The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Experiment and Soil and Climatic Conditions
2.2. Experimental Design and Agronomic Practices
2.3. Methods of Plant Analyses
2.4. Statistical Analysis
3. Results
3.1. Yield and Yield Components of Winter Oilseed Rape
3.2. Contents of Fat and Glucosinolates in Winter Oilseed Rape
3.3. Weed Infestation of Winter Oilseed Rape
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistical Yearbook of the Republic of Poland; Statistics Poland: Warsaw, Poland, 2021.
- Statistical Yearbook of Agriculture; Statistics Poland: Warsaw, Poland, 2020.
- Goyal, A.; Tanwar, B.; Sihag, M.K.; Kumar, V.; Sharma, V.; Soni, S. Rapeseed/Canola (Brassica napus) Seed. In Oilseeds: Health Attributes and Food Applications; Springer: Singapore, 2021; pp. 47–71. [Google Scholar]
- Różyło, K.; Andruszczak, S.; Kwiecińska-Poppe, E.; Różyło, R.; Kraska, P. Effect of Three Years’ Application of Biogas Digestate and Mineral Waste to Soil on Phytochemical Quality of Rapeseed. Pol. J. Environ. Stud. 2019, 28, 833–843. [Google Scholar] [CrossRef]
- Chețan, F.; Chetan, C.; Rusu, T.; Moraru, P.I.; Ignea, M.; Șimon, A. Influence of fertilization and soil tillage system on water conservation in soil, production and economic efficiency in the winter wheat crop. Sci. Pap. Ser. A 2017, 60, 42–48. [Google Scholar]
- De Cárcer, P.S.; Sinaj, S.; Santonja, M.; Fossati, D.; Jeangros, B. Long-term effects of crop succession, soil tillage and climate on wheat yield and soil properties. Soil Tillage Res. 2019, 190, 209–219. [Google Scholar] [CrossRef]
- Dekemati, I.; Simon, B.; Vinogradov, S.; Birkás, M. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Res. 2019, 194, 104334. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Giannitsopoulos, M.L.; Burgess, P.J.; Rickson, R.J. Effects of conservation tillage systems on soil physical changes and crop yields in a wheat-oilseed rape rotation. J. Soil Water Conserv. 2019, 74, 247–258. [Google Scholar] [CrossRef]
- Heidari, G.; Mohammadi, K.; Sohrabi, Y. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L.) production. Front. Plant Sci. 2016, 7, 1730. [Google Scholar] [CrossRef] [Green Version]
- Romaneckas, K.; Šarauskis, E.; Pilipavicius, V.; Sakalauskas, A. Impact of short-term ploughless tillage on soil physical properties, winter oilseed rape seedbed formation and productivity parameters. J. Food Agric. Environ. 2011, 9, 295–299. [Google Scholar]
- Biberdzic, M.; Barac, S.; Lalevic, D.; Djikic, A.; Prodanovic, D.; Rajicic, V. Influence of soil tillage system on soil compaction and winter wheat yield. Chil. J. Agric. Res. 2020, 80, 80–89. [Google Scholar] [CrossRef]
- Orzech, K.; Wanic, M.; Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 2021, 11, 666. [Google Scholar] [CrossRef]
- Ţenu, I.; Jitareanu, G.; Muraru-Ionel, C.; Cojocariu, P.; Muraru, V.M. The impact of mechanization technologies on soil. Environ. Eng. Manag. J. 2009, 8, 1263–1267. [Google Scholar] [CrossRef]
- Arvidsson, J.; Håkansson, I. Do effects of soil compaction persist after ploughing? Results from 21 long-term field experiments in Sweden. Soil Tillage Res. 1996, 39, 175–197. [Google Scholar]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Shahzad, M.; Hussain, M.; Farooq, M.; Farooq, S.; Jabran, K.; Nawaz, A. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 24634–24643. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.L. Impact of subsurface tillage on weed dynamics in the Central Great Plains. Weed Technol. 2004, 18, 186–192. [Google Scholar] [CrossRef]
- Chokor, J.U.; Ikuenobe, C.E.; Akaelu, I.A. The Effect of Tillage and Herbicides (Rimsulfuron and Codal Gold) on Weed Regeneration. Int. J. Soil Sci. 2008, 3, 164–168. [Google Scholar] [CrossRef]
- Kováč, L.; Jakubová, J.; Kotorová, D. The Cost and The Economic Effectiveness Analysis of the Winter Rape Production Technologies (Brassica napus L. ssp. oleifera) on Heavy Soils). Agriculture 2011, 57, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Orzech, K.; Załuski, D. Effect of companion crops and crop rotation systems on some chemical properties of soil. J. Elem. 2020, 25, 931–949. [Google Scholar] [CrossRef]
- Pittelkow, M.C.; Linquist, A.B.; Lundy, E.M.; Liang, X.; Groenigen, J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, Y.; Li, T.; Zhao, D.; Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 2020, 197, 104501. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 28, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusek, G.; Ozturk, H.H.; Akdemir, S. An assessment of energy use of different cultivation methods for sustainable rapeseed production. J. Clean. Prod. 2016, 112, 2772–2783. [Google Scholar] [CrossRef]
- Omidi, H.; Tahmasebi Sarvestani, Z.; Ghalavand, A.; Modarres Sanavy, S.A.M. Yield, yield components and soil characters Brassica napus L. as affected by tillage systems and sowing date. In Proceedings of the 12th International Rapeseed Congress, Wuhan, China, 26–30 March 2007. [Google Scholar]
- Gawęda, D.; Nowak, A.; Haliniarz, M.; Woźniak, A. Yield and economic effectiveness of soybean grown under different cropping systems. J. Plant Prod. 2020, 14, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of long-term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. Grain yield and quality of winter wheat depending on previous crop and tillage system. Agriculture 2021, 11, 133. [Google Scholar] [CrossRef]
- Kende, Z.; Sallai, A.; Kassai, M.K.; Mikó, P.; Percze, A.; Birkás, M. The effects of tillage-induced soil disturbance on weed infestation of winter wheat. Pol. J. Environ. Stud. 2017, 26, 1131–1138. [Google Scholar] [CrossRef]
- Khorami, S.S.; Kazemeini, S.A.; Afzalinia, S.; Gathala, M.K. Changes in soil properties and productivity under different tillage practices and wheat genotypes: A short-term study in Iran. Sustainability 2018, 10, 3273. [Google Scholar] [CrossRef] [Green Version]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Swędzrzyńska, D.; Sawinska, Z.; Piechota, T. The effect of long-term tillage systems on some soil properties and yield of pea (Pisum sativum L.). Acta Sci. Pol. Agric. 2016, 15, 37–50. [Google Scholar]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilization. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Ruisi, P.; Frangipane, B.; Amato, G.; Badagliacca, G.; di Miceli, G.; Plaia, A.; Giambalvo, D. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 2015, 55, 320–328. [Google Scholar] [CrossRef]
- Ruisi, P.; Giambalvo, D.; Saia, S.; Di Miceli, G.; Frenda, A.S.; Plaia, A.; Amato, G. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 2014, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A.; Gawęda, D. Tillage management effects on pea yield and chemical composition of pea seeds. Acta Sci. Pol. Hortorum Cultus 2019, 18, 151–160. [Google Scholar] [CrossRef]
- Biskupski, A.; Sekutowski, T.R.; Włodek, S.; Smagacz, J.; Owsiak, Z. The effect of intercrops and differentiated tillage in the maize yielding. Inż. Ekolog. 2014, 38, 7–16. (In Polish) [Google Scholar]
- Gawęda, D.; Haliniarz, M.; Cierpiała, R.; Klusek, I. Yield, Weed infestation and seed quality of soybean (Glycine max (L.) Merr.) under different tillage systems. Tarim Bilim. Derg. 2017, 23, 268–275. [Google Scholar]
- Velykis, A.; Satkus, A. Weed infestation and changes in field pea (Pisum sativum L.) yield as affected by reduced tillage of a clay loam soil. Zemdirbyste 2010, 97, 73–82. [Google Scholar]
- Mahmoodi, S.; Rahimi, A. The critical period of weed control in corn in Birjand region, Iran. Int. J. Plant Prod. 2009, 3, 91–96. [Google Scholar]
- Mohler, C.L.; Frisch, J.C.; McCulloch, C.E. Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Tillage Res. 2006, 86, 110–122. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? Rev. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Walter, I.; Zambrana, E.; Tenorio, J.L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J Agron. 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed Infestation and Health of the Soybean Crop Depending on Cropping System and Tillage System. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In World Soil Resources Reports; FAO: Rome, Italy, 2015; p. 106. [Google Scholar]
- Domaradzki, K.; Badowski, M.; Filipiak, K.; Franek, M.; Gołębiowska, H.; Kieloch, R.; Kucharski, M.; Rola, H.; Rola, J.; Sadowski, J.; et al. Metodyka Doświadczeń Biologicznej Oceny Herbicydów, Bioregulatorów i Adiuwantów. In Cz. 1. Doświadczenia Polowe; Wyd. IUNG: Puławy, Poland, 2001; p. 167. (In Polish) [Google Scholar]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering Plants and Pteridophytes of Poland a Checklist. Krytyczna Lista Roślin Naczyniowych Polski; Szafer Institute of Botany, Polish Academy of Science: Kraków, Poland, 2002; p. 442. [Google Scholar]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 168, 668. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Kotwica, K.; Piekarczyk, M.; Wasilewski, P. Plonowanie rzepaku ozimego w zależności od przedplonów i sposobów uprawy roli. Ann. UMCS Sect. E 2014, 69, 30–38. (In Polish) [Google Scholar] [CrossRef]
- Chiriac, G.; Raus, L.; Coroi, I.G.; Gales, D.C.; Jitareanu, G. Effect of tillage and cultivar on winter oilseed rape (Brassica napus L.) yield and economic efficiency in Suceava Plateau. ProEnvironment 2013, 6, 130–135. [Google Scholar]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, P.; Kreiselmeier, J.; Schwen, A.; Weninger, T.; Julich, S.; Feger, K.-H.; Schwärzel, K. Why We Should Include Soil Structural Dynamics of Agricultural Soils in Hydrological Models. Water 2018, 10, 1862. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Roldán, A.; Salinas-García, J.R.; Alguacil, M.M.; Diaz, E.; Caravaca, F. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 2005, 129, 178–185. [Google Scholar] [CrossRef]
- Romaneckas, K.; Romaneckienė, R.; Šarauskis, E.; Pilipavičius, V.; Sakalauskas, A. The effect of conservation primary and zero tillage on soil bulk density, water content, sugar beet growth and weed infestation. Agron. Res. 2009, 7, 73–86. [Google Scholar]
- Ahmad, G.; Jan, A.; Arif, M.; Jan, M.T.; Khattak, R.A. Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J. Zhejiang Univ. Sci. B 2007, 8, 731–737. [Google Scholar] [CrossRef]
- Kumar, S.; Seepaul, R.; Mulvaney, M.J.; Colvin, B.; George, S.; Marois, J.J.; Bennett, R.; Leon, R.; Wright, D.L.; Small, I.M. Brassica carinata genotypes demonstrate potential as a winter biofuel crop in South East United States. Ind. Crop. Prod. 2020, 150, 112353. [Google Scholar] [CrossRef]
- Mulvaney, M.J.; Leon, R.G.; Seepau, R.; Wright, D.L.; Hoffman, T.L. Brassica carinata Seeding Rate and Row Spacing Effects on Morphology, Yield, and Oil. Agron. J. 2019, 111, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Caldwell, C.; Falk, K.; Lada, R. The effect of cultivar, seeding rate and applied nitrogen on Brassica carinata seed yield and quality in contrasting environments. Can. J. Plant Sci. 2012, 92, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Miransari, M.; Rejali, F.; Bahrami, H.A.; Malakouti, M.J. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res. 2009, 103, 282–290. [Google Scholar] [CrossRef]
- Miransari, M.; Rejali, F.; Bahrami, H.A.; Malakouti, M.J. Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res. 2009, 104, 48–55. [Google Scholar] [CrossRef]
- Miralles, J.; Richards, R.A. Responses of leaf and tiller emergence and primordium initiation in wheat and barley to interchanged photoperiod. Ann. Bot. 2000, 85, 655–663. [Google Scholar] [CrossRef]
- Omidi, H.; Tahmasebi, Z.; Badi, H.A.N.; Torabi, H.; Miransari, M. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. C. R. Biol. 2010, 333, 248–254. [Google Scholar] [CrossRef]
- Iboyi, J.E.; Mulvaney, M.J.; Balkcom, K.S.; Seepaul, R.; Bashyal, M.; Perondi, D.; Leon, R.G.; Devkota, P.; Small, I.M.; George, S.; et al. Tillage system and seeding rate effects on the performance of Brassica carinata. GCB Bioenergy 2021, 13, 600–617. [Google Scholar] [CrossRef]
- Morrison, M.J.; Stewart, D.W. Heat stress during flowering in summer Brassica. Crop Sci. 2002, 42, 797–803. [Google Scholar] [CrossRef]
- Pritchard, F.M.; Eagles, H.A.; Norton, R.M.; Salisbury, P.A.; Nicolas, M. Environmental effects on seed composition of Victorian canola. Aust. J. Exp. Agric. 2000, 40, 679–685. [Google Scholar] [CrossRef]
- Sebayang, H.T.; Fatimah, S. The effect of tillage systems and dosages of cow manure on weed and soybeans yield (Glycine max Merrill). J. Degrade. Min. Land Manag. 2019, 7, 1959–1963. [Google Scholar] [CrossRef]
- Sebayang, H.T.; Rifai, A.P. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L.) Merril). J. Degrad. Min. Land Manag. 2018, 5, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Romaneckas, K.; Kimbirauskienė, R.; Sinkevičienė, A.; Jaskulska, I.; Buragienė, S.; Adamavičienė, A.; Šarauskis, E. Weed Diversity, Abundance, and Seedbank in Differently Tilled Faba Bean (Vicia faba L.) Cultivations. Agronomy 2021, 11, 529. [Google Scholar] [CrossRef]
- Stancevičius, A.; Špokienė, N.; Jodaugienė, D.; Trečiokas, K.; Raudonius, S. Impact of reduced soil tillage on crop weedinesss. Proc. Lith. Acad. Agric. 2002, 55, 50–58, (In Lithuanian with English summary). [Google Scholar]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Chovancova, S.; Illek, F.; Winkler, J. The effect of three tillage treatments on weed infestation in maize monoculture. Pak. J. Bot. 2020, 52, 697–701. [Google Scholar] [CrossRef]
- Almoussawi, A.; Lenoir, J.; Spicher, F.; Dupont, F.; Chabrerie, O.; Closset-Kopp, D.; Brasseur, B.; Kobaissi, A.; Dubois, F.; Decocq, G. Direct seeding associated with a mixture of winter cover crops decreases weed abundance while increasing cash-crop yields. Soil Tillage Res. 2020, 200, 104622. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Floristic composition and species diversity of weed community after 10 years of different cropping systems and soil tillage in a Mediterranean environment. Weed Res. 2018, 58, 273–283. [Google Scholar] [CrossRef]
- Melander, B.; Munier-Jolain, N.; Charles, R.; Wirth, J.; Schwarz, J.; Van der Weide, R.; Bonin, L.; Jensen, P.K.; Kudsk, P. European perspectives on the adoption of non-chemical weed management in reduced tillage systems for arable crops. Weed Technol. 2013, 27, 231–240. [Google Scholar] [CrossRef] [Green Version]
Specification | Seeds Yield (t ha−1) | Straw Yield (t ha−1) | Plant Density after Emergence (Plants m−2) | Plant Density before Harvest (Plants m−2) |
---|---|---|---|---|
Tillage system | ||||
CT | 5.08 a | 7.54 a | 59.7 a | 42.2 a |
NT | 4.67 b | 6.63 b | 56.3 b | 39.2 b |
p- Value | 0.0000 *** | 0.0000 *** | 0.0054 ** | 0.0057 ** |
Years | ||||
2014 | 4.93 ab | 7.06 ab | 59.8 a | 40.7 a |
2015 | 4.85 ab | 7.16 a | 57.2 a | 41.4 a |
2016 | 4.96 a | 7.16 a | 56.0 a | 40.5 a |
2017 | 4.77 b | 6.96 b | 59.0 a | 40.2 a |
p- Value | 0.0435 * | 0.0075 ** | 0.0916 | 0.7493 |
Years | Tillage System | Seeds Yield (t ha−1) | Straw Yield (t ha−1) | Plant Density after Emergence (No. Per m2) | Plant Density before Harvest (No. Per m2) |
---|---|---|---|---|---|
2014 | CT | 5.23 ab | 7.90 b | 63.3 ab | 43.0 a |
NT | 4.63 c | 6.22 e | 56.3 bc | 38.3 ab | |
2015 | CT | 4.61 c | 7.05 cd | 54.3 c | 41.0 ab |
NT | 5.08 b | 7.27 c | 60.0 abc | 41.7 ab | |
2016 | CT | 5.00 b | 8.20 a | 57.3 ac | 40.7 ab |
NT | 4.91 b | 6.12 e | 54.7 c | 40.3 ab | |
2017 | CT | 5.47 a | 7.00 cd | 64.0 a | 44.0 a |
NT | 4.06 d | 6.91 d | 54.0 c | 36.3 b | |
p- Value | 0.0000 *** | 0.0000 *** | 0.0006 *** | 0.0147 * |
Specification | Siliqua Number Per Plant (pcs.) | Seed Number Per Siliqua (pcs.) | Seed Weight Per Siliqua (mg) | Branch Number in the Main Shoot (pcs.) | Main Shoot Length (cm) | 1000-Seed Weight (g) |
---|---|---|---|---|---|---|
Tillage system | ||||||
CT | 120.1 a | 23.4 a | 118.0 b | 8.1a | 140.8 a | 4.75 a |
NT | 117.9 a | 24.5 a | 122.2 a | 7.7 b | 133.8 b | 4.49 b |
p- Value | 0.0956 | 0.2918 | 0.0009 *** | 0.0052 ** | 0.0000 *** | 0.0002 *** |
Years | ||||||
2014 | 119.8 a | 24.0 a | 121.0 a | 7.9 a | 138.3 a | 4.63 a |
2015 | 118.7 a | 23.5 a | 120.3 a | 7.9 a | 137.5 a | 4.64 a |
2016 | 118.4 a | 24.7 a | 119.9 a | 7.8 a | 136.1 a | 4.58 a |
2017 | 119.1 a | 23.6 a | 119.2 a | 7.9 a | 137.2 a | 4.64 a |
p- Value | 0.8436 | 0.8368 | 0.6571 | 0.9790 | 0.6068 | 0.8622 |
Years | Tillage System | Siliqua Number Per Plant (pcs.) | Seed Number Per Siliqua (pcs.) | Seed Weight Per Siliqua (mg) | Branch Number in the Main Shoot (pcs.) | Main Shoot Length (cm) | 1000-Seed Weight (g) |
---|---|---|---|---|---|---|---|
2014 | CT | 120.2 a | 23.3 a | 119.3 a | 8.4 ab | 143.8 abc | 4.80 ab |
NT | 119.4 a | 24.6 a | 122.7 a | 7.4 cd | 132.8 de | 4.45 bc | |
2015 | CT | 118.4 a | 23.0 a | 116.8 a | 7.6 bcd | 134.9 cde | 4.58 bc |
NT | 119.0 a | 23.9 a | 123.8 a | 8.2 abc | 140.0 abd | 4.70 ab | |
2016 | CT | 119.4 a | 24.4 a | 118.2 a | 7.8 abcd | 138.0 bd | 4.60 bc |
NT | 117.3 a | 25.0 a | 121.6 a | 7.8 abcd | 134.1 de | 4.56 bc | |
2017 | CT | 122.2 a | 22.8 a | 117.7 a | 8.6 a | 146.3 a | 5.02 a |
NT | 116.0 a | 24.4 a | 120.7 a | 7.2 d | 128.1 e | 4.25 c | |
p- Value | 0.2467 | 0.9891 | 0.5019 | 0.0003 *** | 0.0000 *** | 0.0002 *** |
Quality Parameter | remp | Significance | R2 | Regression Equation |
---|---|---|---|---|
Conventional tillage | ||||
Plant density after emergence | +0.91 | *** | 0.84 | y = 1.0337 + 0.0677 * x |
Plant density before harvest | +0.59 | * | 0.35 | y = 1.3769 + 0.0878 * x |
Branch number in the main shoot | +0.83 | *** | 0.68 | y = 0.4706 + 0.5691 * x |
Main shoot length | +0.83 | *** | 0.69 | y = −2.5561 + 0.0542 * x |
1000-seed weight | +0.71 | ** | 0.50 | y = −0.1 + 1.0905 * x |
No-tillage | ||||
Plant density before harvest | +0.74 | *** | 0.54 | y = 0.2254 + 0.1128 * x |
Branch number in the main shoot | +0.66 | * | 0.44 | y = 0.6603 + 0.5243 * x |
Main shoot length | +0.80 | ** | 0.64 | y = −4.0053 + 0.0649 * x |
1000-seed weight | +0.82 | ** | 0.67 | y = −3.0724 + 1.7239 * x |
Specification | Number of Weeds (pcs m−2) | Air-Dry Weight of Weeds (g m−2) |
---|---|---|
Tillage system | ||
CT | 17.7 b | 29.3 b |
NT | 25.4 a | 42.6 a |
p- Value | 0.0000 *** | 0.0000 *** |
Years | ||
2014 | 23.5 ab | 35.4 b |
2015 | 15.7 c | 27.1 c |
2016 | 27.3 a | 47.7 a |
2017 | 19.8 bc | 33.6 b |
p- Value | 0.0000 *** | 0.0000 *** |
Years | Tillage System | Number of Weeds (pcs m−2) | Air-Dry Weight of Weeds (g m−2) |
---|---|---|---|
2014 | CT | 18.0 c | 29.3 cd |
NT | 29.0 ab | 41.4 b | |
2015 | CT | 14.3 c | 23.8 d |
NT | 17.0 c | 30.4 cd | |
2016 | CT | 21.3 bc | 34.0 bc |
NT | 33.3 a | 61.3 a | |
2017 | CT | 17.3 c | 30.1 cd |
NT | 22.3 bc | 37.1 bc | |
p- Value | 0.0381 * | 0.0001 *** |
Species | Tillage System | p- Value | |
---|---|---|---|
CT | NT | ||
I. Short-lived | |||
Amaranthus retroflexus L. | 0.7 a | 0.5 a | 0.3046 |
Anagallis arvensis L. | 2.9 a | 3.8 a | 0.1243 |
Chenopodium album L. | 0.7 a | 0.3 b | 0.0346 * |
Euphorbia helioscopia L. | 1.1 a | 0.2 b | 0.0004 *** |
Melandrium album (Mill.) Garcke | 1.6 a | 1.9 a | 0.4292 |
Papaver rhoeas L. | 2.1 a | 1.0 a | 0.0790 |
Polygonum aviculare L. | 1.8 a | 2.6 a | 0.1423 |
Sonchus asper (L.) Hill | - | 0.8 a | 0.0000 *** |
Veronica arvensis L. | 0.9 a | 1.1 a | 0.3844 |
Viola arvensis Murr. | 1.9 b | 6.0 a | 0.0000 *** |
II. Perennial | |||
Cirsium arvense (L.) Scop. | 1.3 a | 1.0 a | 0.3791 |
Convolvulus arvensis L. | 2.7 a | 2.3 a | 0.4516 |
Sonchus arvensis L. | - | 3.9 a | 0.0000 *** |
Number of weed species | 11 | 13 | - |
Species | Years | p- Value | |||
---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | ||
I. Short-lived | |||||
Amaranthus retroflexus L. | 0.3 b | 0.2 b | 1.2 a | 0.8 ab | 0.0315 * |
Anagallis arvensis L. | 3.8 a | 2.3 a | 3.8 a | 3.3 a | 0.1712 |
Chenopodium album L. | - | 0.8 a | 0.8 a | 0.3 b | 0.0018 ** |
Euphorbia helioscopia L. | 0.5 a | 0.5 a | 0.7 a | 0.9 a | 0.6175 |
Melandrium album (Mill.) Garcke | 1.8 a | 1.2 a | 2.3 a | 1.7 a | 0.4451 |
Papaver rhoeas L. | 2.2 a | 0.7 a | 1.3 a | 2.0 a | 0.2765 |
Polygonum aviculare L. | 3.0 a | 1.2 a | 2.3 a | 2.3 a | 0.1001 |
Sonchus asper (L.) Hill | 0.5 a | 0.2 a | 0.7 a | 0.3 a | 0.1251 |
Veronica arvensis L. | 1.0 ab | 0.8 b | 1.5 a | 0.7 b | 0.0330 * |
Viola arvensis Murr. | 5.0 a | 2.0 b | 6.0 a | 2.8 b | 0.0000 *** |
II. Perennial | |||||
Cirsium arvense (L.) Scop. | 0.7 b | 1.5 ab | 1.8 a | 0.5 b | 0.0091 ** |
Convolvulus arvensis L. | 2.0 a | 2.3 a | 3.3 a | 2.5 a | 0.3767 |
Sonchus arvensis L. | 2.7 a | 2.0 a | 1.5 a | 1.7 a | 0.1213 |
Number of weed species | 12 | 13 | 13 | 13 |
Species | Years | p- Value | |||||||
---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | ||||||
CT | NT | CT | NT | CT | NT | CT | NT | ||
I. Short-lived | |||||||||
Amaranthus retroflexus L. | 0.3 a | 0.3 a | 0.3 a | - | 1.3 a | 1.0 a | 1.0 a | 0.7 a | 0.9439 |
Anagallis arvensis L. | 2.7 a | 5.0 a | 3.0 a | 1.7 a | 3.7 a | 4.0 a | 2.3 a | 4.3 a | 0.0803 |
Chenopodium album L. | - | - | 1.0 a | 0.7 a | 1.0 a | 0.7 a | 0.7 a | - | 0.4680 |
Euphorbia helioscopia L. | 1.0 a | - | 1.0 a | - | 1.0 a | 0.3 a | 1.3 a | 0.3 a | 0.9173 |
Melandrium album (Mill.) Garcke | 1.7 a | 2.0 a | 1.0 a | 1.3 a | 2.0 a | 2.7 a | 1.7 a | 1.7 a | 0.9940 |
Papaver rhoeas L. | 3.3 a | 1.0 a | 0.7 a | 0.7 a | 1.7 a | 1.0 a | 2.7 a | 1.3 a | 0.5419 |
Polygonum aviculare L. | 3.0 a | 3.0 a | 1.0 a | 1.3 a | 1.3 a | 3.3 a | 2.0 a | 2.7 a | 0.1001 |
Sonchus asper (L.) Hill | - | 1.0 a | - | 0.3 a | - | 1.3 a | - | 0.7 a | 0.1251 |
Veronica arvensis L. | 1.0 ab | 1.0 ab | 0.7 b | 1.0 ab | 1.0 ab | 2.0 a | 1.0 a | 0.3 b | 0.0412 * |
Viola arvensis Murr. | 2.0 bc | 8.0 a | 1.3 c | 2.7 c | 3.0 bc | 9.0 a | 1.3 c | 4.3 b | 0.0028 ** |
II. Perennial | |||||||||
Cirsium arvense (L.) Scop. | 0.7 a | 0.7 a | 2.0 a | 1.0 a | 2.0 a | 1.7 a | 0.3 a | 0.7 a | 0.3933 |
Convolvulus arvensis L. | 2.3 a | 1.7 a | 2.3 a | 2.3 a | 3.3 a | 3.3 a | 3.0 a | 2.0 a | 0.8850 |
Sonchus arvensis L. | - | 5.3 a | - | 4.0 a | - | 3.0 a | - | 3.3 a | 0.1213 |
Number of weed species | 10 | 11 | 11 | 11 | 11 | 13 | 11 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawęda, D.; Haliniarz, M. The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems. Agriculture 2022, 12, 563. https://doi.org/10.3390/agriculture12040563
Gawęda D, Haliniarz M. The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems. Agriculture. 2022; 12(4):563. https://doi.org/10.3390/agriculture12040563
Chicago/Turabian StyleGawęda, Dorota, and Małgorzata Haliniarz. 2022. "The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems" Agriculture 12, no. 4: 563. https://doi.org/10.3390/agriculture12040563
APA StyleGawęda, D., & Haliniarz, M. (2022). The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems. Agriculture, 12(4), 563. https://doi.org/10.3390/agriculture12040563