 1 opening petal (goose neck 3).
2.3. Measurement and Analysis
2.3.1. Morphological Examination
2.3.2. Fresh Weight and of Dry Matter Content of the Plant Organs
2.3.3. Chlorophyll Content of the Scapes
2.3.4. Potassium, Magnesium, and Calcium Content
2.4. Data Processing, Statistical Methods
3. Results and Discussion
3.1. Flower Developing/Opening and Senescence of Flowers
3.2. Ornamental Value
3.3. Flower Diameter
3.4. Fresh Weight of the Plant Organs
3.5. Dry Matter Content
3.6. Chlorophyll Content of the Scapes
3.7. Water Soluble Potassium, Calcium, and Magnesium Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faragher, J.D.; Borochov, A.; Keren-Paz, V.; Adam, Z.; Halevy, A.H. Changes in parameters of cell senescence in carnation flowers after cold storage. Sci. Hortic. 1984, 22, 295–302. [Google Scholar] [CrossRef]
- Faragher, J.D.; Mayak, S.; Tirosh, T. Physiological response of cut rose flowers to cold storage. Physiol. Plant. 1986, 67, 205–210. [Google Scholar] [CrossRef]
- Goszczyńska, D.M.; Rudnicki, R.M. Storage of Cut Flowers. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1988; Volume 10, pp. 35–62. [Google Scholar]
- Cevallos, J.C.; Reid, M.S. Effects of temperature on the respiration and vase life of narcissus flowers. Acta Hortic. 2000, 517, 335–341. [Google Scholar] [CrossRef]
- Çelikel, F.G.; Reid, M.S. Storage temperature affects the quality of cut flowers from the asteraceae. HortScience 2002, 37, 148–150. [Google Scholar] [CrossRef]
- Reid, M.S.; Jiang, C.Z. Postharvest Biology and Technology of Cut Flowers and Potted Plants; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Volume 40, ISBN 9781118351871. [Google Scholar]
- Jahnke, N.J.; Kalinowski, J.; Dole, J.M. Postharvest Handling Techniques for Long-term Storage of Cut Tulip and Dutch Iris. Horttechnology 2022, 32, 263–274. [Google Scholar] [CrossRef]
- Reid, M.S. Postharvest handling systems: Ornamental crops. In Postharvest Technology of Horticultural Crops; Kader, A.A., Ed.; Univ of California, Agriculture and Natural Resources: St Davis, CA, USA, 2002; pp. 315–325. ISBN 1879906511. [Google Scholar]
- Halevy, A.H.; Mayak, S. Senescence and Postharvest Physiology of Cut Flowers-Part 2. Hortic. Rev. (Am. Soc. Hortic. Sci.) 1981, 3, 59–143. [Google Scholar] [CrossRef]
- Senapati, A.K.; Raj, D.; Jain, R.; Patel, N.L. Advances in packaging and storage of flowers. In Commercial Horticulture; Patel, N.L., Chawla, S.L., Ahlawat, T., Eds.; New India Publishing Agency: New Delhi, India, 2016; pp. 473–488. ISBN 938551623X. [Google Scholar]
- Vijayakumar, S.; Shivani, S.; Pandiyaraj, P.; Sujayasree, O.J. Postharvest handling of cut flowers. In Trends & Prospects in Post Harvest Management of Horticultural Crops; Surajit, M., Banik, A.M.K., Eds.; Today & Tomorrow’s Printers and Publishers: New Delhi, India, 2019; pp. 419–446. ISBN 81-7019-. [Google Scholar]
- Faragher, J.D. Effects of cold storage methods on vase life and physiology of cut waratah inflorescences (Telopea speciosissima, Proteaceae). Sci. Hortic. 1986, 29, 163–171. [Google Scholar] [CrossRef]
- Cevallos, J.; Reid, M.S. Effect of Dry and Wet Storage at Different Temperatures on the Vase Life of Cut Flowers. Horttechnology 2001, 11, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Berlingieri Durigan, M.F.; Mattiuz, B.-H. Effects of Temperature on Some Senescence Parameters During Dry Storage of Cut Flowers of Gerbera “Suzanne”. Acta Hortic. 2009, 847, 399–407. [Google Scholar] [CrossRef]
- Eason, J.; Pinkney, T.; Heyes, J.; Brash, D.; Bycroft, B. Effect of storage temperature and harvest bud maturity on bud opening and vase life of Paeonia lactiflora cultivars. N. Zeal. J. Crop Hortic. Sci. 2002, 30, 61–67. [Google Scholar] [CrossRef]
- Halevy, A.H.; Mayak, S. Senescence and Postharvest Physiology of Cut Flowers, Part 1. In Horticultural Reviews; Jules Janick, Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1979; pp. 204–236. [Google Scholar]
- Goszczyńska, D.; Rudnicki, R.M. Long-term storage of carnations cut at the green-bud stage. Sci. Hortic. 1982, 17, 289–297. [Google Scholar] [CrossRef]
- Varu, D.K.; Barad, A. V Effect of stem length and stage of harvest on vase-life of cut flowers in tuberose (Polianthes tuberosa L.) cv. Double. J. Hortic. Sci. 2010, 5, 42–47. [Google Scholar]
- Chaudhary, N.; Kumar, R.; Sindhu, S.S.; Saha, T.N.; Arora, A.; Sharma, R.R.; Sarkar, S.K.; Kadam, G.B.; Girish, K.S. Effect of post harvest treatments and harvesting stage on vase life and flower quality of cut Oriental lily. J. Appl. Nat. Sci. 2016, 8, 1286–1289. [Google Scholar] [CrossRef]
- Dwivedi, N.; Deen, B.; Kumar, A.; Marut Sharma, M.; Kumar Jaiswal, A. Standardization of Vase Solutions for Maximum Buds Opening and Longer Vase-Life of Gladiolus Flower cv. Nova Lux. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3145–3150. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Guo, H.; Tao, J. Effects of Harvest Stage, Storage, and Preservation Technology on Postharvest Ornamental Value of Cut Peony (Paeonia lactiflora) Flowers. Agronomy 2022, 12, 230. [Google Scholar] [CrossRef]
- Nichols, R. Developments in post-harvest techniques for cut flowers. Sci. Hortic. 1980, 31, 43–47. [Google Scholar]
- Joyce, D.; Faragher, J. Cut Flowers. In Crop Post-Harvest: Science and Technology: Perishables; Rees, D., Farrekk, G., Orchard, J., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; pp. 414–438. ISBN 9780632057252. [Google Scholar]
- Swart, A. Maturity of the Buds At the Moment of the Harvest Is of Crucial Importance To Ensure a Good Quality of Bulb Flowers At the Customers. Acta Hortic. 1992, 325, 185–192. [Google Scholar] [CrossRef]
- Pustahija, F.; Šolić, E.M.; Siljak-Yakovlev, S. Karyological study of some Mediterranean species from Bosnia and Herzegovina, Croatia and Lebanon. Flora Mediterr. 2017, 27, 295–301. [Google Scholar] [CrossRef]
- Thakur, P.; Misra, R.L.; Misra, S.N. Commercial Ornamental Crops: Cut Fowers; Kruger Brentt Publishers UK LTD.: Edgware, UK, 2017; pp. 373–388. ISBN 978-1-78715-003-4. [Google Scholar]
- Spaulding, D.D.; Barger, T.W. Key to the wild daffodils ( narcissus, amaryllidaceae) of Alabama and adjacent states. Phytoneuron 2014, 82, 1–10. [Google Scholar]
- Slezák, K.A.; Mazur, J.; Jezdinský, A.; Kapczyńska, A. Bulb size interacts with lifting term in determining the quality of Narcissus Poeticus L. propagation material. Agronomy 2020, 10, 975. [Google Scholar] [CrossRef]
- Slezák, K.J.; Jezdinský, A.; Vachůn, M.; Sotolářová, O.; Pokluda, R.; Uher, J. Monitoring the green vegetation period of two narcissus taxa by non-destructive analysis of selected physiological and morphological properties. Horticulturae 2021, 7, 585. [Google Scholar] [CrossRef]
- Bayat, H.; Aminifard, M.H. Effects of Different Preservative Solutions on Vase Life of Narcissus tazetta Cut Flowers. J. Ornam. Plants 2018, 8, 13–21. [Google Scholar]
- Gun, S. Extending of vase life of Narcissus tazetta by AVG and antimicrobial agents. J. Postharvest Technol. 2020, 8, 27–34. [Google Scholar]
- Gun, S. The effect of herbal oil and citric acid on vase life of cut narcissus flower (Narcissus tazetta L.). J. Postharvest Technol. 2020, 8, 18–26. [Google Scholar]
- Heidari Krush, G.; Rastegar, S. γ-Aminobutyric Acid (GABA) Inhibits the Enzymatic Browning of Cut Narcissus tazetta cv. ‘Shahla-e-Shiraz’ Flowers During Vase Life. J. Plant Growth Regul. 2022, 1–11. [Google Scholar] [CrossRef]
- Hanks, G.R. Narcissus. In The Physiology of Flower Bulbs; Hertogh, A.A., Le Nard, M., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1993; pp. 463–558. [Google Scholar]
- Baranauskienė, R.; Venskutonis, P.R. Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules 2022, 27, 353. [Google Scholar] [CrossRef]
- Reuveni, M.; Sagi, Z.; Evnor, D.; Hetzroni, A. β-Glucosidase activity is involved in scent production in Narcissus flowers. Plant Sci. 1999, 147, 19–24. [Google Scholar] [CrossRef]
- Terry, M.I.; Ruiz-Hernández, V.; Águila, D.J.; Weiss, J.; Egea-Cortines, M. The Effect of Post-harvest Conditions in Narcissus sp. Cut Flowers Scent Profile. Front. Plant Sci. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Hanks, G. Narcissus Manual; Horticultural Development Company: Stoneleigh, UK, 2013. [Google Scholar]
- Smith, W.H. Problems of keeping quality of cut flowers. Sci. Hortic. 1968, 20, 78–81. [Google Scholar]
- Nichols, R. Senescence and Sugar Status of the Cut Flower. Acta Hortic. 1975, 41, 21–30. [Google Scholar] [CrossRef]
- Armitage, A.M.; Laushman, J.M. Specialty Cut Flowers the Production of Annuals, Perennials, Bulbs, and Woody Plants for Fresh and Dried Cut Flowers, 2nd ed.; Timber Press: Cambridge, UK, 2003. [Google Scholar]
- Reid, M.S.; Handling of Cut Flowers for Export. Proflora Bull. 2009, pp. 1–62. Available online: https://ucanr.edu/sites/Postharvest_Technology_Center_/files/231308.pdf (accessed on 10 November 2022).
- Ajinkya, M.; Jadhav, P.B.; More, D.B.; Pokharkar, K.P. Effect of Cold Storage on Post Storage Life of Gerbera (Gerbera jamesonii) Cut Flowers at Ambient Conditions. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2382–2387. [Google Scholar] [CrossRef]
- Thakur, N. A review on the effect of storage methods and packaging material on the post-harvest longevity of cut flowers. Int. J. Chem. Stud. 2020, 8, 2375–2379. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Naderi, R.; Jannatizadeh, A.; Babalar, M.; Sarcheshmeh, M.A.A.; Faradonbe, M.Z. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature. Plant Physiol. Biochem. 2016, 106, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, H.; You, Y.; Sun, J.; Yi, C.; Li, Y.; Jiang, Y.; Wu, J. Quality deterioration of cut carnation flowers involves in antioxidant systems and energy status. Sci. Hortic. 2014, 170, 45–52. [Google Scholar] [CrossRef]
- Azad, A.K.; Ishikawa, T.; Ishikawa, T.; Sawa, Y.; Shibata, H. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip. J. Exp. Bot. 2008, 59, 2085–2095. [Google Scholar] [CrossRef]
- Arzu, Ç.I.Ğ. Tolerance of Daffodil (Narcissus poeticus L. c.v. “Ice Folies”) to Nickel Contaminated Media. ISPEC J. Agric. Sci. 2020, 4, 105–112. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Tahir, I.; Shahri, W. Effect of different storage treatments on physiology and postharvest performance in cut scapes of three Iris species. J. Agric. Sci. Technol. 2013, 15, 323–331. [Google Scholar]
- Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. Physiol. Plant. 2008, 132, 220–235. [Google Scholar] [CrossRef]
- Fürtauer, L.; Weiszmann, J.; Weckwerth, W.; Nägele, T. Dynamics of Plant Metabolism during Cold Acclimation. Int. J. Mol. Sci. 2019, 20, 5411. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.M.; Liu, J.; Lu, J.G.; Hu, F.R.; Okubo, H. Effects of Cold Storage and Different Pulsing Treatments on Postharvest Quality of Cut OT Lily “Mantissa” Flowers. J. Fac. Agric. Kyushu Univ. 2009, 54, 41–45. [Google Scholar] [CrossRef]
- Van Doorn, W.G. Water relations of cut flowers: An update. In Horticultural Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; Volume 40, pp. 55–106. [Google Scholar]
- Solanke, A.U.; Sharma, A.K. Signal transduction during cold stress in plants. Physiol. Mol. Biol. Plants 2008, 14, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borochov, A.; Woodson, W.R. Physiology and Biochemistry of Flower Petal Senescence. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
- Gul, F.; Tahir, I.; Shahri, W. Flower development and senescence in Narcissus tazetta ‘Kashmir Local’. Folia Hortic. 2015, 27, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Gul, F.; Shahri, W.; Tahir, I. Morphological and some biochemical aspects of flower development and senescence in Narcissus poeticus cv. Pheasant’s Eye. Ijarse 2018, 7, 1745–1752. [Google Scholar]
- Nichols, R.; Ho, L.C. Effects of Ethylene and Sucrose on Translocation of Dry Matter and 14C-Sucrose in the Cut Flower of the Glasshouse Carnation ( Dianthus caryophyllus ) During Senescence. Ann. Bot. 1975, 39, 287–296. [Google Scholar] [CrossRef]
- Bieleski, R.L. Onset of phloem export from senescent petals of daylily. Plant Physiol. 1995, 109, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Rani, P.; Singh, N. Senescence and postharvest studies of cut flowers: A critical review. Pertanika J. Trop. Agric. Sci. 2014, 37, 159–201. [Google Scholar]
- Skutnik, E.; Rabiza-Świder, J.; Wachowicz, M.; Łukaszewska, A.J. Senescence of cut leaves of Zantedeschia aethiopica AND Z. elliottiana. Part I. Chlorophyll degradation. Acta Sci. Pol. Hortorum Cultus 2004, 3, 57–65. [Google Scholar]
- Szutt, A. Dołhańczuk-Śródka Chlorophyll content in senescent Pelargonium graveolens leaves. In Proceedings of the ECOpole’19 Conference, Polanica Zdrój, Poland, 9–12 October 2019; Volume 13, pp. 9–12. [Google Scholar]
- Kamble, P.N.; Girish, K.S.; Mane, R.S.; Tiwana, A. Estimation of Chlorophyll Content in Young and Adult Leaves of Some Selected Plants. Univers. J. Environ. Res. Technol. 2015, 5, 306–310. [Google Scholar] [CrossRef]
- Dertinger, U.; Schaz, U.; Schulze, E.D. Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiol. Plant. 2003, 119, 19–29. [Google Scholar] [CrossRef]
- Hu, X.; Gu, T.; Khan, I.; Zada, A.; Jia, T. Research Progress in the Interconversion, Turnover and Degradation of Chlorophyll. Cells 2021, 10, 3134. [Google Scholar] [CrossRef]
- Trivellini, A.; Ferrante, A.; Vernieri, P.; Carmassi, G.; Serra, G. Spatial and temporal distribution of mineral nutrients and sugars throughout the lifespan of Hibiscus rosa-sinensis L. flower. Open Life Sci. 2011, 6, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhong, D.; Liu, Z.; Gao, J. Study on the Physiological, Cellular, and Morphological Aspects of the Postharvest Development of Cut Lily Flowers. Hortic. Plant J. 2021, 7, 149–158. [Google Scholar] [CrossRef]
- Van Doorn, W.G.; Woltering, E.J. Physiology and molecular biology of petal senescence. J. Exp. Bot. 2008, 59, 453–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acock, B.; Nichols, R. Effects of sucrose on water relations of cut, senescing, carnation flowers. Ann. Bot. 1979, 44, 221–230. [Google Scholar] [CrossRef]
- Breś, W.; Golcz, A.; Komosa, A.; Kozik, E. Żywienie Roślin Ogrodniczych (Nutrition of Horticultural Plants), 1st ed.; Komosa, A., Ed.; Powszechne Wydawnictwo Rolnicze i Lesne Sp.z o.o.: Poznań, Poland, 2012. [Google Scholar]
Phenological Stage | Ornamental Value [Score] | |
---|---|---|
Bud (B) | GB: green bud | 4 |
PE: white bud, upright (pencil) | 4 | |
GN1: white bud, skew (goose neck 1) | 4 | |
GN2: white bud, horizontal (goose neck 2) | 4 | |
GN3: big white bud, horizontal (goose neck 3) | 4 | |
Opening flower (OF) | OF1: 1 horizontal tepal | 5 |
OF2: 2 horizontal tepals | 5 | |
OF3: 3 horizontal tepals | 6 | |
OF4: 4 horizontal tepals | 6 | |
OF5: 5 horizontal tepals | 7 | |
OF6h: all tepals are half opened (the center of the corona is visible) | 7 | |
Open flower (FO) | FO: tepals are in a plane | 10 |
FOhb: tepals are standing half backwards (45°>) or half of the petals are standing backwards (45°<) | 9 | |
FOb: tepals are standing backwards (45°<) | 8 | |
Senescent flower (AF) | AF1: all tepals become membranous, but keep their turgor | 6 |
AF2: the tepals start to gather, the corona still keeps its color and turgor | 1 | |
AF3: the tepals are shriveled (complete wilting) | 0 |
Treatment (Flower Usage, F) | Harvest Stage (H) | Opening Flower (OF1-OF6) | Open Flower (FO-FOb) | ||||||
---|---|---|---|---|---|---|---|---|---|
Half of the Flowers * | All Flowers | Half of the Flowers * | All Flowers | ||||||
Fresh | GB | 45.0 ± 0.8 | d | 60.0 ± 0.0 | D | 51.4 ± 1.4 | d | 64.0 ± 4.0 | f |
PE | 25.5 ± 1.2 | bc | 44.0 ± 4.0 | C | 33.6 ± 1.6 | bcd | 48.0 ± 0.0 | de | |
GN1 | 17.1 ± 0.6 | abc | 36.0 ± 0.0 | C | 21.3 ± 1.1 | abc | 36.0 ± 0.0 | bd | |
GN2 | 12.0 ± 0.0 ** | ab | 24.0 ± 0.0 | B | 11.6 ± 1.8 | ab | 32.0 ± 4.0 | ab | |
GN3 | 12.0 ± 0.0 ** | ab | 12.0 ± 0.0 | A | 6.1 ± 0.1 | a | 16.0 ± 4.0 | c | |
Stored | GB | 31.1 ± 0.9 (199.1 ± 0.9) | cd | 56.0 ± 4.0 (224.0 ± 4.0) | D | 35.5 ± 2.7 (203.5 ± 2.7) | cd | 60.0 ± 0.0 (228.0 ± 0.0) | ef |
PE | 16.3 ± 0.2 (184.3 ± 0.2) | abc | 24.0 ± 0.0 (192.0 ± 0.0) | B | 18.0 ± 0.0 (186.0 ± 0.0) | abc | 32.0 ± 4.0 (200.0 ± 4.0) | ab | |
GN1 | 4.8 ± 0.5 (172.8 ± 0.5) | a | 20.0 ± 4.0 (188.0 ± 4.0) | Ab | 7.9 ± 0.6 (175.9 ± 0.6) | a | 24.0 ± 0.0 (192.0 ± 0.0) | abc | |
GN2 | −18.3 ± 10.2 *** (149.7 ± 10.2) | f | 12.0 ± 0.0 (180.0 ± 0.0) | A | 5.4 ± 0.3 (173.4 ± 0.3) | a | 20.0 ± 4.0 (188.0 ± 4.0) | ac | |
GN3 | −156.0 ± 0.0 *** (12.0 ± 0.0 **) | e | −156.0 ± 0.0 *** (12.0 ± 0.0) | E | −75.5 ± 13.4 *** (92.5 ± 13.4) | e | −8.0 ± 4.0 *** (160.0 ± 4.0) | g | |
Two-way ANOVA p-value | H | 0.00 | 0.00 | 0.00 | 0.00 | ||||
F | 0.00 | 0.00 | 0.00 | 0.00 | |||||
H × F | 0.00 | 0.00 | 0.00 | 0.06 | |||||
Senescing (AF1-AF3) | Senesced (AF3) | ||||||||
half of the flowers * | all flowers | half of the flowers * | all flowers | ||||||
Fresh | GB | 169.4 ± 3.26 | f | 192.0 ± 0.0 | D | 177.8 ± 0.9 | d | 204.0 ± 0.0 | e |
PE | 159.5 ± 1.8 | cf | 176.0 ± 8.0 | C | 172.7 ± 0.8 | cd | 184.0 ± 4.0 | d | |
GN1 | 152.6 ± 1.9 | bc | 168.0 ± 0.0 | Bc | 170.8 ± 0.8 | cd | 180.0 ± 0.0 | cd | |
GN2 | 147.9 ± 1.0 | abcd | 164.0 ± 4.0 | Abc | 161.4 ± 0.9 | bf | 172.0 ± 4.0 | bcd | |
GN3 | 152.1 ± 4.5 | abc | 164.0 ± 4.0 | Abc | 168.1 ± 1.6 | cf | 180.0 ± 0.0 | cd | |
Stored | GB | 149.0 ± 1.80 (317.0 ± 1.80) | abc | 168.0 ± 0,0 (336.0 ± 0.0) | Bc | 158.5 ± 0.7 (326.5 ± 0.7) | b | 168.0 ± 0.0 (336.0 ± 0.0) | abc |
PE | 145.7 ± 3.8 (313.7 ± 3.8) | abd | 164.0 ± 4.0 (332.0 ± 4.0) | Abc | 155.1 ± 2.9 (323.1 ± 2.9) | be | 168.0 ± 0.0 (336.0 ± 0.0) | abc | |
GN1 | 140.1 ± 1.1 (308.1 ± 1.1) | ade | 156.0 ± 0.0 (324.0 ± 0.0) | Ab | 148.4 ± 1.2 (316.4 ± 1.2) | ae | 164.0 ± 4.0 (332.0 ± 4.0) | ab | |
GN2 | 136.2 ± 1.2 (304.2 ± 1.2) | de | 148.0 + 4.0 (316.0 ± 4.0) | A | 146.1 ± 2.1 (314.1 ± 2.1) | a | 160.0 ± 4.0 (328.0 ± 4.0) | ab | |
GN3 | 130.9 ± 1.6 (298.9 ± 1.6) | e | 148.0 ± 4.0 (316.0 ± 4.0) | A | 147.6 ± 1.0 (315.6 ± 1.0) | a | 156.0 ± 0.0 (324.0 ± 0.0) | a | |
Two-way ANOVA p-value | H | 0.00 | 0.00 | 0.00 | 0.00 | ||||
F | 0.00 | 0.00 | 0.00 | 0.00 | |||||
H × F | 0.18 | 0.52 | 0.15 | 0.00 |
Treatment (Flower Usage, F) | Harvest Stage (H) | Beginning Score at Harvest | Score at the Time of Placement in the Vase | Time Required to Achieve the Score | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Score 5 * | Score 7 * | Score 9 * | Score 10 (First Observation) | |||||||||
Fresh | GB | 3.00 | 3.00 | a | 39.3 ± 2.3 | c | 49.6 ± 1.4 | c | 54.3 ± 3.2 | a | 56.0 ± 4.0 | d |
PE | 4.00 | 4.00 | b | 22.5 ± 1.5 | ac | 31.6 ± 1.4 | bc | 41.0 ± 1.3 | a | 36.0 ± 0.0 | c | |
GN1 | 4.00 | 4.00 | b | 13.1 ± 0.9 | ab | 19.9 ± 0.7 | ab | 29.2 ± 0.9 | a | 24.0 ± 0.0 | bc | |
GN2 | 4.00 | 4.00 | b | 12.0 ± 0.0 | ab | 12.0 ± 0.0 | a | 19.8 ± 2.6 | a | 12.0 ± 0.0 | ab | |
GN3 | 4.00 | 4.00 | b | 12.0 ± 0.0 | ab | 12.0 ± 0.0 | a | 48.0 ± 36.0 | a | - | d | |
Stored | GB | 3.00 | 3.95 | b | 25.5 ± 0.7 | ac | 34.3 ± 2.3 | bc | 47.7 ± 3.3 | a | 60.0 ± 0.0 | c |
PE | 4.00 | 4.00 | b | 12.9 ± 0.5 | ab | 17.6 ± 0.2 | ab | 22.3 ± 0.2 | a | 32.0 ± 4.0 | ab | |
GN1 | 4.00 | 4.38 | b | 1.7 ± 0.5 | b | 7.1 ± 0.4 | a | 13.9 ± 0.8 | ab | 12.0 ± 0.0 | a | |
GN2 | 4.00 | 5.36 | c | −20.1 ± 11.2 | e | 4.4 ± 0.5 | a | 10.0 ±0.7 | ab | 0.0 ± 0.0 | e | |
GN3 | 4.00 | 10.00 | d | −156.0 ± 0.0 | d | −103. 8 ± 10.9 | d | −42.0 ± 5.4 | b | −48.0 ± 6.9 | ||
Two-way ANOVA p-value | H | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | ||||||
F | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||||||
H × F | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
Treatment (Flower Usage, F) | Harvest Stage (H) | Time Required to Achieve the Score | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Score 10 (Last Observation) | Score 9 * | Score 7 * | Score 5 * | Score 3 * | Score 0 (First Observation) | ||||||||
Fresh | GB | 124.0 ± 26.2 | c | 162.8 ± 4.0 | a | 166.7 ± 5.4 | f | 173.3 ± 2.7 | f | 176.1 ± 4.1 | f | 204.0 ± 0.0 | e |
PE | 48.0 ± 0.0 | b | 147.5 ± 6.4 | a | 158.7 ± 1.4 | df | 164.2 ± 1.2 | df | 170.5 ± 2.4 | ef | 184.0 ± 4.0 | d | |
GN1 | 40.0 ± 4.0 | ab | 144.8 ± 1.2 | a | 153.7 ± 1.9 | bd | 160.4 ± 1.4 | bd | 167.4 ± 0.9 | bef | 180.0 ± 0.0 | cd | |
GN2 | 42.0 ± 6.0 | ab | 142.9 ± 1.3 | a | 149.3 ± 0.9 | abd | 154.6 ± 2.1 | ab | 159.7 ± 2.0 | ab | 174.0 ± 6.0 | bcd | |
GN3 | - | c | 48.0 ± 36.0 | b | 144.8 ± 1.8 | abc | 155.9 ± 2.5 | abd | 163.1 ± 1.6 | abe | 180.0 ± 0.0 | cd | |
Stored | GB | 132.0 ± 0.0 | c | 142.0 ± 2.4 | a | 148.4 ± 0.5 | abd | 152.2 ± 1.3 | ab | 157.1 ± 1.6 | abd | 168.0 ± 0.0 | abc |
PE | 132.0 ± 6.9 | ab | 139.0 ± 3.7 | a | 144.8 ± 3.4 | abc | 149.2 ± 3.4 | ae | 153.9 ± 3.4 | ad | 168.0 ± 0.0 | abc | |
GN1 | 24.0 ± 0.0 | ab | 133.2 ± 0.5 | a | 137.9 ± 0.9 | ace | 142.6 ± 1.4 | ce | 147.4 ± 1.8 | cd | 164.0 ± 4.0 | ab | |
GN2 | 20.0 ± 4.0 | a | 124.1 ± 5.0 | a | 133.7 ± 1.9 | ce | 138.1 ± 1.3 | c | 142.1 ± 1.2 | c | 160.0 ± 4.0 | ab | |
GN3 | −8.0 ± 4.0 | 118.9 ± 1.7 | a | 131.4 ± 0.8 | e | 136.6 ± 0.3 | c | 141.4 ± 0.5 | c | 156.0 ± 0.0 | a | ||
Two-way ANOVA p-value | H | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
F | 0.00 | 0.71 | 0.00 | 0.00 | 0.00 | 0.00 | |||||||
H x F | 0.00 | 0.00 | 0.85 | 0.49 | 0.73 | 0.00 |
Treatment (Flower Usage, F) | Harvest Stage (H) | Ca Content | Mg Content | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scape [mg·kg−1] | Flower [mg·kg−1] | Scape + Flower [mg·plant−1] | Scape [mg·kg−1] | Flower [mg·kg−1] | Scape + Flower [mg·plant−1] | ||||||||
Sampling stage (S): full flowering | |||||||||||||
Fresh | GB | 1366.31 ± 37.91 | cd | 1365.30 ± 31.79 | abcd | 344.33 ± 8.77 | bc | 461.22 ± 11.58 | i | 354.59 ± 19.01 | a | 102.92 ± 3.13 | a |
PE | 1241.52 ± 30.89 | abcd | 1522.89 ± 26.03 | def | 395.97 ± 6.77 | def | 269.34 ± 5.08 | def | 710.32 ± 5.08 | bc | 138.39 ± 1.46 | cdef | |
GN1 | 1342.69 ± 9.52 | bcd | 1584.86 ± 13.63 | fg | 436.02 ± 0.64 | fgh | 399.84 ± 3.81 | h | 679.91 ± 12.84 | bc | 159.59 ± 1.28 | efgh | |
GN2 | 1325.17 ± 10.18 | bcd | 1490.48 ± 18.74 | cdef | 393.98 ± 3.65 | cdef | 246.94 ± 12.15 | de | 732.60 ± 13.99 | bc | 136.60 ± 2.81 | cd | |
GN3 | 1223.08 ± 16.17 | abcd | 1599.18 ± 11.84 | fg | 519.38 ± 2.90 | jk | 236.94 ± 0.63 | de | 742.70 ± 23.63 | c | 177.03 ± 4.06 | gh | |
Stored | GB | 1252.25 ± 2.91 | bcd | 1412.48 ± 34.39 | abcde | 299.20 ± 4.25 | ab | 325.14 ± 10.38 | fg | 678.45 ± 6.02 | bc | 114.05 ± 1.12 | ab |
PE | 1173.00 ± 11.07 | abcd | 1771.44 ± 11.17 | h | 452.60 ± 3.10 | ghi | 170.76 ± 3.66 | bc | 711.21 ± 13.40 | bc | 133.28 ± 2.37 | bc | |
GN1 | 1046.94 ± 17.61 | ab | 1645.50 ± 46.27 | fgh | 455.22 ± 5.91 | ghi | 116.00 ± 3.66 | ab | 928.93 ± 16.36 | efg | 176.86 ± 2.37 | gh | |
GN2 | 1398.39 ± 69.59 | cd | 1478.61 ± 38.9 | bcdef | 498.65 ± 10.70 | ijk | 220.39 ± 6.85 | cd | 601.71 ± 15.10 | b | 138.07 ± 1.17 | cde | |
GN3 | 1172.47 ± 30.33 | abcd | 1500.60 ± 42.43 | def | 477.62 ± 12.85 | hij | 78.04 ± 9.52 | a | 1117.02 ± 33.61 | h | 208.77 ± 6.24 | i | |
Sampling stage (S): senescence | |||||||||||||
Fresh | GB | 1467.03 ± 61.29 | d | 1570.75 ± 42.68 | efg | 326.94 ± 11.17 | B | 515.02 ± 13.01 | i | 787.75 ± 17.52 | cd | 140.42 ± 3.15 | cdef |
PE | 1161.86 ± 28.23 | abc | 1631.46 ± 34.21 | fgh | 377.37 ± 8.48 | Cd | 322.46 ± 5.39 | fg | 1053.81 ± 42.12 | gh | 181.26 ± 5.02 | h | |
GN1 | 1127.08 ± 32.87 | abc | 1695.49 ± 12.77 | gh | 439.40 ± 4.64 | Fgh | 229.99 ± 3.49 | d | 677.10 ± 14.29 | bc | 138.25 ± 1.87 | cdef | |
GN2 | 951.08 ± 42.89 | a | 1997.01 ± 8.79 | i | 397.90 ± 5.98 | Def | 166.93 ± 5.070 | bc | 1010.20 ± 10.23 | fgh | 158.24 ± 1.75 | defg | |
GN3 | 1179.36 ± 65.74 | abcd | 1961.70 ± 28.15 | i | 546.52 ± 13.97 | K | 241.26 ± 2.86 | de | 980.03 ± 26.88 | fg | 207.18 ± 4.97 | i | |
Stored | GB | 1253.31 ± 177.36 | bcd | 1288.60 ± 13.03 | a | 257.06 ± 19.32 | A | 339.02 ± 24.70 | g | 757.79 ± 24.42 | c | 109.85 ± 0.17 | a |
PE | 1356.04 ± 62.64 | cd | 1322.87 ± 11.79 | ab | 379.06 ± 10.98 | Cde | 289.38 ± 10.18 | efg | 799.22 ± 4.40 | cde | 148.59 ± 2.05 | cdef | |
GN1 | 1175.13 ± 62.43 | abcd | 1316.47 ± 35.25 | ab | 385.10 ± 15.45 | Cde | 314.68 ± 17.94 | fg | 719.51 ± 36.95 | bc | 155.11 ± 8.13 | cdefg | |
GN2 | 1256.66 ± 37.76 | bcd | 1731.85 ± 67.46 | gh | 428.49 ± 8.17 | Efgh | 345.12 ± 19.11 | gh | 905.15 ± 46.87 | def | 177.10 ± 6.21 | gh | |
GN3 | 1210.28 ± 16.17 | abcd | 1330.38 ± 13.91 | abc | 410.67 ± 2.01 | Defg | 239.67 ± 11.92 | de | 785.45 ± 42.70 | cd | 160.15 ± 8.48 | fgh | |
Three-way ANOVA p-value | H | 0.0025 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||||||
S | 0.1120 | 0.0015 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||
F | 0.7171 | 0.0000 | 0.0026 | 0.0000 | 0.0000 | 0.3318 | |||||||
H × S | 0.0016 | 0.0000 | 0.4139 | 0.0000 | 0.0000 | 0.0000 | |||||||
H × F | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||
S × F | 0.0020 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||
H × S × F | 0.0585 | 0.0051 | 0.1201 | 0.0000 | 0.0000 | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jezdinská Slezák, K.; Jezdinský, A.; Mazur, J.; Vachůn, M.; Kapczyńska, A.; Pokluda, R.; Uher, J. The Influence of the Bud Stage at Harvest and Cold Storage on the Vase Life of Narcissus poeticus (L.) Flowers. Agriculture 2022, 12, 2114. https://doi.org/10.3390/agriculture12122114
Jezdinská Slezák K, Jezdinský A, Mazur J, Vachůn M, Kapczyńska A, Pokluda R, Uher J. The Influence of the Bud Stage at Harvest and Cold Storage on the Vase Life of Narcissus poeticus (L.) Flowers. Agriculture. 2022; 12(12):2114. https://doi.org/10.3390/agriculture12122114
Chicago/Turabian StyleJezdinská Slezák, Katalin, Aleš Jezdinský, Justyna Mazur, Miroslav Vachůn, Anna Kapczyńska, Robert Pokluda, and Jiří Uher. 2022. "The Influence of the Bud Stage at Harvest and Cold Storage on the Vase Life of Narcissus poeticus (L.) Flowers" Agriculture 12, no. 12: 2114. https://doi.org/10.3390/agriculture12122114
APA StyleJezdinská Slezák, K., Jezdinský, A., Mazur, J., Vachůn, M., Kapczyńska, A., Pokluda, R., & Uher, J. (2022). The Influence of the Bud Stage at Harvest and Cold Storage on the Vase Life of Narcissus poeticus (L.) Flowers. Agriculture, 12(12), 2114. https://doi.org/10.3390/agriculture12122114