VvMYBPA2 Regulated the Accumulation of Flavan-3-ols though Forming a Trimeric Complex in ‘Zaoheibao’ Grape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Subcellular Localization
2.3. Transient Expression of Grape Leaves
2.4. DMACA Staining
2.5. Epicatechin and Catechin Content
2.6. Determination of ANR and LAR Enzyme Activity
2.7. Gene Expression Analysis
2.8. Gene Isolation and Sequence Analysis
2.9. Y2H Assays
2.10. BiFC Assays
2.11. Y1H Assays
2.12. Data Processing
3. Results
3.1. Subcellular Localization of VvMYBPA2
3.2. VvMYBPA2 Promoted the Accumulation of PAs in Grape Leaves
3.3. Phylogenetic Analysis of Genes Related to Grape PAs Synthesis
3.4. VvMYBPA2 Formed a Trimeric Complex with VvWDR1 and VvMYC2
3.5. VvMYBPA2 Directly Activated VvANR and VvLAR1 Promoters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Information of primers used in PCR
Primers Name | Primiers Sequence | Accession Number |
GFP-MYBPA2-F | GGGGTACCATGGGAAGAAGACCTT | EU919682.1 |
GFP-MYBPA2-R | CGGGATCCTGGGACTTGATTATTTTC | |
OX-MYBPA2-F | GGGGTACCATGGGAAGAAGACCTT | EU919682.1 |
OX-MYBPA2-R | CGGGATCCCTATGGGACTTGATTATTT | |
RT-VvActin-F | CCCCATGCTATCCTTCG | AF369524.1 |
RT-VvActin-R | AGGCAGCTCATAGTTC | |
RT-VvANR-F | AGAACTACAGGAGTTGGGTGAC | DQ129684.1 |
RT-VvANR-R | CCTTGAATTGCTGGCTTG | |
RT-VvLAR1-F | ACGATGTCCGAACACTGAAC | AJ865336 |
RT-VvLAR1-R | TGAACGCCGCTACTACACTC | |
RT-VvLAR2-F | TCTCGACATACATGATGATGTG | AJ8653 |
RT-VvLAR2-R | TGCAGTTTCTTTGATTGAGTTC | |
RT-VvMYBPA2-F | GTGCGATGCTCCAAGGTTAT | EU919682.1 |
RT-VvMYBPA2-R | CAGTGCTGAACTTGAGGGC | |
BD-VvWDR1-F | CGGAATTCATGGAGAGATCAAGCC | DQ517913.2 |
BD-VvWDR1-R | CGGGATCCCTAAACTTTAAGAAGC | |
AD-VvMYC2-F | GGAATTCCATATGATGAAAACTGAAATGGG | EF636725.2 |
AD-VvMYC2-R | TCCCCCGGGTTACCCAACTGATGATGAC | |
BD-VvMYC2-F | CGCCCGGGATGAAAACTGAAATGGGTATG | EF636725.2 |
BD-VvMYC2-R | GGCGTCGACTTACCCAACTGATGATGAC | |
BiFC-MYBPA2-F | CGGGATCCATGGGAAGAAGACCTT | EU919682.1 |
BiFC-MYBPA2-R | GCGTCGACTGGGACTTGATTATTTTCAG | |
BiFC-WDR1-F | CGGATCCATGGAGAGATCAAGCCT | DQ517913.2 |
BiFC-WDR1-R | GGCGAATTCAACTTTAAGAAGCTGCAGTTT | |
BiFC-MYC2-F | GGCGTCGACATGAAAACTGAAATGGGTATG | EF636725.2 |
BiFC-MYC2-R | GGACTAGTCCCAACTGATGATGACAAAG | |
Y1H-ANR-F | CGAGCTCGTTAGTTGGGAACCATC | DQ129684.1 |
Y1H-ANR-R | GCGTCGACGCATATCTCAACAGCAG | |
Y1H-LAR1-F | CGAGCTCACATAAATCCGGCCTAG | AJ865336 |
Y1H-LAR1-R | GCGTCGACTGACTCACCATTCATGA | |
Note. The underlined part is the enzyme cleavage site. |
References
- Wen, P.F. Studies on Flavanols in Wine and Grape Berry and Expression of Genes Involved in Proanthocyanidins Biosynthesis during Berry Development; China Agricultural University: Beijing, China, 2005. [Google Scholar]
- Zeng, Y.X.; Wang, S.; Wei, L.; Cui, Y.Y.; Chen, Y.H. Proanthocyanidins: Components, pharmacokinetics and biomedical properties. Am. J. Chin. Med. 2020, 48, 813–869. [Google Scholar] [CrossRef]
- Bogs, J.; Downey, M.O.; Harvey, J.S.; Ashton, A.R.; Tanner, G.J.; Robinson, S.P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 2005, 139, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends in Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Ding, Y.; Han, X.M.; Wang, C.P.; Wang, Q.C. Effects of different fermentative maceration methods on the flavor components and sensory characteristics of red wine. Liquor-Mak. Sci. Technol. 2021, 323, 39–45. [Google Scholar]
- Bertelli, A.A.; Das, D.K. Grapes, wines, resveratrol, and heart health. J. Cardiovasc. Pharmacol. 2009, 54, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Xie, D.; Sharma, S.B. Proanthocyanidins—A final frontier in flavonoid research? New Phytol. 2005, 165, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Wilska-Jeszka, J. Proanthocyanidins: Content in fruits and influence on health. Food Chem. 1996, 57, 57. [Google Scholar] [CrossRef]
- Xing, Y.F. The Accumulation of Flavanols, Expression of Leucoanthocyanidin Reductase Induced by Uv-C Irradiation in Grape Breey; Shanxi Agricultural University: Taiyuan, China, 2013. [Google Scholar]
- Dixon, R.A.; Sarnala, S. Proanthocyanidin biosynthesis—A matter of protection. Plant Physiol. 2020, 184, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.Y.; Sharma, S.B.; Paiva, N.L.; Ferreira, D.; Dixon, R.A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 2003, 299, 396–399. [Google Scholar] [CrossRef]
- Tanner, G.J.; Francki, K.T.; Abrahams, S.; Watson, J.M.; Larkin, P.J.; Ashton, A.R. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 2003, 278, 31647–31656. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Kühnel, C.; Brandt, J.; Duy, D.; Punyasiri, P.A.; Forkmann, G.; Fischer, T.C. Biosynthesis of flavan 3-ols by leucoanthocyanidin 4-reductases and anthocyanidin reductases in leaves of grape (Vitis vinifera L.), apple (Malus × domestica Borkh.) and other crops. Plant Physiol. Biochem. 2006, 44, 323–334. [Google Scholar] [CrossRef]
- Liang, C.M.; Yang, B.; Wei, Y.; Zhang, P.F.; Wen, P.F. SA incubation induced accumulation of flavan-3-ols through activated VvANR expression in grape leaves. Sci. Hort. 2021, 287, 110269. [Google Scholar] [CrossRef]
- Debeaujon, I.; Nesi, N.; Perez, P.; Devic, M.; Grandjean, O.; Caboche, M.; Lepiniec, L. Proanthocyanidin-accumulating cells in Arabidopsis testa: Regulation of differentiation and role in seed development. Plant Cell. 2003, 15, 2514–2531. [Google Scholar] [CrossRef] [PubMed]
- An, X.H.; Tian, Y.; Chen, K.Q.; Liu, X.J.; Liu, D.D.; Xie, X.B.; Cheng, C.G.; Cong, P.H.; Hao, Y.J. MdMYB9 and MdMYB11 are Involved in the Regulation of the JA-Induced Biosynthesis of Anthocyanin and Proanthocyanidin in Apples. Plant Cell Physiol. 2015, 56, 650–662. [Google Scholar] [CrossRef]
- Li, J.; Luan, Q.; Han, J.; Zhang, C.; Liu, M.; Ren, Z. CsMYB60 directly and indirectly activates structural genes to promote the biosynthesis of flavonols and proanthocyanidins in cucumber. Hort. Res. 2020, 7, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, M.; Xu, L.; Luo, Z.; Zhang, Q. MiR858b inhibits proanthocyanidin accumulation by the repression of DkMYB19 and DkMYB20 in persimmon. Front. Plant Sci. 2020, 1, 576378. [Google Scholar] [CrossRef]
- James, A.M.; Ma, D.; Mellway, R.; Gesell, A.; Yoshida, K.; Walker, V.; Tran, L.; Stewart, D.; Reichelt, M.; Suvanto, J.; et al. Poplar MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure. Plant Physiol. 2017, 174, 154–171. [Google Scholar] [CrossRef]
- Lu, N.; Rao, X.; Li, Y.; Jun, J.H.; Dixon, R.A. Dissecting the transcriptional regulation of proanthocyanidin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnol. J. 2021, 19, 1429–1442. [Google Scholar] [CrossRef]
- Broun, P. Transcriptional control of flavonoid biosynthesis: A complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr. Opin. Plant Biol. 2005, 8, 272–279. [Google Scholar] [CrossRef]
- Baudry, A.; Heim, M.A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.; Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression of banyuls and proanthocyanidin biosynthesis in arabidopsis thaliana. Plant J. 2010, 39, 366–380. [Google Scholar] [CrossRef]
- Schaart, J.G.; Dubos, C.; Romero De La Fuente, I.; van Houwelingen, A.; de Vos, R.; Jonker, H.H.; Xu, W.; Routaboul, J.M.; Lepiniec, L.; Bovy, A.G. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol. 2013, 197, 454–467. [Google Scholar] [CrossRef]
- Gil-Muoz, F.; Sánchez-Navarro, J.A.; Besada, C.; Salvador, A.; Badenes, M.L.; Naval, M.D.M.; Ríos, G. MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit. Sci. Rpt. 2020, 10, 3543–3554. [Google Scholar]
- Bogs, J.; Jaffé, F.W.; Takos, A.M.; Walker, A.R.; Robinson, S.P. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 2007, 143, 1347–1361. [Google Scholar] [CrossRef]
- Terrier, N.; Torregrosa, L.; Ageorges, A.; Vialet, S.; Verriès, C.; Cheynier, V.; Romieu, C. Ectopic expression of VvMYBPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol. 2009, 149, 1028–1041. [Google Scholar] [CrossRef] [PubMed]
- Matus, J.T.; Poupin, M.J.; Cañón, P.; Bordeu, E.; Alcalde, J.A.; Arce-Johnson, P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol. Biol. 2010, 72, 607–620. [Google Scholar] [CrossRef]
- Wang, P.F.; Su, L.; Gao, H.H.; Jiang, X.L.; Wu, X.Y.; Li, Y.; Zhang, Q.Q.; Wang, Y.M.; Ren, F.S. Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Front. Plant Sci. 2018, 1, 64–78. [Google Scholar] [CrossRef]
- Fu, J.Y.; Liu, L.J.; Liu, Q.; Shen, Q.Q.; Wang, C.; Yang, P.P.; Zhu, C.Y.; Wang, Q. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Rep. 2020, 39, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Qiao, X.L.; Chen, H.W.; Nan, H.; Zhang, Z.W. Coordinated regulation of grape berry flesh color by transcriptional activators and repressors. J. Agr. Food Chem. 2019, 67, 11815–11824. [Google Scholar] [CrossRef]
- Hichri, I.; Heppel, S.C.; Pillet, J.; Léon, C.; Czemmel, S.; Delrot, S.; Lauvergeat, V.; Bogs, J. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. Plant. 2010, 3, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.; Cavallini, E.; Walker, A.R.; Pezzotti, M.; Bliek, M.; Quattrocchio, F.; Koes, R.; Ruperti, B.; Bertini, E.; Zenoni, S.; et al. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. Plant J. 2019, 99, 1220–1241. [Google Scholar] [CrossRef]
- Li, Y.G.; Tanner, G.; Larkin, P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in Forage Legumes. J. Sci. Food Agri. 1996, 70, 89–101. [Google Scholar] [CrossRef]
- Wen, P.F.; Ji, W.; Gao, M.Y.; Niu, T.Q.; Xing, Y.F.; Niu, X.Y. Accumulation of flavanols and expression of leucoanthocyanidin reductase induced by postharvest UV-C irradiation in grape berry. Genet. Mol. Res. 2015, 14, 7687–7695. [Google Scholar] [CrossRef] [PubMed]
- Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 2001, 13, 2099–2114. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jun, J.H.; Dixon, R.A. MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol. 2014, 165, 1424–1439. [Google Scholar] [CrossRef]
- Fan, Y.; Peng, J.; Wu, J.; Zhou, P.; He, R.; Allan, A.C.; Zeng, L. NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC Plant Biol. 2021, 21, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Brown, M.; Hatlestad, G.; Akhavan, N.; Smith, T.; Hembd, A.; Moore, J.; Montes, D.; Mosley, T.; Resendez, J.; et al. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Dev. Biol. 2016, 419, 54–63. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, K.; Qi, Y.; Lv, G.; Ren, X.; Liu, Z.; Ma, F. Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in Kiwifruit (Actinidia chinensis). J. Agr. Food Chem. 2021, 69, 3677–3691. [Google Scholar] [CrossRef]
- An, X.H.; Tian, Y.; Chen, K.Q.; Wang, X.F.; Hao, Y.J. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J. Plant Physiol. 2012, 169, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B. Evolutionary Analysis of Mybs-Bhlh-Wd40 Protein Complexes Formation and Their Functional Relationship in Planta; University of Cologne: Cologne, Germany, 2018. [Google Scholar]
- Fickett, J.W.; Wasserman, W.W. Discovery and modeling of transcriptional regulatory regions. Curr. Opin. Biotech. 2000, 11, 19–24. [Google Scholar] [CrossRef]
- Li, C.; Pei, J.; Yan, X.; Tsuruta, M.; Liu, Y.; Lian, C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. Plant Cell Environ. 2021, 44, 3015–3033. [Google Scholar] [CrossRef] [PubMed]
- Kazuya, K.; Mineyo, N.; Ikuko, N.; Goto-Yamamoto, N.; Matsumura, H.; Tanaka, N. Functional characterization of a new grapevine MYB transcription factor and regulation of proanthocyanidin biosynthesis in grapes. J. Expt. Bot. 2014, 65, 4433–4449. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Guo, J.; Chen, M.; Zhang, X.; Zhang, G.; Zhang, P.; Liang, J.; Wen, P. VvMYBPA2 Regulated the Accumulation of Flavan-3-ols though Forming a Trimeric Complex in ‘Zaoheibao’ Grape. Agriculture 2022, 12, 1414. https://doi.org/10.3390/agriculture12091414
Liang C, Guo J, Chen M, Zhang X, Zhang G, Zhang P, Liang J, Wen P. VvMYBPA2 Regulated the Accumulation of Flavan-3-ols though Forming a Trimeric Complex in ‘Zaoheibao’ Grape. Agriculture. 2022; 12(9):1414. https://doi.org/10.3390/agriculture12091414
Chicago/Turabian StyleLiang, Changmei, Jianyong Guo, Mingxiang Chen, Xuehui Zhang, Guorong Zhang, Pengfei Zhang, Jinjun Liang, and Pengfei Wen. 2022. "VvMYBPA2 Regulated the Accumulation of Flavan-3-ols though Forming a Trimeric Complex in ‘Zaoheibao’ Grape" Agriculture 12, no. 9: 1414. https://doi.org/10.3390/agriculture12091414
APA StyleLiang, C., Guo, J., Chen, M., Zhang, X., Zhang, G., Zhang, P., Liang, J., & Wen, P. (2022). VvMYBPA2 Regulated the Accumulation of Flavan-3-ols though Forming a Trimeric Complex in ‘Zaoheibao’ Grape. Agriculture, 12(9), 1414. https://doi.org/10.3390/agriculture12091414