Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Sampling Method and Measurement
2.2.1. Soil Water Content, Bulk Density and Porosity
2.2.2. Soil Aggregate
2.2.3. Soil Organic Carbon
2.2.4. Soil Nitrogen
2.2.5. N Use Efficiency
2.2.6. Yield Measurement and Annual Economic Value Calculation
2.3. Statistical Analysis
3. Results
3.1. Soil Physical Properties
3.1.1. Soil Water Content
3.1.2. Soil Bulk Density and Porosity
3.1.3. Soil Aggregates
3.2. Soil Organic Carbon
3.3. Total and Inorganic Nitrogen Content
3.4. Nitrogen Use Efficiency
3.5. Crop Yields and Economic Returns
3.6. Correlation Analysis
4. Discussion
4.1. Effects of Tillage and Fertilization on the Physical Properties of Soil
4.2. Effects of Tillage and Fertilization on Soil Organic Carbon
4.3. Effects of Tillage and Fertilizer Application on Soil Nitrogen Availability and Nitrogen Fertilizer Use Efficiency
4.4. Evaluation of Tillage and Fertilizer Application on Crop Yields and Economic Benefits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Adegbeye, M.; Reddy, P.R.K.; Obaisi, A.; Elghandour, M.; Oyebamiji, K.; Salem, A.; Morakinyo-Fasipe, O.; Cipriano-Salazar, M.; Camacho-Díaz, L. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations-An overview. J. Clean. Prod. 2020, 242, 118319. [Google Scholar] [CrossRef]
- Luo, X.; Liao, J.; Zang, J.; Ou, Y.; Wang, P. Developing from Mechanized to Smart Agricultural Production in China. Chin. J. Eng. Sci. 2022, 24, 46–54. [Google Scholar] [CrossRef]
- Ma, Y.; Lan, Z.; Zhang, K.; Li, B.; Zheng, W.; Gao, Y.; Li, J.; Zhang, X. Effects of Plough Layer Thickness on Soil Nutrients and Cucumber Root Development. Sci. Hortic. 2021, 290, 110498. [Google Scholar] [CrossRef]
- Zhandong, L.; Kai, Z.; Zhaorong, M.; Chao, H.; Yanchuan, M.; Xuan, Y.; Jingsheng, S.; Kun, F.; Siqing, H.; Changyou, L.; et al. Characteristics of Soil Fertility and Its Relation with Crop Yield in Fluvo-aquic Soil Irrigation Area of North Henan. J. Irrig. Drain. 2019, 38, 31–37. [Google Scholar] [CrossRef]
- Lynch, J.P.; Wojciechowski, T. Opportunities and challenges in the subsoil: Pathways to deeper rooted crops. J. Exp. Bot. 2015, 66, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Ming, Z. Developments of the Crop Cultivation and Farming System in China. J. Agric. 2018, 8, 59. [Google Scholar]
- Guo, Y.; Chen, Y.; Searchinger, T.D.; Zhou, M.; Pan, D.; Yang, J.; Wu, L.; Cui, Z.; Zhang, W.; Zhang, F. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 2020, 1, 648–658. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.R. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y. Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China. J. Clean. Prod. 2020, 264, 121635. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Yu, Z. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2019, 187, 182–193. [Google Scholar] [CrossRef]
- Schlüter, S.; Großmann, C.; Diel, J.; Wu, G.-M.; Tischer, S.; Deubel, A.; Rücknagel, J. Long-term effects of conventional and reduced tillage on soil structure, soil ecological and soil hydraulic properties. Geoderma 2018, 332, 10–19. [Google Scholar] [CrossRef]
- Feng, Q.; Han, H.; Zhang, Y.; Xu, J.; Cao, Y.; Wang, S.; Ning, T.; Li, Z. Effects of tillage methods on soil carbon sequestration and water holding capacity and yield in wheat–maize rotation. J. Plant Nutr. Fertil. 2018, 24, 869–879. [Google Scholar]
- Hao, W.; Shulan, W.; Zonggui, X.; Jun, L. Effect of tillage and fertilization on water use efficiency of maize in dryland conditions. Chin. J. Eco-Agric. 2017, 25, 856–864. [Google Scholar]
- Garland, G.; Bünemann, E.K.; Oberson, A.; Frossard, E.; Snapp, S.; Chikowo, R.; Six, J. Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model. Soil Biol. Biochem. 2018, 116, 91–98. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, G.; Zhou, W.; Sun, J.; Wang, X.; He, P. Fatty-Acid Profiles and Enzyme Activities in Soil Particle-Size Fractions under Long-Term Fertilization. Soil Sci. Soc. Am. J. 2016, 80, 97–111. [Google Scholar] [CrossRef]
- Li, S.; Lu, J.; Liang, G.; Wu, X.; Zhang, M.; Plougonven, E.; Wang, Y.; Gao, L.; Abdelrhman, A.A.; Song, X. Factors governing soil water repellency under tillage management: The role of pore structure and hydrophobic substances. Land Degrad. Dev. 2021, 32, 1046–1059. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Liang, G.; Gao, L.; Wang, B.; Lu, J.; Abdelrhman, A.A.; Song, X.; Zhang, M.; Zheng, F. Is least limiting water range a useful indicator of the impact of tillage management on maize yield? Soil Tillage Res. 2020, 199, 104602. [Google Scholar] [CrossRef]
- Qaswar, M.; Jing, H.; Ahmed, W.; Dongchu, L.; Shujun, L.; Lu, Z.; Cai, A.; Lisheng, L.; Yongmei, X.; Jusheng, G. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Liu, J.; Shu, A.; Song, W.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, B.; Jin, C.; Wang, F. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biol. Biochem. 2013, 60, 1–9. [Google Scholar] [CrossRef]
- Singh, B. Soil Carbon Storage: Modulators, Mechanisms and Modeling; Academic Press: New York, NY, USA, 2018. [Google Scholar]
- Oladele, S.; Adeyemo, A.; Awodun, M. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 2019, 336, 1–11. [Google Scholar] [CrossRef]
- Shahid, M.; Nayak, A.K.; Puree, C.; Tripathi, R.; Lal, B.; Gautam, P.; Bhattacharyya, P.; Mohanty, S.; Kumar, A.; Panda, B.B.; et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil Tillage Res. 2017, 170, 136–146. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, X.; Tang, W.; Li, C.; Wang, K.; Li, W.; Cheng, K.; Pan, X. Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China. Commun. Soil Sci. Plant Anal. 2018, 49, 1976–1989. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Wang, X.; Ma, L. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. J. Clean. Prod. 2020, 271, 122683. [Google Scholar] [CrossRef]
- Jinbo, Z.; Yi, C.; Zucong, C. The Mechanisms of Soil Regulating Nitrogen Dynamics. Adv. Earth Sci. 2019, 34, 11–19. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; van Groenigen, K.J.; Hungate, B.A.; Cao, J.; Zhou, X.; Wang, R.-W. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 2018, 4, eaaq1689. [Google Scholar] [CrossRef]
- He, H.; Jun, S.; Zhang, X. Analysis of total organic carbon in soil by TOC analyzer. Anal. Instrum. 2014, 5, 59–61. [Google Scholar]
- Huang, Y.; Ye, Y.; Yang, S. Feasibility of NO3-N determination by dual wavelength spectrophotometric method. Chin. Agric. Sci. Bull. 2009, 25, 43–45. [Google Scholar]
- Zhan, X.; Liu, C.; Fan, H.; Lv, X. Comparison between Two N- ammoniacal Measurements in Water--Napierian Reagent Colorimetric Method and Indophenol- blue Colorimetric Method. Environ. Sci. Manag. 2010, 35, 132–134. [Google Scholar]
- Yang, Y.; Zou, J.; Huang, W.; Manevski, K.; Olesen, J.E.; Rees, R.M.; Hu, S.; Li, W.; Kersebaum, K.-C.; Louarn, G. Farm-scale practical strategies to increase nitrogen use efficiency and reduce nitrogen footprint in crop production across the North China Plain. Field Crop. Res. 2022, 283, 108526. [Google Scholar] [CrossRef]
- Rauber, L.P.; Andrade, A.P.; Friederichs, A.; Mafra, Á.L.; Baretta, D.; Rosa, M.G.d.; Mafra, M.S.H.; Correa, J.C. Soil physical indicators of management systems in traditional agricultural areas under manure application. Sci. Agric. 2018, 75, 354–359. [Google Scholar] [CrossRef]
- Hou, X.; Jia, Z.; Han, Q.; Sun, H.; Wang, W.; Nie, J.; Yang, B. Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland. Trans. Chin. Soc. Agric. Eng. 2012, 28, 85–94. [Google Scholar]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.A.; Wen, T.; Guo, X.; Fan, G. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Chang-Quan, W.; Cheng-Ming, W.; Ing-Qiang, L.T.; Eng-Qiong, S.F. Effect of Different Zero Tillage on the Crop Yield and Soil Property. J. Sichuan Agric. Univ. 2001, 19, 152–154. [Google Scholar]
- Ziyuan, H.; Tianye, W.; Chengyu, W.; Yichen, B.; Yangsheng, W.; Shuxia, L. Effects of Different Fertilization Treatments on Soil Physical and Chemical Properties, Photosynthetic Characteristics and Yield of Maize in Semi-arid Area. Acta Agric. Boreali-Sin. 2020, 35, 234–240. [Google Scholar]
- Amami, R.; Ibrahimi, K.; Abrougui, K.; Hmila, A.; Chehaibi, S. Comparative Study of Soil Tillage Practices Effects on Hydraulic Conductivity and Bulk Density of a Sandy Loam Soil in Tunisia. Aquademia 2019, 3, ep19013. [Google Scholar] [CrossRef]
- Chen, C.; Lv, Q.; Tang, Q. Impact of bio-organic fertilizer and reduced chemical fertilizer application on physical and hydraulic properties of cucumber continuous cropping soil. Biomass-Convers. Biorefin. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Sun, Z.; Wang, H.; Qu, S.; Lei, N.; He, J.; Dong, Q. Tillage effects on soil properties and crop yield after land reclamation. Sci. Rep. 2021, 11, 4611. [Google Scholar] [CrossRef]
- Tong, L.; Zhu, L.; Lv, Y.; Zhu, K.; Liu, X.; Zhao, R. Response of organic carbon fractions and microbial community composition of soil aggregates to long-term fertilizations in an intensive greenhouse system. J. Soils Sediments 2020, 20, 641–652. [Google Scholar] [CrossRef]
- Yan, A.; Qiang, J.; Shixiang, Z.; Xudong, W. Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil. Environ. Sci. 2016, 37, 293–300. [Google Scholar]
- Chen, M.; Zhang, S.; Liu, L.; Wu, L.; Ding, X. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Tillage Res. 2021, 212, 105060. [Google Scholar] [CrossRef]
- Wertebach, T.M.; Hölzel, N.; Kämpf, I.; Yurtaev, A.; Tupitsin, S.; Kiehl, K.; Kamp, J.; Kleinebecker, T. Soil carbon sequestration due to post-Soviet cropland abandonment: Estimates from a large-scale soil organic carbon field inventory. Glob. Change Biol. 2017, 23, 3729–3741. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, J.; Hu, S.; Polizzotto, M.L.; Zhao, F.; McGrath, S.P.; Li, H.; Ran, W.; Shen, Q. Mineral Availability as a Key Regulator of Soil Carbon Storage. Environ. Sci. Technol. 2017, 51, 4960–4969. [Google Scholar] [CrossRef]
- Dou, X.; He, P.; Zhu, P.; Zhou, W. Soil organic carbon dynamics under long-term fertilization in a black soil of China: Evidence from stable C isotopes. Sci. Rep. 2016, 6, 21488. [Google Scholar] [CrossRef]
- Jacobs, A.; Rauber, R.; Ludwig, B. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Tillage Res. 2009, 102, 158–164. [Google Scholar] [CrossRef]
- Zhao, X.; Virk, A.L.; Ma, S.-T.; Kan, Z.-R.; Qi, J.-Y.; Pu, C.; Yang, X.-G.; Zhang, H.-L. Dynamics in soil organic carbon of wheat-maize dominant cropping system in the North China Plain under tillage and residue management. J. Environ. Manag. 2020, 265, 110549. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Pu, G.X.; Bin, L.H.; Mei, Z.L.; Bo, Y.; Zhi, R.T.; Yuan, W.H.; Xia, W.S.; Liang, L.Q. Effects of Long-Term Additional Application of Organic Manure or Straw Incorporation on Soil Nitrogen Leaching Risk. Sci. Agric. Sin. 2018, 51, 2336–2347. [Google Scholar]
- Gai, X.; Liu, H.; Jian, L.; Zhai, L.; Bo, Y.; Wu, S.; Ren, T.; Lei, Q.; Wang, H. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Singh, T.B.; Ali, A.; Prasad, M.; Yadav, A.; Shrivastav, P.; Goyal, D.; Dantu, P.K. Role of Organic Fertilizers in Improving Soil Fertility. In Contaminants in Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 61–77. [Google Scholar] [CrossRef]
- Tian, P.; Lian, H.; Wang, Z.; Jiang, Y.; Li, C.; Sui, P.; Qi, H. Effects of Deep and Shallow Tillage with Straw Incorporation on Soil Organic Carbon, Total Nitrogen and Enzyme Activities in Northeast China. Sustainability 2020, 12, 8679. [Google Scholar] [CrossRef]
- Sui, P.; Tian, P.; Lian, H.; Wang, Z.; Ma, Z.; Qi, H.; Mei, N.; Sun, Y.; Wang, Y.; Su, Y. Straw Incorporation Management Affects Maize Grain Yield through Regulating Nitrogen Uptake, Water Use Efficiency, and Root Distribution. Agronomy 2020, 10, 324. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Chen, D. Nitrogen fertilizer use in China—Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef]
- Han, J.; Dong, Y.; Zhang, M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Appl. Soil Ecol. 2021, 165, 103966. [Google Scholar] [CrossRef]
- Yu, C.X.; Zhang, L.L.; Yang, L.J.; Li, W.T.; Wu, K.K.; Xie, X.S.; Li, D.P.; Wu, Z.J. Effects of inhibitors and pig manure on the transformation of urea nitrogen in paddy soil. Chin. J. Appl. Ecol. 2020, 31, 1851–1858. [Google Scholar] [CrossRef]
- Liu, Y.; Heuvelink, G.B.; Bai, Z.; He, P.; Xu, X.; Ma, J.; Masiliūnas, D. Space-time statistical analysis and modelling of nitrogen use efficiency indicators at provincial scale in China. Eur. J. Agron. 2020, 115, 126032. [Google Scholar] [CrossRef]
- Devkota, M.; Martius, C.; Lamers, J.; Sayre, K.; Devkota, K.; Vlek, P.L. Tillage and nitrogen fertilization effects on yield and nitrogen use efficiency of irrigated cotton. Soil Tillage Res. 2013, 134, 72–82. [Google Scholar] [CrossRef]
- Ghosh, S.; Wilson, B.; Ghoshal, S.; Senapati, N.; Mandal, B. Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plains of India. Agric. Ecosyst. Environ. 2012, 156, 134–141. [Google Scholar] [CrossRef]
- Mi, W.; Wu, L.; Brookes, P.C.; Liu, Y.; Zhang, X.; Yang, X. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil Tillage Res. 2016, 163, 64–70. [Google Scholar] [CrossRef]
- Pan, G.; Zhou, P.; Li, Z.; Smith, P.; Li, L.; Qiu, D.; Zhang, X.; Xu, X.; Shen, S.; Chen, X. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric. Ecosyst. Environ. 2009, 131, 274–280. [Google Scholar] [CrossRef]
- Peixoto, D.S.; da Silva, L.D.C.M.; De Melo, L.B.B.; Azevedo, R.P.; Araújo, B.C.L.; De Carvalho, T.S.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional tillage in no-tillage systems: A global meta-analysis. Sci. Total. Environ. 2020, 745, 140887. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Meng, L.; Christopher, G.; Wanglin, M.; Jiang, W. Impact of cash crop cultivation on household income and migration decisions: Evidence from low-income regions in China. J. Integr. Agric. 2020, 19, 2571–2581. [Google Scholar]
Year | Treatment | Soil pH | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Total Phosphorus (g kg−1) | Unit Weight (g cm−3) | Water Content (%) |
---|---|---|---|---|---|---|---|
2018 | DTF | 8.68 | 29.65 | 1.09 | 0.76 | 1.51 | 21.21 |
STF | 8.77 | 32.35 | 1.17 | 0.78 | 1.49 | 22.93 | |
NTF | 8.30 | 34.67 | 1.33 | 0.81 | 1.58 | 20.98 | |
DT | 8.78 | 27.97 | 1.12 | 0.68 | 1.61 | 21.86 | |
ST | 8.19 | 29.20 | 1.25 | 0.81 | 1.50 | 21.09 | |
NT | 8.52 | 28.58 | 1.18 | 0.74 | 1.66 | 20.60 | |
2019 | DTF | 8.71 | 29.76 | 1.11 | 0.74 | 1.41 | 12.79 |
STF | 8.78 | 31.32 | 1.17 | 0.85 | 1.43 | 21.66 | |
NTF | 8.45 | 29.88 | 1.16 | 0.81 | 1.46 | 16.30 | |
DT | 8.77 | 28.23 | 1.19 | 0.72 | 1.51 | 11.71 | |
ST | 8.35 | 29.45 | 1.28 | 0.72 | 1.54 | 21.73 | |
NT | 8.49 | 28.97 | 1.25 | 0.71 | 1.58 | 11.56 |
Year | Treatment | Soil Organic Carbon (g kg−1) | ||
---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | ||
2019 | DTF | 17.52 b | 8.61 d | 8.78 a |
STF | 17.48 b | 11.42 a | 8.32 b | |
NTF | 19.38 a | 9.41 c | 8.49 ab | |
DT | 17.44 b | 9.70 bc | 7.17 c | |
ST | 16.74 b | 8.70 d | 8.78 a | |
NT | 17.57 b | 9.86 b | 8.51 ab | |
2020 | DTF | 16.69 b | 12.89 a | 8.23 c |
STF | 17.84 a | 9.08 d | 8.30 c | |
NTF | 17.24 ab | 10.36 c | 9.70 b | |
DT | 16.68 b | 9.49 d | 10.69 a | |
ST | 17.48 a | 9.56 d | 8.34 c | |
NT | 17.65 a | 11.77 b | 9.67 b |
Year | Treatment | TN (g kg−1) | NO3-N (mg kg−1) | NH4-N (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | 0–20 cm | 20–40 cm | 40–60 cm | 0–20 cm | 20–40 cm | 40–60 cm | ||
2019 | DTF | 1.11 e | 0.63 b | 0.62 ab | 8.68 a | 4.21 ab | 2.51 ab | 29.18 a | 23.12 b | 17.82 a |
STF | 1.17 d | 0.90 a | 0.62 ab | 9.13 a | 4.45 ab | 1.95 ab | 30.02 a | 26.14 a | 15.88 b | |
NTF | 1.16 d | 0.67 b | 0.59 c | 9.29 a | 4.93 a | 1.78 b | 30.07 a | 23.36 b | 15.70 b | |
DT | 1.19 c | 0.70 b | 0.60 bc | 8.73 a | 4.39 ab | 2.58 a | 30.42 a | 21.25 c | 18.05 a | |
ST | 1.28 a | 0.66 b | 0.64 a | 8.89 a | 4.04 b | 2.30 ab | 30.35 a | 22.36 bc | 18.01 a | |
NT | 1.25 b | 0.67 b | 0.58 c | 8.01 a | 4.01 b | 1.91 ab | 24.19 b | 22.49 bc | 16.59 b | |
2020 | DTF | 1.17 a | 0.78 a | 0.61 a | 8.23 ab | 4.50 b | 2.01 b | 28.11 a | 24.08 a | 17.28 a |
STF | 1.11 b | 0.75 ab | 0.60 a | 9.17 a | 4.44 b | 2.21 b | 29.11 a | 24.96 a | 17.70 a | |
NTF | 1.19 a | 0.69 ab | 0.58 a | 8.29 ab | 5.34 ab | 3.62 ab | 27.69 a | 23.33 ab | 17.91 a | |
DT | 1.07 bc | 0.67 b | 0.57 a | 7.13 b | 5.89 ab | 4.48 a | 28.03 a | 22.94 ab | 18.36 a | |
ST | 1.04 c | 0.73 ab | 0.60 a | 7.58 ab | 6.32 a | 3.28 ab | 28.15 a | 22.94 ab | 17.49 a | |
NT | 1.05 c | 0.72 ab | 0.60 a | 6.92 b | 4.98 ab | 3.84 ab | 27.57 a | 20.77 b | 15.86 a |
Year | Treatment | Yield (kg ha−1) | Economic Value (CNY ha−1) | Mechanical Input (CNY ha−1) | Field Management (CNY ha−1) | Other Inputs (CNY ha−1) | Income Net (CNY ha−1) | ||
---|---|---|---|---|---|---|---|---|---|
Seed | Pesticides | Fertilizer | |||||||
2018–2019 | DTF | 20,991.80 ab | 41,756.95 ab | 2100.00 | 5250.00 | 1612.50 | 30.00 | 5100.00 | 27,664.45 ab |
STF | 21,200.57 a | 42,182.26 a | 1800.00 | 5250.00 | 1612.50 | 30.00 | 5100.00 | 28,389.76 a | |
NTF | 20,112.22 bc | 40,043.28 bc | 900.00 | 5250.00 | 1612.50 | 30.00 | 5100.00 | 27,150.78 ab | |
DT | 19,376.23 cd | 38,539.30 cd | 2100.00 | 5250.00 | 1612.50 | 30.00 | 3600.00 | 25,946.80 b | |
ST | 19,294.02 cd | 38,408.84 cd | 1800.00 | 5250.00 | 1612.50 | 30.00 | 3600.00 | 26,116.34 b | |
NT | 18,837.30 d | 37,347.88 d | 900.00 | 5250.00 | 1612.50 | 30.00 | 3600.00 | 25,955.38 b | |
2019–2020 | DTF | 20,821.40 ab | 41,306.68 ab | 2100.00 | 5250.00 | 1612.50 | 30.00 | 4275.00 | 28,039.18 a |
STF | 21,252.23 a | 42,254.54 a | 1800.00 | 5250.00 | 1612.50 | 30.00 | 4275.00 | 29,287.04 a | |
NTF | 20,420.49 ab | 40,462.88 ab | 900.00 | 5250.00 | 1612.50 | 30.00 | 4275.00 | 28,395.38 a | |
DT | 20,230.30 ab | 40,133.62 ab | 2100.00 | 5250.00 | 1612.50 | 30.00 | 3450.00 | 27,691.12 a | |
ST | 19,689.36 b | 39,073.46 b | 1800.00 | 5250.00 | 1612.50 | 30.00 | 3450.00 | 26,930.96 a | |
NT | 19,392.39 b | 38,458.93 b | 900.00 | 5250.00 | 1612.50 | 30.00 | 3450.00 | 27,216.43 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Hao, X.; Fan, Z.; Hu, X.; Ma, J.; Guo, Y.; Wu, L. Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems. Agriculture 2022, 12, 1264. https://doi.org/10.3390/agriculture12081264
Zhang D, Hao X, Fan Z, Hu X, Ma J, Guo Y, Wu L. Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems. Agriculture. 2022; 12(8):1264. https://doi.org/10.3390/agriculture12081264
Chicago/Turabian StyleZhang, Daijing, Xinru Hao, Zhiyao Fan, Xiao Hu, Jianhui Ma, Yuxin Guo, and Lin Wu. 2022. "Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems" Agriculture 12, no. 8: 1264. https://doi.org/10.3390/agriculture12081264
APA StyleZhang, D., Hao, X., Fan, Z., Hu, X., Ma, J., Guo, Y., & Wu, L. (2022). Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems. Agriculture, 12(8), 1264. https://doi.org/10.3390/agriculture12081264