Nutritional Values and In Vitro Fermentation Characteristics of 29 Different Chinese Herbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Chinese Herbs
2.2. Analysis of Chemical Composition
2.3. In Vitro Batch Incubation
2.4. Analysis of Short-Chain Fatty Acids (SCFAs), pH and Ammonia-N (NH3-N)
2.5. Calculation and Statistical Analysis
3. Results
3.1. Routine Nutritional Compositions of 29 Different Chinese Herbs
3.2. Amino Acids (AAs) Contents of 29 Different Chinese Herbs
3.3. Fermentation Kinetic Parameters and NH3-N Concentrations of 29 Different Chinese Herbs
3.4. Short-Chain Fatty Acids (SCFAs) Concentration and pH Value of Different Chinese Herbs
3.5. Correlation between Nutritional Components and Fermentation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Willför, S.; Xu, C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Diet. Fibre 2015, 5, 31–61. [Google Scholar] [CrossRef]
- Yin, B.S.; Li, W.; Qin, H.Y.; Yun, J.Y.; Sun, X.Y. The use of Chinese skullcap (Scutellaria baicalensis) and its extracts for sustainable animal production. Animals 2021, 11, 1039. [Google Scholar] [CrossRef] [PubMed]
- Ekanayake, L.J.; Corner-Thomas, R.A.; Cranston, L.M.; Kenyon, P.R.; Morris, S.T.; Pain, S.J. Pre-exposure of early-weaned lambs to an herb-clover mix does not improve their subsequent growth. Animals 2020, 10, 1354. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.H.; Guo, J.; Sun, X.; Li, N.; Yang, X.; Gao, Y.; Qiu, D.R.; Li, X.M.; Wang, Y.A.; Feng, M.; et al. Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions. J. Anim. Sci. 2018, 96, 4444–4457. [Google Scholar] [CrossRef]
- Gao, J.; Wang, R.; Liu, J.; Wang, W.; Cai, W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult. Sci. 2021, 101, 101412. [Google Scholar] [CrossRef]
- Lin, Z.N.; Ye, L.; Li, Z.W.; Huang, X.S.; Lu, Z.; Yang, Y.Q.; Xing, H.W.; Bai, J.Y.; Ying, Z.Y. Chinese herb feed additives improved the growth performance, meat quality, and nutrient digestibility parameters of pigs. Anim. Models Exp. Med. 2020, 3, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Loo, Y.T.; Howell, K.; Suleria, H.; Zhang, P.; Gu, C.; Ng, K. Sugarcane polyphenol and fiber to affect production of short-chain fatty acids and microbiota composition using in vitro digestion and pig faecal fermentation model. Food Chem. 2022, 385, 132665. [Google Scholar] [CrossRef]
- Montoya, C.A.; Blatchford, P.; Moughan, P.J. In vitro ileal and caecal fermentation of fibre substrates in the growing pig given a human-type diet. Br. J. Nutr. 2021, 125, 998–1006. [Google Scholar] [CrossRef]
- Xu, J.; Xie, G.; Li, X.; Wen, X.; Cao, Z.; Ma, B.; Zou, Y.; Zhang, N.; Mi, J.; Wang, Y.; et al. Sodium butyrate reduce ammonia and hydrogen sulfide emissions by regulating bacterial community balance in swine cecal content in vitro. Ecotoxicol. Environ. Saf. 2021, 226, 112827. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Barry, J.L.; Hoebler, C.; Macfarlane, G.T.; Macfarlane, S.; Mathers, J.C.; Reed, K.A.; Mortensen, P.B.; Nordgaard, I.; Rowland, I.R.; Rumney, C.J. Estimation of the fermentability of dietary fiber in vitro: A European interlaboratory study. Br. J. Nutr. 1995, 74, 303–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Sun, X.Z.; Janssen, P.H.; Tang, S.X.; Tan, Z.L. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed Sci. Technol. 2014, 194, 1–11. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Wang, M.; Yu, Q.; Ma, Z.Y.; Beauchemin, K.A.; Wang, R.; Wen, J.N.; Lukuyu, B.A.; Tan, Z.L. Liquid hot water treatment of rice straw enhances anaerobic degradation and inhibits methane production during in vitro ruminal fermentation. J. Dairy Sci. 2020, 103, 4252–4261. [Google Scholar] [CrossRef]
- Wu, F.; Johnston, L.J.; Urriola, P.E.; Hilbrands, A.M.; Shurson, G.C. Evaluation of ME predictions and the impact of feeding maize distillers dried grains with solubles with variable oil content on growth performance, carcass composition, and pork fat quality of growing-finishing pigs. Anim. Feed Sci. Technol. 2016, 213, 128–141. [Google Scholar] [CrossRef]
- Paternostre, L.; De Boever, J.; Millet, S. Interaction between fat and fiber level on nutrient digestibility of pig feed. Anim. Feed Sci. Technol. 2021, 282, 115126. [Google Scholar] [CrossRef]
- Kristensen, M.; Jensen, M.G. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite 2011, 56, 65–70. [Google Scholar] [CrossRef]
- Ain, H.B.U.; Saeed, F.; Ahmed, A.; Khan, A.M.; Niaz, B.; Tufail, T. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review. J. Food Process. Pres. 2019, 43, 1–12. [Google Scholar] [CrossRef]
- Nugroho, A.E.; Andrie, M.; Warditiani, N.K.; Siswanto, E.; Pramono, S.; Lukitaningsih, E. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian J. Pharmacol. 2012, 44, 377–381. [Google Scholar] [CrossRef]
- Wu, S.; Tong, L.; Liu, B.; Ai, Z.; Hong, Z.; You, P.; Wu, H.Z.; Yang, Y.F. Bioactive ingredients obtained from Cortex Fraxini impair interactions between FAS and GPI. Free Radic. Biol. Med. 2020, 152, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhu, Z.H.; Zhang, L.; Wang, Q.; Xu, M.M.; Lu, C.; Zhu, Y.; Zeng, J.G.; Duan, J.A.; Zhao, M. Anti-inflammatory property and functional substances of Lonicerae Japonicae Caulis. J. Ethnopharmacol. 2021, 267, 113502. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.H.; Aziz, A. Multifunctional roles of dietary proteins in the regulation of metabolism and food intake: Application to feeding infants. J. Pediatrics 2006, 149, S74–S79. [Google Scholar] [CrossRef]
- Kong, X.F.; Wu, G.Y.; Yin, Y.L. Roles of phytochemicals in amino acid nutrition. Front. Biosci. 2011, 3, 372–384. [Google Scholar] [CrossRef] [Green Version]
- May, M.E.; Buse, M.G. Effects of branched-chain amino-acids on protein-turnover. Diabetes-Metab. Rev. 1989, 5, 227–245. [Google Scholar] [CrossRef]
- Roth, E.; Steininger, R.; Winkler, S.; Ngle, F.I.; Grünberger, T.; Fugger, R.; Muhlbacher, F. L-arginine deficiency after liver transplantation as an effect of arginase efflux from the graft. Influence on nitric oxide metabolism. Transplantation 1994, 57, 665–669. [Google Scholar] [CrossRef]
- Brzozowski, T.; Konturek, S.J.; Dorzowicz, D.; Dembinski, A.; Stachura, J. Healing of chronic gastric ulceration by L-arginine: Role of nitric oxide, prostaglands, gastrin and polyamines. Digestion 1995, 56, 463–471. [Google Scholar] [CrossRef]
- Lerman, A.; Burnett, J.C.; Higano, S.T.; Mckinley, L.J.; Holmes, D.R. Long-term L-arginins supplementation improves small-vessel coronary endothelia function in humans. Circulation 1998, 97, 2123–2128. [Google Scholar] [CrossRef] [Green Version]
- Kirchgessner, A.L. Glutamate in the enteric nervous system. Curr. Opin. Pharmacol. 2001, 1, 591–596. [Google Scholar] [CrossRef]
- Vermeulen, M.A.; Jong, J.D.; Vaessen, M.J.; Leeuwen, P.A.V.; Houdijk, A.P. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J. Gastroenterol. 2011, 17, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquezi, M.L.; Roschel, H.A.; Costa, A.D.S.; Sawada, L.A.; Lancha, A.H. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, B.; An, T.; Zhang, H.; Xia, B.; Li, R.; Zhu, R.Y.; Tian, Y.M.; Wang, L.L.; Zhao, D.D.; et al. BaZiBuShen alleviates altered testicular morphology and spermatogenesis and modulates Sirt6/P53 and Sirt6/NF-κB pathways in aging mice induced by D-galactose and NaNO2. J. Ethnopharmacol. 2021, 271, 113810. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, C.; Zhao, Y.; Chang, Y.; Guo, L. Comparison of bioactive phenolic compounds and antioxidant activities of different parts of Taraxacum mongolicum. Molecules 2020, 25, 3260. [Google Scholar] [CrossRef] [PubMed]
- Su, X.D.; Guo, R.H.; Yang, S.Y.; Kim, Y.H.; Kim, Y.R. Anti-bacterial effects of components from Sanguisorba officinalis L. on Vibrio vulnificus and their soluble epoxide hydrolase inhibitory activity. Nat. Prod. Res. 2019, 33, 3445–3449. [Google Scholar] [CrossRef] [PubMed]
- Ban, J.Y.; Nguyen, H.T.T.; Lee, H.J.; Cho, S.; Ju, H.S.; Kim, J.Y. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid β protein (25–35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 2008, 31, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Chozin, M.A.; Iwasaki, A.; Suenaga, K.; Noguchi, H.K. Phytotoxic activity of Chinese violet (Asystasia gangetica (L.) T. Anderson) and two phytotoxic substances. Weed Biol. Manag. 2019, 19, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Yu, Q.; Zhuang, X.; Wang, W.; Qi, W.; Wang, Q.; Tan, X.; Kong, X.Y.; Yuan, Z.H. Hemicellulose and lignin removal to improve the enzymatic digestibility and ethanol production. Biomass Bioenerg. 2016, 94, 105–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Djakpo, O.; Xie, Y.F.; Guo, Y.H.; Yu, H.; Cheng, Y.L.; Qian, H.; Shi, R.; Yao, W.R. Anti-quorum sensing of Galla chinensis and Coptis chinensis on bacteria. LWT Food Sci. Technol. 2019, 101, 806–811. [Google Scholar] [CrossRef]
- Blachier, F.; Mariotti, F.; Huneau, J.F.; Tome, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 2007, 33, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation hermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Song, S.D.; Chen, G.J.; Guo, C.H.; Rao, K.Q.; Gao, Y.H.; Peng, Z.L.; Zhang, Z.F.; Bai, X.; Wang, Y.; Wang, B.X.; et al. Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black goats. Anim. Feed Sci. Technol. 2018, 236, 170–177. [Google Scholar] [CrossRef]
- Peixoto, E.L.; Mizubuti, I.Y.; Ribeiro, E.L.; Moura, E.S.; Pereira, E.S.; Prado, O.P.P.; de Carvalho, L.N.; Pires, K.A. Residual frying oil in the diets of sheep: Intake, digestibility, nitrogen balance and ruminal parameters. Asian-Australs. J. Anim. Sci. 2016, 30, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhoof, K.; Schrijver, R.D. Nitrogen metabolism in rats and pigs fed inulin. Nutr. Res. 1996, 16, 1035–1039. [Google Scholar] [CrossRef]
Chinese Herbs | Scientific Names | Abbreviation | Origin |
---|---|---|---|
Andrographis paniculata Nees | Andrographis herba | APN | Henan |
Anemone root | Anemones raddeanae Rhizoma | AR | North East |
Agstache rugosus | Herba agastaches | ARU | Yunnan |
Coptis chinensis | Coptidis rhizoma | CC | Sichuan |
Cortex dictamni | Dictamni cortex | CD | Hubei |
Chinese gall | Rhus chinensis Mill | CG | Jiangxi |
Cape Jasmine Fruit | Gardenia jasminoides Ellis | CJF | Hunan |
Caulis lonicerae | Lonicerae japonicae Caulis | CL | Henan |
Crataegus pinnatifida Bunge | Crataegi fructus | CPB | Hunan |
Cortex fraxini | Fraxinus rhynchophylla Hance | CR | Liaoning |
Chinese violet | Matthiola incana R. Br | CV | Henan |
Danshen root | Salvia miltiorrhiza Bunge | DR | Hebei |
Folium artemisiae argyi | Argy wormwood | FAA | Hunan |
Fructus forsythiae | Forsythia suspensa Vahl | FF | Shanxi |
Folium isatidis | Isatis indigotica fort | FI | Hunan |
Garden burnet | Sanguisorbae radix | GB | Jilin |
Golden cypress | Juniperus chinensis Aurea | GC | Hebei |
Gentiana scabra Bunge | Adenophora capillaris | GSB | Hebei |
Houttuynia cordata | Heartleaf houttuynia Herb | HC | Zhejiang |
Punica granatum L | Punica granatum L | PGL | Hebei |
Portulaca oleracea L | Portulaca oleracea L | POL | North East |
Rhizoma anemarrhenae | Anemarrhena asphodeloides Bunge | RA | Shanxi |
Rheum officinale | Rhei radix Et Rhizoma | RO | Gansu |
Radix scrophulariae | Scrophularia ningpoensis Hemsl | RS | Hunan |
Semen allii tuberosi | Allium tuberosum Rottl | SAT | Hunan |
Sculellaria barbata | Scutellariae barbatae Herba | SB | Hunan |
Scutellaria baicalensis | Scutellariae radix | SBA | Shanxi |
Taraxacum mongolicum | Taraxaci herba | TM | Hebei |
White atractylodes rhizome | Atractylodes macrocephala Koidz | WAR | Hunan |
Herbs | DM | OM | GE(MJ/kg) | EE | CP | CF | NDF | ADF | NFC |
---|---|---|---|---|---|---|---|---|---|
APN | 90.49 | 94.62 | 16.55 | 0.79 | 7.07 | 47.48 | 62.80 | 50.58 | 29.34 |
AR | 87.86 | 93.12 | 16.76 | 0.71 | 5.23 | 28.85 | 41.38 | 31.20 | 52.68 |
ARU | 90.59 | 93.14 | 15.26 | 0.68 | 5.81 | 57.51 | 70.79 | 62.08 | 22.72 |
CC | 90.71 | 94.34 | 17.94 | 0.83 | 16.16 | 25.57 | 50.34 | 22.12 | 32.67 |
CD | 90.40 | 90.69 | 15.53 | 0.83 | 7.16 | 30.96 | 40.97 | 32.19 | 51.04 |
CG | 90.75 | 96.97 | 17.02 | 0.94 | 2.47 | 3.06 | 7.81 | 3.66 | 88.78 |
CJF | 91.08 | 93.42 | 19.70 | 3.37 | 7.98 | 27.82 | 40.45 | 30.97 | 48.20 |
CL | 92.42 | 93.10 | 17.38 | 0.52 | 5.07 | 47.91 | 64.90 | 54.48 | 29.51 |
CPB | 86.96 | 97.57 | 16.54 | 0.89 | 1.45 | 30.40 | 36.54 | 30.21 | 61.12 |
CR | 90.71 | 91.50 | 16.30 | 0.65 | 1.93 | 44.76 | 58.50 | 52.87 | 38.92 |
CV | 89.20 | 83.29 | 14.25 | 1.39 | 16.90 | 19.27 | 31.35 | 23.87 | 50.36 |
DR | 86.18 | 92.27 | 15.30 | 0.95 | 15.01 | 13.04 | 20.95 | 19.17 | 63.09 |
FAA | 91.07 | 91.43 | 19.32 | 2.53 | 13.30 | 26.31 | 43.75 | 42.56 | 40.42 |
FF | 92.00 | 97.52 | 19.30 | 0.74 | 5.07 | 34.27 | 53.90 | 57.65 | 40.29 |
FI | 91.57 | 90.89 | 17.92 | 0.82 | 13.70 | 19.48 | 38.24 | 29.28 | 47.24 |
GB | 90.60 | 90.75 | 16.07 | 0.64 | 4.73 | 13.24 | 19.95 | 18.46 | 74.68 |
GC | 92.61 | 89.97 | 16.44 | 0.44 | 3.79 | 48.86 | 61.56 | 51.63 | 34.21 |
GSB | 85.91 | 93.17 | 15.44 | 1.05 | 10.66 | 15.71 | 24.92 | 17.65 | 63.37 |
HC | 89.03 | 85.86 | 16.11 | 0.51 | 11.87 | 33.84 | 47.53 | 44.02 | 40.09 |
PGL | 88.46 | 96.59 | 16.08 | 1.01 | 3.42 | 16.16 | 19.50 | 17.57 | 76.07 |
POL | 90.87 | 73.77 | 11.38 | 0.76 | 19.36 | 21.31 | 37.36 | 26.41 | 42.52 |
RA | 88.68 | 93.97 | 16.86 | 0.99 | 10.58 | 11.21 | 15.75 | 14.56 | 72.68 |
RO | 90.68 | 89.06 | 15.12 | 0.33 | 9.19 | 7.66 | 18.20 | 14.72 | 72.28 |
RS | 87.91 | 95.00 | 15.59 | 0.78 | 5.87 | 8.32 | 9.39 | 12.60 | 83.96 |
SAT | 90.91 | 95.07 | 21.33 | 17.25 | 21.35 | 35.07 | 37.90 | 36.20 | 23.50 |
SB | 89.09 | 86.62 | 21.15 | 0.59 | 15.44 | 30.30 | 43.45 | 40.16 | 40.52 |
SBA | 84.94 | 85.84 | 12.14 | 0.58 | 6.49 | 19.28 | 31.41 | 23.57 | 61.52 |
TM | 89.18 | 84.63 | 14.80 | 0.96 | 15.37 | 22.53 | 32.46 | 29.44 | 51.21 |
WAR | 89.87 | 95.62 | 16.12 | 3.21 | 10.62 | 6.55 | 10.26 | 7.79 | 75.91 |
Herbs | Hydroxy AA | SCAA | BCAA | Aromatic AA | Basic AA | Acidity AA | SHAA | TAA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thr | Ser | Gly | Ala | Val | Ile | Leu | Tyr | Phe | Lys | His | Arg | Pro | Asp | Glu | Cys | Met | ||
APN | 0.22 | 0.21 | 0.26 | 0.23 | 0.23 | 0.17 | 0.31 | 0.00 | 0.57 | 0.13 | 0.09 | 0.12 | 0.00 | 0.48 | 0.48 | 0.41 | 0.00 | 3.91 |
AR | 0.16 | 0.10 | 0.16 | 0.13 | 0.13 | 0.11 | 0.18 | 0.00 | 0.50 | 0.07 | 0.10 | 0.14 | 0.00 | 0.13 | 0.27 | 0.44 | 0.00 | 2.62 |
ARU | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.27 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.68 | 0.00 | 1.16 |
CC | 0.26 | 0.38 | 0.57 | 0.40 | 0.14 | 0.23 | 0.55 | 0.07 | 0.69 | 0.32 | 0.17 | 0.78 | 0.18 | 0.77 | 0.72 | 0.39 | 0.03 | 6.65 |
CD | 0.12 | 0.10 | 0.14 | 0.09 | 0.12 | 0.08 | 0.14 | 0.48 | 0.08 | 0.00 | 0.07 | 0.06 | 0.00 | 0.10 | 0.25 | 0.43 | 0.00 | 2.26 |
CG | 0.15 | 0.11 | 0.12 | 0.14 | 0.13 | 0.10 | 0.18 | 0.00 | 0.46 | 0.18 | 0.08 | 0.27 | 0.00 | 0.15 | 0.23 | 0.39 | 0.00 | 2.69 |
CL | 0.20 | 0.17 | 0.23 | 0.25 | 0.23 | 0.18 | 0.32 | 0.00 | 0.53 | 0.11 | 0.08 | 0.17 | 0.00 | 0.33 | 0.42 | 0.37 | 0.00 | 3.59 |
CPB | 0.11 | 0.70 | 0.25 | 0.29 | 0.02 | 0.30 | 0.00 | 0.75 | 0.28 | 0.10 | 0.03 | 0.00 | 0.00 | 0.00 | 0.15 | 0.18 | 0.00 | 3.16 |
CR | 0.11 | 0.09 | 0.12 | 0.09 | 0.09 | 0.05 | 0.09 | 0.00 | 0.41 | 0.09 | 0.07 | 0.09 | 0.00 | 0.11 | 0.17 | 0.42 | 0.00 | 2.00 |
CV | 0.55 | 0.51 | 0.69 | 0.73 | 0.67 | 0.53 | 1.01 | 0.07 | 0.58 | 0.59 | 0.21 | 0.48 | 0.40 | 1.10 | 1.35 | 0.39 | 0.04 | 9.90 |
DR | 0.35 | 0.16 | 0.24 | 0.42 | 0.27 | 0.41 | 0.66 | 0.11 | 0.24 | 0.40 | 0.20 | 0.97 | 0.15 | 0.73 | 1.51 | 0.63 | 0.02 | 7.47 |
FAA | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0.00 | 0.06 | 0.00 | 0.00 | 0.06 | 0.06 | 0.44 | 0.00 | 1.02 |
FF | 0.08 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.04 | 0.00 | 0.00 | 0.08 | 0.00 | 0.67 | 0.00 | 1.17 |
FI | 0.12 | 0.08 | 0.12 | 0.06 | 0.03 | 0.03 | 0.06 | 0.00 | 0.42 | 0.11 | 0.07 | 0.17 | 0.00 | 0.19 | 0.21 | 0.41 | 0.00 | 2.08 |
GB | 0.55 | 0.50 | 0.68 | 0.73 | 0.67 | 0.50 | 0.93 | 0.06 | 0.50 | 0.58 | 0.22 | 0.49 | 0.71 | 1.03 | 1.33 | 0.40 | 0.02 | 9.90 |
GC | 0.25 | 0.00 | 0.04 | 0.06 | 0.06 | 0.04 | 0.04 | 0.00 | 0.00 | 0.15 | 0.06 | 0.10 | 0.00 | 0.04 | 0.00 | 0.41 | 0.00 | 1.25 |
GJF | 0.14 | 0.04 | 0.17 | 0.11 | 0.11 | 0.07 | 0.20 | 0.00 | 0.00 | 0.03 | 0.10 | 0.06 | 0.00 | 0.05 | 0.06 | 0.62 | 0.00 | 1.76 |
GSB | 0.18 | 0.16 | 0.23 | 0.18 | 0.18 | 0.12 | 0.21 | 0.00 | 0.54 | 0.18 | 0.12 | 0.25 | 0.00 | 0.27 | 0.38 | 0.43 | 0.00 | 3.43 |
HC | 0.18 | 0.00 | 0.11 | 0.03 | 0.03 | 0.00 | 0.06 | 0.00 | 0.24 | 0.00 | 0.06 | 0.05 | 0.00 | 0.06 | 0.08 | 0.64 | 0.00 | 1.54 |
PGL | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.27 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.04 | 1.00 | 0.00 | 1.58 |
POL | 0.29 | 0.30 | 0.39 | 0.23 | 0.61 | 0.53 | 0.61 | 0.06 | 0.79 | 0.59 | 0.60 | 0.22 | 0.02 | 0.50 | 1.50 | 0.41 | 0.01 | 7.66 |
RA | 0.16 | 0.03 | 0.09 | 0.08 | 0.13 | 0.07 | 0.17 | 0.00 | 0.00 | 0.16 | 0.11 | 0.30 | 0.00 | 0.07 | 0.06 | 0.61 | 0.00 | 2.04 |
RO | 0.08 | 0.03 | 0.07 | 0.05 | 0.04 | 0.00 | 0.07 | 0.00 | 0.00 | 0.04 | 0.10 | 0.05 | 0.00 | 0.04 | 0.06 | 0.43 | 0.00 | 1.06 |
RS | 0.13 | 0.12 | 0.09 | 0.13 | 0.11 | 0.07 | 0.10 | 0.00 | 0.45 | 0.05 | 0.05 | 0.06 | 0.00 | 0.18 | 0.18 | 0.43 | 0.00 | 2.15 |
SAT | 0.78 | 1.13 | 1.06 | 0.80 | 1.14 | 0.71 | 1.42 | 0.09 | 0.96 | 1.32 | 0.55 | 2.34 | 0.12 | 1.30 | 3.88 | 0.77 | 0.06 | 18.43 |
SB | 0.42 | 0.32 | 0.59 | 0.35 | 0.50 | 0.37 | 0.88 | 0.10 | 0.71 | 0.35 | 0.20 | 0.22 | 0.00 | 0.28 | 0.53 | 0.41 | 0.00 | 6.23 |
SBA | 0.23 | 0.20 | 0.25 | 0.25 | 0.24 | 0.18 | 0.30 | 0.00 | 0.55 | 0.21 | 0.13 | 0.54 | 0.12 | 0.41 | 0.55 | 0.41 | 0.00 | 4.57 |
TM | 0.61 | 0.57 | 0.87 | 0.78 | 0.73 | 0.59 | 1.14 | 0.11 | 0.67 | 0.53 | 0.25 | 0.52 | 0.51 | 1.36 | 1.31 | 0.44 | 0.03 | 11.02 |
WAR | 0.10 | 0.07 | 0.08 | 0.05 | 0.00 | 0.00 | 0.03 | 0.00 | 0.46 | 0.12 | 0.09 | 0.91 | 0.00 | 0.36 | 0.21 | 0.41 | 0.00 | 2.89 |
Herbs | Hydroxy AA | SCAA | BCAA | Aromatic AA | Basic AA | Acidity AA |
---|---|---|---|---|---|---|
APN | 0.43 | 0.49 | 0.71 | 0.57 | 0.34 | 1.37 |
AR | 0.26 | 0.29 | 0.42 | 0.50 | 0.31 | 0.84 |
ARU | 0.15 | 0.00 | 0.03 | 0.27 | 0.03 | 0.68 |
CC | 0.63 | 0.97 | 0.92 | 0.76 | 1.27 | 2.05 |
CD | 0.22 | 0.23 | 0.34 | 0.56 | 0.13 | 0.78 |
CG | 0.26 | 0.25 | 0.40 | 0.46 | 0.54 | 0.77 |
CJF | 0.37 | 0.49 | 0.72 | 0.53 | 0.36 | 1.12 |
CL | 0.81 | 0.54 | 0.32 | 1.03 | 0.13 | 0.32 |
CPB | 0.20 | 0.21 | 0.23 | 0.41 | 0.25 | 0.70 |
CR | 1.06 | 1.42 | 2.22 | 0.65 | 1.28 | 3.24 |
CV | 0.50 | 0.66 | 1.34 | 0.34 | 1.58 | 3.02 |
DR | 0.14 | 0.00 | 0.00 | 0.26 | 0.06 | 0.56 |
FAA | 0.08 | 0.03 | 0.00 | 0.27 | 0.04 | 0.75 |
FF | 0.20 | 0.18 | 0.12 | 0.42 | 0.35 | 0.81 |
FI | 1.05 | 1.41 | 2.10 | 0.56 | 1.29 | 3.47 |
GB | 0.25 | 0.10 | 0.14 | 0.00 | 0.31 | 0.45 |
GC | 0.18 | 0.28 | 0.38 | 0.00 | 0.20 | 0.73 |
GSB | 0.34 | 0.41 | 0.51 | 0.54 | 0.55 | 1.08 |
HC | 0.18 | 0.14 | 0.09 | 0.24 | 0.11 | 0.78 |
PGL | 0.18 | 0.00 | 0.05 | 0.27 | 0.04 | 1.04 |
POL | 0.58 | 0.61 | 1.75 | 0.84 | 1.41 | 2.43 |
RA | 0.19 | 0.17 | 0.37 | 0.00 | 0.57 | 0.74 |
RO | 0.12 | 0.11 | 0.11 | 0.00 | 0.19 | 0.53 |
RS | 0.25 | 0.22 | 0.28 | 0.45 | 0.16 | 0.79 |
SAT | 1.91 | 1.86 | 3.27 | 1.05 | 4.21 | 6.07 |
SB | 0.74 | 0.94 | 1.74 | 0.82 | 0.77 | 1.22 |
SBA | 0.43 | 0.50 | 0.73 | 0.55 | 0.88 | 1.49 |
TM | 1.18 | 1.65 | 2.46 | 0.78 | 1.30 | 3.62 |
WAR | 0.17 | 0.13 | 0.03 | 0.46 | 1.12 | 0.98 |
Herbs | GP12 | GP24 | GP48 |
---|---|---|---|
APN | 37.76 klmnop | 49.47 klm | 55.22 kl |
AR | 47.29 ghijklm | 56.48 ijkl | 60.90 ijk |
ARU | 36.50 klmnop | 45.70 lmn | 50.48 klm |
CC | 33.40 mnop | 51.70 jkl | 58.58 jkl |
CD | 86.03 d | 110.29 cd | 114.34 de |
CG | 39.38 jklmnop | 44.08 lmn | 46.87 lmn |
CJF | 59.85 fgh | 80.57 fgh | 89.28 g |
CL | 43.25 ijklmn | 51.68 jkl | 58.07 jkl |
CPB | 87.69 d | 103.34 de | 115.38 d |
CR | 28.30 nop | 35.35 mn | 41.64 mn |
CV | 44.66 hijklm | 66.22 hij | 76.05 h |
DR | 75.44 de | 95.03 ef | 102.23 f |
FAA | 24.19 p | 33.64 n | 47.22 lmn |
FF | 43.15 ijklmn | 51.96 jkl | 54.71 kl |
FI | 51.51 ghijk | 68.50 ghi | 75.86 h |
GB | 33.77 lmnop | 43.10 lmn | 57.61 jkl |
GC | 56.15 fghi | 69.29 ghi | 72.24 hi |
GSB | 74.34 de | 101.39 de | 115.66 d |
HC | 49.38 ghijkl | 66.35 hij | 73.08 h |
PGL | 62.48 efg | 82.22 fg | 96.50 fg |
POL | 35.22 lmnop | 47.39 lmn | 54.57 kl |
RA | 101.23 c | 121.86 c | 128.33 c |
RO | 69.51 ef | 94.51 ef | 103.85 ef |
RS | 143.90 a | 169.38 a | 171.92 a |
SAT | 40.44 jklmno | 49.46 klm | 67.91 hij |
SB | 38.95 jklmnop | 58.44 ijkl | 68.77 hij |
SBA | 49.64 jhijkl | 63.73 ijk | 73.31 h |
TM | 54.50 ghij | 81.67 fg | 89.63 g |
WAR | 116.06 b | 138.79 b | 145.36 b |
Control group | 25.60 op | 33.25 n | 35.95 n |
SEM | 4.625 | 4.526 | 3.670 |
p | <0.001 | <0.001 | <0.001 |
Herbs | VF | K | Lag | NH3-N (mg/dL) |
---|---|---|---|---|
APN | 46.60 jk | 5.97 ghijk | 5.56 cdefg | 6.86 kl |
AR | 50.37 j | 9.47 efg | 3.65 bcde | 9.57 hij |
ARU | 41.71 jkl | 5.27 ghijk | 7.51 g | 12.05 efg |
CC | 50.56 j | 6.04 ghijk | 4.52 bcdefg | 11.49 efg |
CD | 96.49 d | 18.77 c | 1.91 ab | 12.07 efg |
CG | 38.08 klm | 6.73 fghijk | 6.96 fg | 6.09 l |
CJF | 74.00 gh | 11.09 ef | 3.68 bcde | 5.44 ml |
CL | 46.17 jk | 7.13 fghij | 5.68 cdefg | 12.35 def |
CPB | 91.29 de | 19.12 c | 2.30 ab | 5.50 lm |
CR | 35.26 lmn | 3.23 jk | 11.09 h | 8.62 jk |
CV | 65.87 hi | 7.56 fghij | 4.31 bcdef | 14.03 cd |
DR | 84.61 ef | 16.00 cd | 2.46 ab | 14.71 c |
FAA | 47.36 jk | 2.67 k | 12.26 h | 9.33 ij |
FF | 45.57 jk | 6.59 fghijk | 7.51 g | 12.39 def |
FI | 63.30 i | 8.79 fghi | 4.65 bcdefg | 18.80 a |
GB | 47.14 jk | 8.00 fghi | 10.38 h | 13.27 cde |
GC | 60.94 i | 11.20 ef | 2.49 ab | 11.01 fghi |
GSB | 99.42 cd | 17.30 cd | 2.82 abc | 7.16 kl |
HC | 61.07 i | 9.18 efg | 3.37 bcd | 11.01 fghi |
PGL | 79.15 fg | 11.08 ef | 4.03 bcdef | 4.25 mn |
POL | 46.51 jk | 5.25 ghijk | 6.34 defg | 12.25 def |
RA | 105.73 c | 28.43 b | 0.12 a | 10.20 ghij |
RO | 86.51 ef | 13.42 de | 2.75 abc | 8.57 jk |
RS | 142.03 a | 45.73 a | 0.08 a | 6.58 l |
SAT | 59.23 i | 4.36 ijk | 11.78 h | 17.62 ab |
SB | 59.651 i | 5.98 ghijk | 5.75 cdefg | 14.34 c |
SBA | 60.63 i | 7.13 fghijk | 7.44 g | 3.19 n |
TM | 77.47 fg | 9.64 efg | 4.06 bcdef | 13.97 cd |
WAR | 119.09 b | 31.35 b | 0.38 a | 12.26 def |
Control group | 30.06 mn | 4.50 hijk | 6.35 defg | 11.77 efg |
SEM | 2.920 | 1.060 | 0.878 | 0.570 |
p | <0.001 | <0.001 | <0.001 | <0.001 |
Herbs | pH | Total SCFA | Acetate | Propionate | Butyrate | Isobutyrate | Valerate | Isovalerate |
---|---|---|---|---|---|---|---|---|
APN | 6.85 abcde | 349.83 ghijk | 126.93 i | 142.34 ghijk | 48.66 klm | 7.29 klmno | 13.87 efghij | 10.74 efgh |
AR | 6.64 efgh | 376.99 ghij | 130.01 i | 141.00 ghijk | 88.90 fg | 8.18 klmn | 6.53 klmnopq | 2.37 lm |
ARU | 6.86 abcde | 214.38 jk | 88.09 j | 76.99 klmn | 27.22 mno | 2.44 o | 10.53 hijklmn | 9.10 efghi |
CC | 6.69 defgh | 328.30 hijk | 162.08 ghi | 106.35 ijklm | 41.68 klm | 10.44 hijklm | 3.34 pq | 4.42 jklm |
CD | 6.68 defgh | 738.62 cd | 398.56 cd | 240.23 cde | 76.26 ghij | 9.52 ijklmn | 5.91 lmnopq | 8.15 ghijk |
CG | 6.75 cdefg | 166.53 k | 108.66 j | 29.41 n | 4.46 o | 14.87 defgh | 8.68 jklmnop | 0.46 m |
CJF | 6.73 defgh | 318.34 hijk | 111.36 j | 101.39 ijklm | 83.49 fghi | 6.11 lmno | 11.88 ghijk | 4.11 jklm |
CL | 6.67 defgh | 370.45 ghij | 223.62 fgh | 75.60 klm | 47.70 klm | 6.03 lmno | 14.73 defghi | 2.77 lm |
CPB | 6.59 fgh | 976.37 ab | 594.43 a | 188.39 defg | 136.58 cd | 14.72 defghi | 17.87 cdef | 24.38 c |
CR | 6.81 abcdef | 189.31 jk | 86.02 j | 57.79 lmn | 33.69 lmn | 4.46 no | 4.86 nopq | 2.50 lm |
CV | 6.75 cdefg | 538.95 efg | 212.58 fghi | 181.69 defgh | 87.11 fgh | 19.95 cd | 16.11 defgh | 21.51 cd |
DR | 6.76 bcdefg | 904.16 bc | 385.74 cd | 253.30 cd | 150.43 c | 26.49 a | 44.95 a | 43.24 a |
FAA | 6.74 cdefg | 295.97 ijk | 116.35 j | 92.24 jklm | 62.61 hijk | 12.33 efghij | 7.23 klmnopq | 5.21 ijklm |
FF | 6.99 a | 205.20 jk | 107.15 j | 78.03 klm | 6.52 o | 6.03 lmno | 4.63 opq | 4.38 jklm |
FI | 6.76 cdefg | 372.86 ghij | 109.62 j | 156.50 fghij | 56.58 jkl | 17.16 cdefg | 18.11 cdef | 14.89 e |
GB | 6.80 abcdef | 414.93 fghi | 140.49 hi | 172.57 efghi | 76.77 ghij | 9.23 klmn | 11.10 hijklm | 4.77 ijklm |
GC | 6.74 cdefg | 371.24 ghij | 151.01 ghi | 119.71 ghijkl | 58.91 ijkl | 19.52 cde | 11.19 hijklm | 10.91 efgh |
GSB | 6.59 fgh | 901.89 bc | 487.10 b | 247.16 cd | 131.09 cd | 7.44 klmno | 17.19 cdefg | 11.92 efg |
HC | 6.80 abcdef | 325.93 hijk | 150.91 ghi | 109.36 hijklm | 38.23 klm | 8.25 klmn | 5.60 mnopq | 13.59 ef |
PGL | 6.55 gh | 610.48 de | 238.13 fg | 224.14 def | 119.73 de | 18.36 cde | 5.86 mnopq | 4.26 jklm |
POL | 6.98 ab | 280.02 ijk | 136.88 hi | 79.84 klm | 41.47 klm | 5.63 mno | 10.17 ijklmno | 6.03 hijkl |
RA | 6.81 abcdef | 1142.07 a | 500.37 b | 465.58 a | 115.98 de | 18.83 cde | 21.82 c | 19.50 d |
RO | 6.66 defgh | 575.34 def | 253.06 ef | 148.66 ghijk | 154.16 c | 11.96 ghijk | 6.46 klmnopq | 1.04 lm |
RS | 6.58 fgh | 992.32 ab | 324.95 de | 301.73 bc | 290.70 a | 25.53 ab | 19.02 cde | 30.39 b |
SAT | 6.75 cdefg | 427.89 fghi | 126.02 i | 174.09 efghi | 79.24 ghij | 15.06 defgh | 13.62 efghij | 19.87 cd |
SB | 6.85 abcde | 358.87 ghijk | 127.26 i | 148.68 ghijk | 47.52 klm | 12.01 ghijk | 11.46 hijkl | 11.94 efg |
SBA | 6.70 defgh | 324.40 hijk | 144.69 hi | 77.42 klmn | 87.06 fgh | 8.21 klmn | 5.50 mnopq | 1.51 lm |
TM | 6.71 defgh | 499.68 efgh | 179.89 fghi | 190.61 defg | 73.65 ghij | 21.55 bc | 19.94 cd | 14.03 ef |
WAR | 6.50 h | 1083.66 a | 436.91 bc | 360.36 b | 207.82 b | 17.49 cdef | 31.52 b | 29.56 b |
Control group | 6.88 abcd | 194.46 jk | 105.22 j | 37.59 mn | 28.58 mno | 9.35 jklmn | 9.98 ijklmno | 3.75 klm |
SEM | 0.070 | 57.153 | 47.840 | 22.120 | 7.720 | 1.580 | 1.660 | 1.550 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Yi, S.; Azad, M.A.K.; Huang, M.; Guo, X.; Kong, X. Nutritional Values and In Vitro Fermentation Characteristics of 29 Different Chinese Herbs. Agriculture 2022, 12, 1285. https://doi.org/10.3390/agriculture12091285
Xiao L, Yi S, Azad MAK, Huang M, Guo X, Kong X. Nutritional Values and In Vitro Fermentation Characteristics of 29 Different Chinese Herbs. Agriculture. 2022; 12(9):1285. https://doi.org/10.3390/agriculture12091285
Chicago/Turabian StyleXiao, Lichun, Siyu Yi, Md. Abul Kalam Azad, Mingqian Huang, Xiaoquan Guo, and Xiangfeng Kong. 2022. "Nutritional Values and In Vitro Fermentation Characteristics of 29 Different Chinese Herbs" Agriculture 12, no. 9: 1285. https://doi.org/10.3390/agriculture12091285
APA StyleXiao, L., Yi, S., Azad, M. A. K., Huang, M., Guo, X., & Kong, X. (2022). Nutritional Values and In Vitro Fermentation Characteristics of 29 Different Chinese Herbs. Agriculture, 12(9), 1285. https://doi.org/10.3390/agriculture12091285