Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material, Growing Conditions, and Pollen Collection
2.3. In Vitro Thermal Stress of Olive Pollen
2.4. Measurement of Cytosolic Ca2+
2.5. Pollen Germination
2.6. Pollen Morphology
2.7. Statistical Analysis
3. Results
3.1. Scanning Electron Microscopy Analysis of Olive Pollen
3.2. Ca2+-Cytosolic ([Ca2+]c) Changes in Olive Pollen in Heat Stress
3.3. Ca2+-Entry in Olive Pollen in Heat Stress
3.4. Germination of Olive Pollen Subjected to Heat Stress
3.5. Time-Course of High Temperature on Pollen Germination
4. Discussion
4.1. Morphological Investigations in Olive Pollen Grains
4.2. Fluctuations of Ca2+-Cytosolic in Olive Pollen under Heat Stress Conditions
4.3. Effects of Se-Met in Ca2+-Cytosolic during Heat and Oxidative Stress
4.4. Effects of Se-Met on Olive Pollen Germination Subjected to Heat Stress
4.5. Effect of Se-Met on Pollen Germination in Time-Course Experiment of Heat Stress
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Del Buono, D. Can Biostimulants Be Used to Mitigate the Effect of Anthropogenic Climate Change on Agriculture? It Is Time to Respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Ort, D.R. How Do We Improve Crop Production in a Warming World? Plant Physiol. 2010, 154, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrotta, L.; Faleri, C.; Cresti, M.; Cai, G. Heat Stress Affects the Cytoskeleton and the Delivery of Sucrose Synthase in Tobacco Pollen Tubes. Planta 2016, 243, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Carpenedo, S.; Raseira, M.D.C.B.; Franzon, R.C.; Byrne, D.H.; Da Silva, J.B. Stigmatic receptivity of peach flowers submitted to heat stress. Acta Sci. Agron. 2019, 42, e42450. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Dokken, J.D.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; p. 582. ISBN 9781107025066. [Google Scholar]
- Del Buono, D.; Regni, L.; Del Pino, A.M.; Bartucca, M.L.; Palmerini, C.A.; Proietti, P. Effects of Megafol on the Olive Cultivar ‘Arbequina’ Grown Under Severe Saline Stress in Terms of Physiological Traits, Oxidative Stress, Antioxidant Defenses, and Cytosolic Ca2+. Front. Plant Sci. 2021, 11, 603576. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Paupière, M.J.; van Heusden, A.W.; Bovy, A.G. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding. Metabolites 2014, 4, 889–920. [Google Scholar] [CrossRef] [Green Version]
- Steinhorst, L.; Kudla, J. Calcium—A Central Regulator of Pollen Germination and Tube Growth. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1573–1581. [Google Scholar] [CrossRef] [Green Version]
- Michard, E.; Alves, F.; Feijó, J.A. The Role of Ion Fluxes in Polarized Cell Growth and Morphogenesis: The Pollen Tube as an Experimental Paradigm. Int. J. Dev. Biol. 2009, 53, 1609–1622. [Google Scholar] [CrossRef]
- Lazzaro, M.D.; Cardenas, L.; Bhatt, A.P.; Justus, C.D.; Phillips, M.S.; Holdaway-Clarke, T.L.; Hepler, P.K. Calcium Gradients in Conifer Pollen Tubes; Dynamic Properties Differ from Those Seen in Angiosperms. J. Exp. Bot. 2005, 56, 2619–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Wang, S.; Gu, Y.; Zhang, S.; Publicove, S.J.; Franklin-Tong, V.E. Self-Incompatibility in Papaver rhoeas Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+. Plant Physiol. 2011, 155, 963–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature Stress and Plant Sexual Reproduction: Uncovering the Weakest Links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snider, J.L.; Oosterhuis, D.M.; Skulman, B.W.; Kawakami, E.M. Heat Stress-Induced Limitations to Reproductive Success in Gossypium hirsutum. Physiol. Plant. 2009, 137, 125–138. [Google Scholar] [CrossRef]
- Carafoli, E. Intracellular Calcium Homeostasis. Annu. Rev. Biochem. 1987, 56, 395–433. [Google Scholar] [CrossRef]
- Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A Mutual Interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Campanoni, P.; Blatt, M.R. Membrane Trafficking and Polar Growth in Root Hairs and Pollen Tubes. J. Exp. Bot. 2007, 58, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.Y.; Wu, H.M. Structural and Signaling Networks for the Polar Cell Growth Machinery in Pollen Tubes. Annu. Rev. Plant Biol. 2008, 59, 547–572. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, C.-L.; Zhang, W.-R.; Cheng, H.-P.; Liu, J. Cross-Talk between Calcium and Reactive Oxygen Species Signaling. Acta Pharmacol. Sin. 2006, 27, 821–826. [Google Scholar] [CrossRef]
- Clapham, D.E. Calcium Signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Brini, M.; Calì, T.; Ottolini, D.; Carafoli, E. Intracellular Calcium Homeostasis and Signaling. Met. Ions Life Sci. 2013, 12, 119–168. [Google Scholar] [CrossRef] [PubMed]
- Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Calcium and Mitochondria in the Regulation of Cell Death. Biochem. Biophys. Res. Commun. 2015, 460, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C.M. Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Ari, G.; Biton, I.; Many, Y.; Namdar, D.; Samach, A. Elevated Temperatures Negatively Affect Olive Productive Cycle and Oil Quality. Agronomy 2021, 11, 1492. [Google Scholar] [CrossRef]
- Selak, G.V.; Perica, S.; Goreta Ban, S.; Poljak, M. The Effect of Temperature and Genotype on Pollen Performance in Olive (Olea europaea L.). Sci. Hortic. 2013, 156, 38–46. [Google Scholar] [CrossRef]
- Del Pino, A.M.; Regni, L.; D’Amato, R.; Tedeschini, E.; Businelli, D.; Proietti, P.; Palmerini, C.A. Selenium-Enriched Pollen Grains of Olea europaea L.: Ca2+ Signaling and Germination Under Oxidative Stress. Front. Plant Sci. 2019, 10, 1611. [Google Scholar] [CrossRef]
- Del Pino, A.M.; Regni, L.; D’amato, R.; Di Michele, A.; Proietti, P.; Palmerini, C.A. Persistence of the Effects of Se-Fertilization in Olive Trees over Time, Monitored with the Cytosolic Ca2+ and with the Germination of Pollen. Plants 2021, 10, 2290. [Google Scholar] [CrossRef]
- Regni, L.; Micheli, M.; Del Pino, A.M.; Palmerini, C.A.; D’Amato, R.; Facchin, S.L.; Famiani, F.; Peruzzi, A.; Mairech, H.; Proietti, P. The First Evidence of the Beneficial Effects of Se-Supplementation on In Vitro Cultivated Olive Tree Explants. Plants 2021, 10, 1630. [Google Scholar] [CrossRef]
- Hartikainen, H.; Xue, T. The Promotive Effect of Selenium on Plant Growth as Triggered by Ultraviolet Irradiation. J. Environ. Qual. 1999, 28, 1372–1375. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in Higher Plants. Annu. Rev. Plant Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, V.V.; Kholodova, V.P.; Kuznetsov, V.V.; Yagodin, B.A. Selenium Regulates Water Relations of Plants under Drought. Dokl. Akad. Nauk 2003, 390, 713–716. [Google Scholar]
- Proietti, P.; Nasini, L.; Del Buono, D.; D’Amato, R.; Tedeschini, E.; Businelli, D. Selenium Protects Olive (Olea europaea L.) from Drought Stress. Sci. Hortic. 2013, 164, 165–171. [Google Scholar] [CrossRef]
- Regni, L.; Palmerini, C.A.; Del Pino, A.M.; Businelli, D.; D’Amato, R.; Mairech, H.; Marmottini, F.; Micheli, M.; Pacheco, P.H.; Proietti, P. Effects of Selenium Supplementation on Olive under Salt Stress Conditions. Sci. Hortic. 2021, 278, 109866. [Google Scholar] [CrossRef]
- D’Amato, R.; Proietti, P.; Nasini, L.; Del Buono, D.; Tedeschini, E.; Businelli, D. Increase in the Selenium Content of Extra Virgin Olive Oil: Quantitative and Qualitative Implications. Grasas Aceites 2014, 65, e025. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, R.; Proietti, P.; Onofri, A.; Regni, L.; Esposto, S.; Servili, M.; Businelli, D.; Selvaggini, R. Biofortification (Se): Does It Increase the Content of Phenolic Compounds in Virgin Olive Oil (VOO)? PLoS ONE 2017, 12, e0176580. [Google Scholar] [CrossRef] [PubMed]
- Tedeschini, E.; Proietti, P.; Timorato, V.; D’Amato, R.; Nasini, L.; Dei Buono, D.; Businelli, D.; Frenguelli, G. Selenium as Stressor and Antioxidant Affects Pollen Performance in Olea europaea. Flora Morphol. Distrib. Funct. Ecol. Plants 2015, 215, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Grynkiewicz, G.; Poenie, M.; Tsien, R.Y. A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties. J. Biol. Chem. 1985, 260, 3440–3450. [Google Scholar] [CrossRef]
- Rejón, J.D.; Zienkiewicz, A.; Rodríguez-García, M.I.; Castro, A.J. Profiling and Functional Classification of Esterases in Olive (Olea europaea) Pollen during Germination. Ann. Bot. 2012, 110, 1035–1045. [Google Scholar] [CrossRef] [Green Version]
- Martins, E.S.; Davide, L.M.C.; Miranda, G.J.; Barizon, J.O.; Souza Junior, F.A.; de Carvalho, R.P.; Gonçalves, M.C. In Vitro Pollen Viability of Maize Cultivars at Different Times of Collection. Cienc. Rural 2017, 47, e20151077. [Google Scholar] [CrossRef] [Green Version]
- Khaleghi, E.; Karamnezhad, F.; Moallemi, N. Study of Pollen Morphology and Salinity Effect on the Pollen Grains of Four Olive (Olea europaea) Cultivars. S. Afr. J. Bot. 2019, 127, 51–57. [Google Scholar] [CrossRef]
- Hinojosa, L.; Matanguihan, J.B.; Murphy, K.M. Effect of High Temperature on Pollen Morphology, Plant Growth and Seed Yield in Quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 2019, 205, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Hecquet, C.M.; Ahmmed, G.U.; Vogel, S.M.; Malik, A.B. Role of TRPM2 Channel in Mediating H2O2-Induced Ca2+ Entry and Endothelial Hyperpermeability. Circ. Res. 2008, 102, 347–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokszczanin, K.L.; Fragkostefanakis, S. Perspectives on Deciphering Mechanisms Underlying Plant Heat Stress Response and Thermotolerance. Front. Plant Sci. 2013, 4, 315. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.-L.; Zheng, X.-L.; Zhou, C.-Y.; Kanwar, M.K.; Zhou, J. Functions of Redox Signaling in Pollen Development and Stress Response. Antioxidants 2022, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Demidchik, V. Mechanisms of Oxidative Stress in Plants: From Classical Chemistry to Cell Biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Chu, Y.-C.; Chang, J.-C. Heat Stress Leads to Poor Fruiting Mainly Due to Inferior Pollen Viability and Reduces Shoot Photosystem II Efficiency in “Da Hong” Pitaya. Agronomy 2022, 12, 225. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Pino, A.M.; Regni, L.; Di Michele, A.; Gentile, A.; Del Buono, D.; Proietti, P.; Palmerini, C.A. Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance. Agriculture 2022, 12, 826. https://doi.org/10.3390/agriculture12060826
Del Pino AM, Regni L, Di Michele A, Gentile A, Del Buono D, Proietti P, Palmerini CA. Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance. Agriculture. 2022; 12(6):826. https://doi.org/10.3390/agriculture12060826
Chicago/Turabian StyleDel Pino, Alberto Marco, Luca Regni, Alessandro Di Michele, Alessandra Gentile, Daniele Del Buono, Primo Proietti, and Carlo Alberto Palmerini. 2022. "Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance" Agriculture 12, no. 6: 826. https://doi.org/10.3390/agriculture12060826
APA StyleDel Pino, A. M., Regni, L., Di Michele, A., Gentile, A., Del Buono, D., Proietti, P., & Palmerini, C. A. (2022). Effects of Selenium-Methionine against Heat Stress in Ca2+-Cytosolic and Germination of Olive Pollen Performance. Agriculture, 12(6), 826. https://doi.org/10.3390/agriculture12060826