Effects of Different Edible Coatings on the Shelf Life of Fresh Black Mulberry Fruits (Morus nigra L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material
2.2. Preparation of Edible Coating Solution and Mulberry Fruit Treatments
2.3. Structural Characterisation of Edible Coatings
2.3.1. Moisture Content
2.3.2. Swelling Index
2.3.3. FTIR Spectroscopy of Edible Films
2.3.4. UV-Vis Spectroscopy of Edible Coating Components and Mulberry Treated-Samples
2.4. Determination of Deterioration Degree (DD) and Firmness of Mulberry Fruits
2.5. Extraction and Measurement of Total Phenol Content (TPh), Monomeric Anthocyanin Pigments (MAPs) and Antioxidant Capacity
2.6. Sensory Evaluations of Mulberry Fruits
2.7. Statistical Analysis
3. Results and Discussion
3.1. The Physicochemical Characterisation of Edible Coatings
3.2. Effects of Edible Coating Treatments on Deterioration Degree (DD) and Firmness of Mulberry Fruits
3.3. Effects of Edible Coating Treatments of Mulberry Fruits on Bioactive Compounds and Antioxidant Capacity
3.4. Principal Component Analysis (PCA)
3.5. Sensory Characterization of Mulberry Coating Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turan, I.; Demir, S.; Kilinc, K.; Burnaz, N.A.; Yaman, S.O.; Akbulut, K.; Mentese, A.; Aliyazicioglu, Y.; Deger, O. Antiproliferative and Apoptotic Effect of Morus Nigra Extract on Human Prostate Cancer Cells. Saudi Pharm. J. 2017, 25, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ercisli, S.; Orhan, E. Chemical Composition of White (Morus alba), Red (Morus rubra) and Black (Morus nigra) Mulberry Fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Kostić, E.; Arsić, B.; Mitić, M.; Dimitrijević, D.; Pecev Marinkovic, E. Optimization of the Solid-Liquid Extraction Process of Phenolic Compounds from Mulberry Fruit. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.; Hu, T.-G.; Linhardt, R.J.; Liao, S.-T.; Wu, H.; Zou, Y.-X. Mulberry: A Review of Bioactive Compounds and Advanced Processing Technology. Trends Food Sci. Technol. 2019, 83, 138–158. [Google Scholar] [CrossRef]
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere Groza, F.; Venter, A.C.; Vicas, S.I. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef]
- Cho, E.; Chung, E.Y.; Jang, H.-Y.; Hong, O.-Y.; Chae, H.S.; Jeong, Y.-J.; Kim, S.-Y.; Kim, B.-S.; Yoo, D.J.; Kim, J.-S.; et al. Anti-Cancer Effect of Cyanidin-3-Glucoside from Mulberry via Caspase-3 Cleavage and DNA Fragmentation in Vitro and in Vivo. Anticancer Agents Med. Chem. 2017, 17, 1519–1525. [Google Scholar] [CrossRef]
- Ghorbani, A.; Hooshmand, S. Protective Effects of Morus nigra and Its Phytochemicals against Hepatotoxicity: A Review of Preclinical Studies. Pharmacology 2021, 106, 233–243. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Martínez-Nicolás, J.J.; Hernández, F. Phenological Growth Stages of Mulberry Tree (Morus sp.) Codification and Description According to the BBCH Scale: Phenology of the Mulberry Tree. Ann. Appl. Biol. 2017, 171, 441–450. [Google Scholar] [CrossRef]
- Ali, M.; Durrani, Y.; Ayub, M. Effect of Drying Techniques and Storage on Mulberry (Morus alba) Quality. Sarhad J. Agric. 2016, 32, 80–88. [Google Scholar] [CrossRef]
- Tinebra, I.; Sortino, G.; Inglese, P.; Fretto, S.; Farina, V. Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. Cv Kokuso 21). Int. J. Food Sci. 2021, 2021, 8844502. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Aghdam, M.S.; Li, L. The Effect of the Layer-by-Layer (LBL) Edible Coating on Strawberry Quality and Metabolites during Storage. Postharvest Biol. Technol. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Yan, J.; Ruan, J.; Huang, P.; Sun, F.; Zheng, D.; Zhang, Y.; Wang, T. The Structure–Activity Relationship Review of the Main Bioactive Constituents of Morus Genus Plants. J. Nat. Med. 2020, 74, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Md. Sharif, Z.I.; Mustapha, A.; Jai, J.; Noorsuhana, M.Y.; Md Zaki, N.A. Review on Methods for Preservation and Natural Preservatives for Extending the Food Longevity. Chem. Eng. Res. Bull. 2017, 19, 145. [Google Scholar] [CrossRef] [Green Version]
- Mladenoska, I. The Potential Application of Novel Beeswax Edible Coatings Containing Coconut Oil in the Minimal Processing of Fruits. Adv. Technol. 2012, 1, 26–34. [Google Scholar]
- Pérez, D.A.; Gómez, J.M.; Castellanos, D.A. Combined Modified Atmosphere Packaging and Guar Gum Edible Coatings to Preserve Blackberry (Rubus glaucus Benth). Food Sci. Technol. Int. 2021, 27, 353–365. [Google Scholar] [CrossRef]
- Fu, Y.; Dudley, E.G. Antimicrobial-Coated Films as Food Packaging: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3404–3437. [Google Scholar] [CrossRef]
- Pavlath, A.E.; Orts, W. Edible Films and Coatings: Why, What, and How? In Edible Films and Coatings for Food Applications; Huber, K., Embuscado, M., Eds.; Springer: New York, NY, USA, 2009; pp. 1–23. [Google Scholar] [CrossRef]
- Olivas, G.I.I.; Barbosa-Cánovas, G. Edible Films and Coatings for Fruits and Vegetables. In Edible Films and Coatings for Food Applications; Huber, K., Embuscado, M., Eds.; Springer: New York, NY, USA, 2009; pp. 211–244. [Google Scholar] [CrossRef]
- Karunanayake, K.O.L.C.; Liyanage, K.C.M.; Jayakody, L.K.R.R.; Somaratne, S. Basil Oil Incorporated Beeswax Coating to Increase Shelf Life and Reduce Anthracnose Development in Mango Cv. Willard. Ceylon J. Sci. 2020, 49, 355. [Google Scholar] [CrossRef]
- Miteluț, A.C.; Popa, E.E.; Drăghici, M.C.; Popescu, P.A.; Popa, V.I.; Bujor, O.-C.; Ion, V.A.; Popa, M.E. Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods 2021, 10, 2821. [Google Scholar] [CrossRef]
- Saleem, M.S.; Anjum, M.A.; Naz, S.; Ali, S.; Hussain, S.; Azam, M.; Sardar, H.; Khaliq, G.; Canan, İ.; Ejaz, S. Incorporation of Ascorbic Acid in Chitosan-Based Edible Coating Improves Postharvest Quality and Storability of Strawberry Fruits. Int. J. Biol. Macromol. 2021, 189, 160–169. [Google Scholar] [CrossRef]
- Villa-Rodriguez, J.A.; Palafox-Carlos, H.; Yahia, E.M.; Ayala-Zavala, J.F.; Gonzalez-Aguilar, G.A. Maintaining Antioxidant Potential of Fresh Fruits and Vegetables After Harvest. Crit. Rev. Food Sci. Nutr. 2015, 55, 806–822. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Han, B.; Zheng, Y.; Liu, L.; Li, C.; Sheng, S.; Zhang, J.; Wang, J.; Wu, F. The Quality Changes of Postharvest Mulberry Fruit Treated by Chitosan-g-Caffeic Acid during Cold Storage: Quality Changes of Postharvest Mulberry Fruit. J. Food Sci. 2016, 81, C881–C888. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Lei, K.; Lili, L.; Dandan, W.; Yan, X.; Sheng, S.; Jun, W.; Fuan, W.; Weiguo, Z. Caffeic Acid as a Preservative That Extends Shelf-Life and Maintains Fruit Quality of Mulberries during Cold Storage. Afr. J. Agric. Res. 2018, 13, 2414–2422. [Google Scholar] [CrossRef] [Green Version]
- Roiu, G.; Cavalu, S.; Teusdea, A.; Petricas-Heredea, D.A.; Fratila, O. Assessment of Antibiotic Influence on Structural Modifications of Amniotic Membrane by FTIR Spectroscopy. Mater. Plast. 2019, 57, 191–198. [Google Scholar] [CrossRef]
- Memete, A.R.; Teuşdea, A.; Adrian, T.; Vicaş, S.; Vlad, A. Effect of Solvent Composition on the Extraction of Anthocyanins from Bilberry Fruits (Vaccinium myrtillus L.). Nat. Resour. Sustain. Dev. 2021, 11, 11–22. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Vicas, S.I.; Rugin, D.; Socaciu, C. Comparative Study about Antioxidant Activities of Viscum Album from Different Host Trees, Harvested in Different Seasons. J. Med. Plants Res. 2011, 5, 2237–2244. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Acylated Anthocyanins from Edible Sources and Their Applications in Food Systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Budau, R.; Memete, A.; Timofte, A.; Vicaş, S. Phytochemical Screening and Antioxidant Capacity of Two Berry Cultivars, ‘Ruben’ and ‘Duke’, Depending on Their Harvesting Time. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2022, 1, 27. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Miere, F.; Teuşdea, A.; Vasile, L.; Cavalu, S.; Luminita, F.; Dobjanschi, L.; Zdrânca, M.; Zdrânca, M.; Ganea, M.; Priscilla, P.; et al. Evaluation of In Vitro Wound-Healing Potential, Antioxidant Capacity, and Antimicrobial Activity of Stellaria media (L.) Vill. Appl. Sci. 2021, 11, 11526. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miere (Groza), F.; Teusdea, A.C.; Laslo, V.; Fritea, L.; Moldovan, L.; Costea, T.; Uivarosan, D.; Vicas, S.I.; Pallag, A. Natural Polymeric Beads for Encapsulation of Stellaria Media Extract with Antioxidant Properties. Mater. Plast. 2019, 56, 671–679. [Google Scholar] [CrossRef]
- Vicaş, S.I.; Bandici, L.; Teuşdea, A.C.; Turcin, V.; Popa, D.; Bandici, G.E. The Bioactive Compounds, Antioxidant Capacity, and Color Intensity in Must and Wines Derived from Grapes Processed by Pulsed Electric Field. CyTA—J. Food 2017, 15, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Bilska, A. Effect of Morus Alba Leaf Extract Dose on Lipid Oxidation, Microbiological Stability, and Sensory Evaluation of Functional Liver Pâtés during Refrigerated Storage. PLoS ONE 2021, 16, e0260030. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Kim, M.K. Influence of Processing Conditions on the Flavor Profiles of Mulberry (Morus alba Linn) Fruits Using Instrumental Flavor Analysis and Descriptive Sensory Analysis. Foods 2020, 9, 581. [Google Scholar] [CrossRef]
- Maharana, S.; Misra, P.K. Probing the Gelatin–Alkylammonium Salt Mixed Assemblies through Surface Tensiometry and Fluorimetry. J. Phys. Chem. B 2018, 122, 5161–5172. [Google Scholar] [CrossRef]
- Franke, S.; Fröhlich, K.; Werner, S.; Böhm, V.; Schöne, F. Analysis of Carotenoids and Vitamin E in Selected Oilseeds, Press Cakes and Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1122–1129. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Kaavya, R.; Martinez Monteagudo, S.I.; Divya, V.; Jain, S.; Khanashyam, A.C.; Kothakota, A.; Prasath, V.A.; Ramesh, S.V.; Sruthi, N.U.; et al. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.). Molecules 2022, 27, 3250. [Google Scholar] [CrossRef]
- Widiyati, E. Determination of Ultraviolet Filter Activity on Coconut Oil Cosmetic Cream; AIP Publishing: Yogyakarta, Indonesia, 2017; p. 020004. [Google Scholar]
- Inarkar, M.B.; Lele, S.S. Extraction and Characterization of Sugarcane Peel Wax. ISRN Agron. 2012, 2012, 340158. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, Y.; Semwal, A.D.; Sajeevkumar, V.A.; Sharma, G.K. Melting, Crystallization and Storage Stability of Virgin Coconut Oil and Its Blends by Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). J. Food Sci. Technol. 2017, 54, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohman, A.; Ghazali, M.A.B.; Windarsih, A.; Irnawati, I.; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in the Food Products. Molecules 2020, 25, 5485. [Google Scholar] [CrossRef] [PubMed]
- Cebi, N.; Dogan, C.E.; Mese, A.E.; Ozdemir, D.; Arıcı, M.; Sagdic, O. A Rapid ATR-FTIR Spectroscopic Method for Classification of Gelatin Gummy Candies in Relation to the Gelatin Source. Food Chem. 2019, 277, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Çebi, N.; Durak, M.; Toker, O.S.; Sağdıç, O.; Arıcı, M. An Evaluation of Fourier Transforms Infrared Spectroscopy Method for the Classification and Discrimination of Bovine, Porcine and Fish Gelatins. Food Chem. 2016, 190, 1109–1115. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, S.; Wang, H. Scale-Up Preparation and Characterization of Collagen/Sodium Alginate Blend Films. J. Food Qual. 2017, 2017, 4954259. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.-Q.; Liu, Y.; Zhang, C.-J.; Zhang, C.; Zhu, P. Alginate/Gelatin Blended Hydrogel Fibers Cross-Linked by Ca2+ and Oxidized Starch: Preparation and Properties. Mater. Sci. Eng. C 2019, 99, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Mello, M.L.S.; Vidal, B.D.C.; Rozen, J.G. Polarization Microscopy and Infrared Microspectroscopy of Integument Coverings of Diapausing Larvae in Two Distantly Related Nonsocial Bees. Microsc. Microanal. 2018, 24, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, M.D.G.; Poppi, R.J. Authentication and Identification of Adulterants in Virgin Coconut Oil Using ATR/FTIR in Tandem with DD-SIMCA One Class Modeling. Talanta 2020, 219, 121338. [Google Scholar] [CrossRef]
- Bharti, D.; Kim, D.; Cerqueira, M.A.; Mohanty, B.; Habibullah, S.K.; Banerjee, I.; Pal, K. Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil. Gels 2021, 7, 133. [Google Scholar] [CrossRef]
- Jiménez-Sotelo, P.; Hernández-Martínez, M.; Osorio-Revilla, G.; Meza-Márquez, O.G.; García-Ochoa, F.; Gallardo-Velázquez, T. Use of ATR-FTIR Spectroscopy Coupled with Chemometrics for the Authentication of Avocado Oil in Ternary Mixtures with Sunflower and Soybean Oils. Food Addit. Contam. Part A 2016, 33, 1105–1115. [Google Scholar] [CrossRef]
- El Agrebi, N.; Svečnjak, L.; Horvatinec, J.; Renault, V.; Rortais, A.; Cravedi, J.-P.; Saegerman, C. Adulteration of Beeswax: A First Nationwide Survey from Belgium. PLoS ONE 2021, 16, e0252806. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Burzo, I. Fiziologia Plantelor de Cultură; Burzo, I., Ed.; Ştiinţa: Chișinău, Moldova, 1999; ISBN 978-9975-67-141-5. [Google Scholar]
- Baston, O.; Pricop, E.M. Gem din Dude (Morus) şi Procedeu de Fabricaţie 2021. Available online: https://inovaliment.ro/gem-din-dude-morus-si-procedeu-de-fabricatie/ (accessed on 3 December 2021).
- Aitboulahsen, M.; Zantar, S.; Laglaoui, A.; Chairi, H.; Arakrak, A.; Bakkali, M.; Hassani Zerrouk, M. Gelatin-Based Edible Coating Combined with Mentha Pulegium Essential Oil as Bioactive Packaging for Strawberries. J. Food Qual. 2018, 2018, 8408915. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Gao, H. Effect of Chitosan-Based Edible Coating on Antioxidants, Antioxidant Enzyme System, and Postharvest Fruit Quality of Strawberries (Fragaria x Aranassa Duch.). LWT—Food Sci. Technol. 2013, 52, 71–79. [Google Scholar] [CrossRef]
- Poverenov, E.; Zaitsev, Y.; Arnon, H.; Granit, R.; Alkalai-Tuvia, S.; Perzelan, Y.; Weinberg, T.; Fallik, E. Effects of a Composite Chitosan–Gelatin Edible Coating on Postharvest Quality and Storability of Red Bell Peppers. Postharvest Biol. Technol. 2014, 96, 106–109. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Bautista-Baños, S.; Flores-García, G.; Zavaleta-Avejar, L. Impact of Chitosan Based Edible Coatings Functionalized with Natural Compounds on Colletotrichum Fragariae Development and the Quality of Strawberries. Food Chem. 2018, 262, 142–149. [Google Scholar] [CrossRef]
- Khodaei, D.; Hamidi-Esfahani, Z.; Rahmati, E. Effect of Edible Coatings on the Shelf-Life of Fresh Strawberries: A Comparative Study Using TOPSIS-Shannon Entropy Method. NFS J. 2021, 23, 17–23. [Google Scholar] [CrossRef]
- Herman, R.A.; Wang, J.; Amuzu, P.; Shittu, S.; Wu, F.; Wang, J. Evaluation of Inhibitory Activities of Two Medicinal Plant Extracts Parkia biglobosa and Lonicera japonica against Spoilage Microorganisms Isolated from Mulberry Fruit. J. Food Process. Preserv. 2020, 44, e14630. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ.; Usanmaz, S.; Alas, T. Improving the Storage Quality of Mulberry Fruit (Morus nigra L.) by Different Bio-Materials. Acta Hortic. 2020, 1289, 249–256. [Google Scholar] [CrossRef]
- Saha, S.; Singh, J.; Paul, A.; Sarkar, R.; Khan, Z.; Banerjee, K. Anthocyanin Profiling Using UV-Vis Spectroscopy and Liquid Chromatography Mass Spectrometry. J. AOAC Int. 2020, 103, 23–39. [Google Scholar] [CrossRef]
- Qin, C.; Li, Y.; Niu, W.; Ding, Y.; Zhang, R.; Shang, X.; Shang, Z. Analysis and Characterisation of Anthocyanins in Mulberry Fruit. Czech J. Food Sci. 2009, 28, 117–126. [Google Scholar] [CrossRef]
- Rodríguez, G.M.; Sibaja, J.C.; Espitia, P.J.P.; Otoni, C.G. Antioxidant Active Packaging Based on Papaya Edible Films Incorporated with Moringa Oleifera and Ascorbic Acid for Food Preservation. Food Hydrocoll. 2020, 103, 105630. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernandez-Lopez, J.; Muñoz, L.A.; Viuda-Martos, M. Assessment of Antibacterial and Antioxidant Properties of Chitosan Edible Films Incorporated with Maqui Berry (Aristotelia chilensis). LWT—Food Sci. Technol. 2015, 64, 1057–1062. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Anthocyanins, Phenolics and Antioxidant Capacity after Fresh Storage of Blueberry Treated with Edible Coatings. Int. J. Food Sci. Nutr. 2015, 66, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Herman, R.A.; Ayepa, E.; Fometu, S.S.; Shittu, S.; Davids, J.S.; Wang, J. Mulberry Fruit Post-Harvest Management: Techniques, Composition and Influence on Quality Traits -A Review. Food Control 2022, 140, 109126. [Google Scholar] [CrossRef]
- Jancikova, S.; Dordevic, D.; Tesikova, K.; Antonic, B.; Tremlova, B. Active Edible Films Fortified with Natural Extracts: Case Study with Fresh-Cut Apple Pieces. Membranes 2021, 11, 684. [Google Scholar] [CrossRef]
- Quirós-Sauceda, A.E.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Edible Coatings as Encapsulating Matrices for Bioactive Compounds: A Review. J. Food Sci. Technol. 2014, 51, 1674–1685. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Quality of Cold-Stored Strawberries as Affected by Chitosan–Oleic Acid Edible Coatings. Postharvest Biol. Technol. 2006, 41, 164–171. [Google Scholar] [CrossRef]
- Amal; El-Mogy, M.; Aboul Anean, H.; Alsanius, B. Improving Strawberry Fruit Storability by Edible Coating as a Carrier of Thymol or Calcium Chloride. J. Hortic. Sci. Ornam. Plants 2010, 2, 88–97. [Google Scholar]
- Nasrin, T.A.A.; Rahman, M.A.; Arfin, M.S.; Islam, M.N.; Ullah, M.A. Effect of Novel Coconut Oil and Beeswax Edible Coating on Postharvest Quality of Lemon at Ambient Storage. J. Agric. Food Res. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Shahid, M.N.; Abbasi, N.A. Effect of Bee Wax Coatings on Physiological Changes in Fruits of Sweet Orange Cv. “Blood Red”. Sarhad J. Agric. 2011, 27, 385–394. [Google Scholar]
- Han, J.H.; Seo, G.H.; Park, I.M.; Kim, G.N.; Lee, D.S. Physical and Mechanical Properties of Pea Starch Edible Films Containing Beeswax Emulsions. J. Food Sci. 2006, 71, E290–E296. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.-L.; Massa, A.; Pérez-Gago, M. Effect of Beeswax Content on Hydroxypropyl Methylcellulose-Based Edible Film Properties and Postharvest Quality of Coated Plums (Cv. Angeleno). LWT—Food Sci. Technol. 2011, 44, 2328–2334. [Google Scholar] [CrossRef]
- Lieberman, S.; Enig, M.; Preuss, H. A Review of Monolaurin and Lauric Acid: Natural Virucidal and Bactericidal Agents. Altern. Complementary Ther. 2006, 12, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Bisen, A.; Pandey, S.K.; Patel, N. Effect of Skin Coatings on Prolonging Shelf Life of Kagzi Lime Fruits (Citrus aurantifolia Swingle). J. Food Sci. Technol. 2012, 49, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical Properties of Cold Pressed Sunflower, Peanut, Rapeseed, Mustard and Olive Oils Grown in the Eastern Mediterranean Region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef] [PubMed]
Edible Coating Type | Moisture Content (%) | Swelling Index (%) |
---|---|---|
Gelatine 1 | 91.17 ± 1.3 *** | 10.69 ± 0.95 |
Oils and wax 2 | 3.04 ± 0.05 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memete, A.R.; Teusdea, A.C.; Timar, A.V.; Vuscan, A.N.; Mintaș, O.S.; Cavalu, S.; Vicas, S.I. Effects of Different Edible Coatings on the Shelf Life of Fresh Black Mulberry Fruits (Morus nigra L.). Agriculture 2022, 12, 1068. https://doi.org/10.3390/agriculture12071068
Memete AR, Teusdea AC, Timar AV, Vuscan AN, Mintaș OS, Cavalu S, Vicas SI. Effects of Different Edible Coatings on the Shelf Life of Fresh Black Mulberry Fruits (Morus nigra L.). Agriculture. 2022; 12(7):1068. https://doi.org/10.3390/agriculture12071068
Chicago/Turabian StyleMemete, Adriana Ramona, Alin Cristian Teusdea, Adrian Vasile Timar, Adrian Nicolae Vuscan, Olimpia Smaranda Mintaș, Simona Cavalu, and Simona Ioana Vicas. 2022. "Effects of Different Edible Coatings on the Shelf Life of Fresh Black Mulberry Fruits (Morus nigra L.)" Agriculture 12, no. 7: 1068. https://doi.org/10.3390/agriculture12071068
APA StyleMemete, A. R., Teusdea, A. C., Timar, A. V., Vuscan, A. N., Mintaș, O. S., Cavalu, S., & Vicas, S. I. (2022). Effects of Different Edible Coatings on the Shelf Life of Fresh Black Mulberry Fruits (Morus nigra L.). Agriculture, 12(7), 1068. https://doi.org/10.3390/agriculture12071068