Reclamation of Saline Soil under Association between Atriplex nummularia L. and Glycophytes Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Selection
2.3. Seedling Production
2.4. Treatments and Experimental Design
2.5. Soil Sampling
2.6. Soil Chemical Analyzes
2.7. Statistical Analysis
3. Results
3.1. Exchangeable Cations
3.2. Soluble Cations
3.3. Soil Salinity and Sodicity Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agron 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Leal, L.Y.C.; de Souza, E.R.; Santos Júnior, J.A.; Santos, M.A. Comparison of soil and hydroponic cultivation systems for spinach irrigated with brackish water. Sci. Hortic. 2020, 274, 109616. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bouaziz, M.; Hihi, S.; Chtourou, M.; Osunmadewa, B. Soil Salinity Detection in Semi-Arid Region Using Spectral Unmixing, Remote Sensing and Ground Truth Measurements. J. Geogr. Inf. Syst. 2020, 12, 372–386. [Google Scholar] [CrossRef]
- Zhang, J.B.; Yang, J.S.; Yao, R.J.; Yu, S.P.; Li, F.R.; Hou, X.J. The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil. J. Integr. Agric. 2014, 13, 1782–1790. [Google Scholar] [CrossRef] [Green Version]
- Besser, H.; Mokadem, N.; Redhouania, B.; Rhimi, N.; Khlifi, F.; Ayadi, Y.; Omar, Z.; Bouajila, A.; Hamed, Y. GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in an arid Mediterranean site (SW Tunisia). Arab. J. Geosci. 2017, 10, 350. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Kibria, M.; Hoque, M. A Review on Plant Responses to Soil Salinity and Amelioration Strategies. Open J. Soil Sci. 2019, 9, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Shao, T.; Lv, Z.; Yue, Y.; Liu, A.; Long, X.; Zhou, Z.; Gao, X.; Rengel, Z. The mechanisms of improving coastal saline soils by planting rice. Sci. Total Environ. 2020, 703, 135529. [Google Scholar] [CrossRef]
- Li, J.; Pu, L.; Zhua, M.; Zhang, J.; Li, P.; Dai, X.; Xua, Y.; Liu, L. Evolution of soil properties following reclamation in coastal areas: A review. Geoderma 2014, 226–227, 130–139. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, X.; Yang, X.; Cui, Z. Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. Chemosphere 2019, 224, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.J.; Cánovas, M.; Gálvez, M.E.; Montofré, Í.L.; Keith, B.F.; Faz, Á. Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J. Geochem. Explor. 2017, 182, 210–217. [Google Scholar] [CrossRef]
- Moura, E.S.R.; Cosme, C.R.; Leite, T.S.; Dias, N.D.; Fernandes, C.S.; Sousa Neto, O.N.; Sousa Junior, F.S.; Rebouças, T.C. Phytoextraction of salts by Atriplex nummularia Lindl. irrigated with reject brine under varying water availability. Int. J. Phytoremediat. 2019, 21, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.R.; Freire, M.B.G.S.; Melo, D.V.M.; Montenegro, A.A.A. Management of Atriplex nummularia Lindl. in a salt affected soil in a semi-arid region of Brazil. Int. J. Phytoremediat. 2014, 16, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Jesus, J.M.; Danko, A.S.; Fiúza, A.; Borges, M.T. Phytoremediation of salt-affected soils: A review of processes, applicability, and the impact of climate change. Environ. Sci. Pollut. Res. 2015, 22, 6511–6525. [Google Scholar] [CrossRef]
- Nouri, H.; Chavoshi Borujeni, S.; Nirola, R.; Hassanli, A.; Beecham, S.; Alaghmand, S.; Saint, C.; Mulcahy, D. Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Saf. Environ. Prot. 2017, 107, 94–107. [Google Scholar] [CrossRef]
- Leite, M.C.B.S.; Freire, M.B.G.S.; Queiroz, J.V.J.; Maia, L.C.; Duda, G.P.; Medeiros, E.V. Mycorrhizal Atriplex nummularia promote revegetation and shifts in microbial properties in saline Brazilian soil. Appl. Soil Ecol. 2020, 153, 103574. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps. No. 106; World Soil Resources Reports; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
- Alvares, C.A.; Stape, J.S.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis. Part-2 Chemical Methods, 1st ed.; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- USSL Staff–United States Salinity Laboratory. Diagnosis and Improvement of Saline and Alkali Soils; Richards, L.A., Ed.; US Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Ruiz, H.A. Incremento da exatidão da análise granulométrica do solo por meio da coleta da suspensão (silte+argila). Rev. Bras. Cienc. Solo 2005, 29, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Bouksila, F.; Bahri, A.; Berndtsson, R.; Persson, M.; Rozema, J.; Zee, S.E.A. Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environ. Exp. Bot. 2013, 92, 176–185. [Google Scholar] [CrossRef]
- Valipour, M. Drainage, waterlogging, and salinity. Arch. Agron. Soil Sci. 2014, 1, 1–16. [Google Scholar] [CrossRef]
- Baquero, J.E.; Ralisch, R.; Medina, C.C.; Tavares Filho, J.; Guimarães, M.F. Soil physical properties and sugarcane root growth in a Red Oxisol. Rev. Bras. Cienc. Solo 2012, 36, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Gairola, S.; Bhatt, A.; El-Keblawy, A. A perspective on potential use of halophytes for reclamation of salt-affected lands. Wulfenia 2015, 22, 88–97. [Google Scholar]
- Gharaibeh, M.A.; Rusan, M.J.; Eltaif, N.I.; Shunnar, O.F. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Appl. Water Sci. 2014, 4, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Karakas, S.; Çullu, M.A.; Dikilitas, M. Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turk J. Agric. For. 2017, 41, 183–190. [Google Scholar] [CrossRef]
- Paulino, M.K.S.S.; Souza, E.R.; Lins, C.M.T.; Dourado, P.R.M.; Leal, L.Y.C.; Monteiro, D.M.; Rego Júnior, F.E.A.; Silva, C.U.C. Influence of vesicular trichomes of Atriplex nummularia on photosynthesis, osmotic adjustment, cell wall elasticity and enzymatic activity. Plant Physiol. Biochem. 2020, 155, 177–186. [Google Scholar] [CrossRef]
- Geissler, N.; Hussin, S.; El-Far, M.M.M.; Koyro, H.W. Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. Environ. Exp. Bot. 2015, 118, 67–77. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Yazdanpanah, N.; Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agric. Water Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- Kharel, T.P.; Clay, D.E.; Reese, C.; DeSutter, T.; Malo, D.; Clay, S. Do Precision Chemical Amendment Applications Impact Sodium Movement in Dryland Semiarid Saline Sodic Soils? Agron. J. 2018, 110, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Hussin, S.; Geissler, N.; Koyro, H.W. Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol. Plant 2013, 35, 1025–1038. [Google Scholar] [CrossRef]
- Qadir, M.; Tubeileh, A.; Akhtar, J.; Larbi, A.; Minhas, P.S.; Khan, M.A. Productivity enhancement of salt-affected environments through crop diversification. Land Degrad. Dev. 2008, 19, 429–453. [Google Scholar] [CrossRef]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Amelioration strategies for saline soils: A review. Land Degrad. Dev. 2000, 11, 501–521. [Google Scholar] [CrossRef]
- Nikalje, G.C.; Srivastava, A.K.; Pandey, G.K.; Suprasanna, P. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degrad. Dev. 2018, 29, 1081–1095. [Google Scholar] [CrossRef]
- Han, L.; Liu, H.; Yu, S.; Wang, W.; Liu, J. Potential application of oat for phytoremediation of salt ions in coastal saline-alkali soil. Ecol. Eng. 2013, 61, 274–281. [Google Scholar] [CrossRef]
pH | EC | Na+ | K+ | Ca2+ | Mg2+ | SAR | Risk 1 |
---|---|---|---|---|---|---|---|
dS m−1 | mmolc L−1 | (mmolc L−1)0.5 | |||||
7.89 | 1.28 | 19.25 | 0.25 | 2.30 | 0.23 | 17.11 | C3S2 |
EC 2 dS m−1 | pH 1:2.5 | Exchange Complex 1 | CEC 3 | ESP 4 | Soil Particle Size 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | Coarse Sand | Fine Sand | Silt | Clay | ||||
cmolc kg−1 | % | g kg−1 | |||||||||
5.48 | 7.23 | 5.99 | 1.05 | 1.59 | 0.68 | 9.51 | 64 | 51.0 | 712.0 | 75.0 | 162.0 |
Contrast | pH | EC | SAR | ESP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | |
All treatments × control | 0.253 | 0.695 | 2.169 * | −2.003 | −1.242 | −2.075 | −0.095 | −0.950 | −0.439 | −1.139 | −1.261 | −1.219 |
Isolated cultures × control | −0.247 | 0.582 | 1.414 | −1.860 | −1.239 | −2.198 * | −0.146 | −0.789 | −0.393 | −0.840 | −0.814 | −0.873 |
Associations × control | 0.867 | 0.751 | 2.860 ** | −1.926 | −1.084 | −1.644 | −0.018 | −1.034 | −0.441 | −1.377 | −1.674 | −1.506 |
Leguminous × control | −0.710 | −0.531 | 1.463 | −1.631 | −1.534 | −2.286 * | −0.084 | −0.908 | 0.168 | −0.888 | −1.239 | −0.905 |
No leguminous × control | 0.258 | 1.593 | 1.119 | −1.765 | −0.728 | −1.728 | −0.183 | −0.532 | −0.886 | −0.646 | −0.248 | −0.688 |
Isolated cultures × associations | −1.672 | −0.284 | −2.254 * | 0.189 | −0.174 | −0.732 | −0.187 | 0.408 | 0.092 | 0.852 | 1.338 | 1.000 |
No leguminous × leguminous | 1.185 | 2.601 * | −0.422 | −0.165 | 0.986 | 0.684 | −0.121 | 0.460 | −1.291 | 0.296 | 1.214 | 0.266 |
Atriplex × all treatments | −0.463 | 0.602 | −0.683 | −0.044 | −0.628 | −0.768 | −1.389 | −0.774 | −1.044 | −0.378 | 1.740 | 1.000 |
Treatment | pH | EC 1 | SAR 2 | ESP 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1:2.5 | dS m−1 | (mmolc L−1)0.5 | % | |||||||||
9 Months | ||||||||||||
0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | |
Atriplex nummularia | 7.15 a | 7.31 a | 7.30 a | 1.23 a | 1.32 a | 3.23 a | 5.72 b | 6.52 b | 6.22 a | 9.33 b | 12.61 a | 14.41 a |
Azaridachta indica | 7.28 a | 7.48 a | 7.21 a | 1.24 a | 2.94 a | 4.50 a | 13.38 a | 12.59 a | 7.37 a | 17.73 a | 9.54 a | 11.38 a |
Leucaena leucocephala | 7.00 a | 7.10 a | 7.34 a | 0.82 a | 1.30 a | 2.54 a | 10.37 a | 7.53 b | 8.87 a | 8.43 b | 7.81 a | 13.57 a |
Mimosa caesalpinifolia | 7.09 a | 7.10 a | 7.23 a | 1.88 a | 1.39 a | 4.16 a | 9.53 a | 9.03 b | 8.99 a | 12.00 b | 7.42 a | 10.54 a |
A. indica/A. nummularia | 7.32 a | 7.16 a | 7.48 a | 1.19 a | 2.07 a | 5.26 a | 13.34 a | 6.43 b | 8.59 a | 8.19 b | 6.59 a | 7.43 b |
L. leucocephala/A. nummularia | 7.22 a | 7.34 a | 7.37 a | 2.11 a | 2.01 a | 1.85 a | 4.16 b | 5.20 b | 4.48 a | 9.78 b | 5.27 a | 9.72 a |
M. caesalpinifolia/A. nummularia | 7.46 a | 7.29 a | 7.58 a | 1.32 a | 1.35 a | 4.19 a | 13.15 a | 12.43 a | 10.16 a | 9.44 b | 6.73 a | 11.75 a |
Control | 7.15 a | 7.18 a | 7.10 a | 2.54 a | 2.85 a | 5.51 a | 10.30 a | 11.39 a | 8.58 a | 17.80 a | 13.01 a | 17.83 a |
CV (%) | 5.41% | 11.43% | 11.83% | 28.01% | 32.81% | 34.94% | 35.28% | 36.47% | 55.74% | 34.60% | 66.08% | 38.25% |
18 Months | ||||||||||||
0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | |
Atriplex nummularia | 6.77 a | 6.59 a | 6.57 a | 0.97 b | 1.08 a | 1.34 b | 8.55 b | 9.36 b | 15.84 a | 8.09 c | 10.39 c | 10.59 c |
Azaridachta indica | 6.36 a | 6.64 a | 6.41 a | 2.76 a | 3.06 a | 3.23 a | 18.92 a | 13.08 b | 18.24 a | 15.52 b | 22.82 b | 44.81 a |
Leucaena leucocephala | 6.10 a | 6.20 a | 6.46 a | 2.56 a | 2.97 a | 2.67 a | 10.02 b | 7.87 b | 6.95 c | 17.65 b | 19.41 b | 32.75 a |
Mimosa caesalpinifolia | 6.23 a | 6.21 a | 6.36 a | 3.78 a | 4.92 a | 4.75 a | 9.77 b | 7.78 b | 11.11 b | 20.35 b | 26.69 b | 28.26 b |
A. indica/A. nummularia | 6.06 a | 6.10 a | 6.43 a | 1.96 a | 1.91 a | 2.12 a | 9.96 b | 12.73 b | 13.57 b | 10.92 c | 19.43 b | 28.55 b |
L. leucocephala/A. nummularia | 6.30 a | 6.37 a | 6.73 a | 1.71 a | 1.49 a | 1.71 b | 13.02 b | 12.31 b | 17.02 a | 14.13 b | 18.52 b | 19.52 b |
M. caesalpinifolia/A. nummularia | 6.35 a | 6.49 a | 6.53 a | 2.23 a | 1.94 a | 2.58 a | 9.14 b | 6.87 b | 9.39 b | 19.78 b | 20.12 b | 27.90 b |
Control | 6.52 a | 6.64 a | 6.64 a | 4.54 a | 3.85 a | 5.51 a | 23.28 a | 29.58 a | 21.29 a | 41.03 a | 48.07 a | 48.53 a |
CV (%) | 8.61% | 8.32% | 8.57% | 22.19% | 39.25% | 27.14% | 27.16% | 29.82% | 26.28% | 35.60% | 32.22% | 35.12% |
Contrast | pH | EC | SAR | ESP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | 0–10 cm | 10–30 cm | 30–60 cm | |
All treatments × control | −1.020 | −1.319 | −1.031 | −2.382 * | −1.493 | −6.059 ** | −2.359 * | −5.306 ** | −1.404 | −3.635 ** | −3.635 ** | −2.838 * |
Isolated cultures × control | −0.694 | −1.072 | −1.258 | −2.600 * | −1.272 | −6.010 ** | −2.165 * | −5.201 ** | −1.361 | −3.451 ** | −3.451 ** | −2.504 * |
Associations × control | −1.307 | −1.466 | −0.603 | −1.790 | −1.584 | −5.330 ** | −2.300 * | −4.748 ** | −1.275 | −3.397 ** | −3.397 ** | −2.898 ** |
Leguminous × control | −1.479 | −1.900 | −1.378 | −2.096 * | −0.570 | −5.868 ** | −2.306 * | −5.152 ** | −1.845 | −2.791 * | −2.791 * | −2.120 * |
No leguminous × control | 0.211 | −0.058 | −0.919 | −2.650 * | −1.751 | −5.104 ** | −1.647 | −4.344 ** | −0.639 | −3.510 ** | −3.510 ** | −2.450 * |
Isolated cultures × consortium | 0.960 | 0.646 | −0.929 | −1.099 | 0.533 | −0.739 | 0.308 | −0.434 | −0.064 | 0.083 | 0.083 | 0.716 |
No leguminous × leguminous | 2.070 | 2.257 * | 0.563 | −0.678 | −1.447 | 0.935 | 0.807 | 0.990 | 1.477 | −0.881 | −0.881 | −0.404 |
Atriplex × all treatments | 2.715 * | 1.371 | 0.496 | −1.854 | −2.694 * | −1.965 | −0.637 | −0.203 | 0.536 | −1.365 | −1.365 | −2.630 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, M.A.; Freire, M.B.G.S.; Freire, F.J.; da Rocha, A.T.; de Lucena, P.G.; Ladislau, C.M.P.; de Melo, H.F. Reclamation of Saline Soil under Association between Atriplex nummularia L. and Glycophytes Plants. Agriculture 2022, 12, 1124. https://doi.org/10.3390/agriculture12081124
dos Santos MA, Freire MBGS, Freire FJ, da Rocha AT, de Lucena PG, Ladislau CMP, de Melo HF. Reclamation of Saline Soil under Association between Atriplex nummularia L. and Glycophytes Plants. Agriculture. 2022; 12(8):1124. https://doi.org/10.3390/agriculture12081124
Chicago/Turabian Styledos Santos, Monaliza Alves, Maria Betânia Galvão Santos Freire, Fernando José Freire, Alexandre Tavares da Rocha, Pedro Gabriel de Lucena, Cinthya Mirella Pacheco Ladislau, and Hidelblandi Farias de Melo. 2022. "Reclamation of Saline Soil under Association between Atriplex nummularia L. and Glycophytes Plants" Agriculture 12, no. 8: 1124. https://doi.org/10.3390/agriculture12081124
APA Styledos Santos, M. A., Freire, M. B. G. S., Freire, F. J., da Rocha, A. T., de Lucena, P. G., Ladislau, C. M. P., & de Melo, H. F. (2022). Reclamation of Saline Soil under Association between Atriplex nummularia L. and Glycophytes Plants. Agriculture, 12(8), 1124. https://doi.org/10.3390/agriculture12081124