Biogas in Uganda and the Sustainable Development Goals: A Comparative Cross-Sectional Fuel Analysis of Biogas and Firewood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Target Population and Data Collection
2.2. Data Analysis
3. Results
3.1. Presence of Biogas in the Household
3.2. Perception and Motivation for Biogas Use
3.3. Impact of Biogas Consumption against Firewood on Households
3.4. Factors Hindering the Adoption of Household Biogas Technologies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sehgal, K. Current State and Future Prospects of Global Biogas Industry. Biofuel. Bioprod. Biorefin. 2018, 6, 449–472. [Google Scholar]
- International Energy Agency (IEA). Key World Energy Statistics 2021. IEA, 2021. Available online: https://iea.blob.core.windows.net/assets/52f66a88-0b63-4ad2-94a5-29d36e864b82/KeyWorldEnergyStatistics2021.pdf (accessed on 27 August 2022).
- Clemens, H.; Bailis, R.; Nyambane, A.; Ndung’u, V. Africa Biogas Partnership Program: A review of clean cooking implementation through market development in East Africa. Energy Sustain. Dev. 2018, 46, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Laramee, J.; Jennifer, D. Economic and Environmental Impacts of domestic bio-digesters: Evidence from Arusha, Tanzania. Energy Sustain. Dev. 2013, 17, 296–304. [Google Scholar] [CrossRef]
- Lwiza, F.; Mugisha, J.; Walekhwa, P.N.; Smith, J.; Balana, B. Dis-adoption of Household Biogas technologies in Central Uganda. Energy Sustain. Dev. 2017, 37, 124–132. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z.; Mang, H.P.; Neupane, K.; Wauthelet, M.; Huba, E.M. Application of fault tree approach for technical assessment of small-sized bigas systems in Nepal. Appl. Energy 2014, 113, 1372–1381. [Google Scholar] [CrossRef]
- Parawira, W. Biogas technology in sub-Saharan Africa: Status, prospects and constraints. Rev. Environ. Sci. Biotechnol. 2009, 8, 187–200. [Google Scholar]
- Walekhwa, P.N.; Lars, D.; Mugisha, J. Economic viability of biogas energy production from family-sized digesters in Uganda. Biomass Bioenergy 2014, 70, 26–39. [Google Scholar] [CrossRef]
- Walekhwa, P.N.; Mugisha, J.; Drake, L. Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications. Energy Policy 2009, 37, 2754–2762. [Google Scholar] [CrossRef]
- IRENA. Biogas for Domestic Cooking. Technology Brief. 2017. Available online: https://irena.org/-/media/Files/IRENA/Agency/Publication/2017/Dec/IRENA_Biogas_for_domestic_cooking_2017.pdf (accessed on 12 June 2021).
- Nabuuma, B.; Okure, M. The state of biogas systems in Uganda. In Proceedings of the Dissemination Workshop on Utilization of Market Wastes, Kampala, Uganda, 15–16 April 2004; Available online: http://makir.mak.ac.ug/bitstream/handle/10570/1329/sabiiti-karungi-sas-res.pdf?sequence=3&isAllowed=y (accessed on 2 March 2021).
- Ocwieja, S.M. Life Cycle Thinking Assessment Applied to Three Biogas Projects in Central Uganda. 2010. Available online: https://files.peacecorps.gov/multimedia/pdf/learn/whyvol/masters/theses/Engineering/OcwiejaSarahAbstract.pdf (accessed on 14 June 2021).
- IEA (International Energy Agency). Energy for All, Financing Access to the Poor-Special Early Excerpt of the World Energy Outlook. 2011. Available online: https://www.heartland.org/_template-assets/documents/publications/weo2011_energy_for_all-1.pdf (accessed on 29 May 2021).
- Namugenyi, I.; Coenen, L.; Scholderer, J. Realising the transition to bioenergy: Integrating entrepreneurial business models into the biogas socio-technical system in Uganda. J. Clean. Prod. 2022, 333, 130135. [Google Scholar] [CrossRef]
- KCCA (Kampala Capital City Authority). Kampala Waste Treatment and Disposal PPP. 2017. Available online: https://www.kcca.go.ug/uDocs/kampala-waste-treatment-and-disposal-ppp.pdf (accessed on 11 July 2020).
- MEMD (Ministry of Energy and Mineral Development). The Uganda’s Biomass Energy Strategy. 2013. Available online: https://www.undp.org/uganda/publications/biomass-energy-strategy-best-uganda-0#:~:text=Planning%20for%20biomass%20is%20therefore,use%20biomass%20energy%20for%20cooking (accessed on 12 June 2021).
- Hosseini, S.E. Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine crisis. Future Energy 2022, 1, 2–5. [Google Scholar] [CrossRef]
- GFW (Global Forest Watch). Uganda. 2022. Available online: Globalforestwatch.org (accessed on 6 September 2022).
- Black, M.J.; Roy, A.; Twinomunuji, E.; Kemausuor, F.; Oduro, R.; Leach, M.; Sadhukhan, J.; Murphy, R. Bottled biogas—An opportunity for clean cooking in Ghana and Uganda. Energies 2021, 14, 3856. [Google Scholar] [CrossRef]
- Kabyanga, M.; Balana, B.B.; Mugisha, J.; Walekhwa, P.N.; Smith, J.; Glenk, K. Are smallholder farmers willing to pay for a flexible balloon biogas digester? Evidence from a case study in Uganda. Energy Sustain. Dev. 2018, 43, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Obaideen, K.; Abdelkareem, M.A.; Wiberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Olabi, A.G. Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. J. Taiwan Inst. Chem. Eng. 2022, 131, 104207. [Google Scholar] [CrossRef]
- UBOS (Uganda Bureau of Statistics). Republic of Uganda, National Population and Housing Census 2014 Main Report. 2014. Available online: https://www.ubos.org/wp-content/uploads/publications/03_20182014_National_Census_Main_Report.pdf (accessed on 22 June 2021).
- Ghimire, P.C. SNV supported domestic biogas programmes in Asia and Africa. Renew Energy 2013, 49, 90–94. [Google Scholar] [CrossRef]
- Ferrer, I.; Garfi, A.; Uggetti, E.; Laia, F.M.; Arcadio, C.; Enric, V. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenergy 2011, 35, 1668–1674. [Google Scholar] [CrossRef]
- Kasap, A.; Aktas, R.; Dulger, E. Economic and Environmental Impacts of Biogas. J. Agric. Sci. Technol. 2012, 8, 271–277. [Google Scholar]
- Zabranska, J.; Pokoma, D. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol. Adv. 2018, 36, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Uhunamure, S.E.; Nethengwe, N.S.; Tinarwo, D. Evaluating Biogas Technology in South Africa: Awareness and Perceptions towards Adoption at Household Level in Limpopo Province. In Renewable Energy-Resources, Challenges and Applications; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Chelagat, R.T. Attitudes Influencing Adoption of Biogas Fuel among Workers and Learners in selected Christian Based Training Institutions in Nandi County, Kenya. 2016. Available online: http://ir-library.ku.ac.ke/handle/123456789/17589 (accessed on 12 June 2021).
- Mequannt, M.; Fikadu, Y.; Getriet, A.; Husein, A. Status of energy utilization and factors affecting rural households’ adoption of biogas technology in north-western Ethiopia. Heliyon 2021, 7, e06487. [Google Scholar]
- Syed, M.A.; Yonggong, L.; Ashfaq, A.S.; Umer, K.; Zafar, M. Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan. Energy Environ. 2020, 31, 308–329. [Google Scholar]
Aspect | Description | Frequency (n) | Percentage (%) |
---|---|---|---|
Biogas presence in the household | Have biogas installed | 158 | 60.30 |
Have no biogas installed | 104 | 39.70 | |
Type of digester | Fixed dome | 144 | 91.10 |
Balloon | 9 | 5.70 | |
Floating drum | 5 | 3.20 | |
Feedstock used | Animal waste | 143 | 84.60 |
Human waste | 26 | 15.40 | |
Purpose of the energy | Cooking | 152 | 59.40 |
Lighting | 95 | 37.10 | |
Heating | 8 | 3.10 | |
Other reasons | 1 | 0.40 | |
Appliances used | Biogas stoves | 142 | 53.40 |
Biogas lamps | 93 | 35.00 | |
Biogas cookers | 9 | 24.00 | |
Refrigerators | 7 | 2.60 | |
Alternative energy source | Firewood | 86 | 41.30 |
Solar | 42 | 20.20 | |
Hydropower | 68 | 32.70 | |
Fuel generators | 4 | 1.90 | |
Others | 8 | 3.80 |
Factor | Mean | Std. Deviation | Variance | Skewness | Kurtosis |
---|---|---|---|---|---|
It is smoke-free | 5.84 | 0.384 | 0.148 | −2.301 | 4.494 |
Women and children have time to participate in other developmental activities | 4.46 | 0.791 | 0.625 | −0.788 | 1.106 |
Time spent on cooking is reduced | 4.35 | 0.879 | 0.773 | −0.340 | 0.411 |
Easy to use | 2.49 | 0.731 | 0.534 | 0.248 | 0.404 |
Saves money | 2.46 | 0.824 | 0.679 | 0.206 | −0.077 |
Subsidies given by the government | 1.35 | 0.950 | 0.902 | 3.123 | 9.720 |
Valid N (listwise) | 262 |
Effect | Multivariate Tests | |||||
---|---|---|---|---|---|---|
Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | |
Pillai’s trace | 0.02 | 0.673 a | 8.00 | 253.00 | 0.71 | 0.02 |
Wilks’ lambda | 0.98 | 0.673 a | 8.00 | 253.00 | 0.71 | 0.02 |
Hotelling’s trace | 0.02 | 0.673 a | 8.00 | 253.00 | 0.71 | 0.02 |
Roy’s largest root | 0.02 | 0.673 a | 8.00 | 253.00 | 0.71 | 0.02 |
Effect | Multivariate Tests | |||||
---|---|---|---|---|---|---|
Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | |
Pillai’s trace | 0.01 | 0.696 b | 3.00 | 258.00 | 0.56 | 0.01 |
Wilks’ lambda | 0.99 | 0.696 b | 3.00 | 258.00 | 0.56 | 0.01 |
Hotelling’s trace | 0.01 | 0.696 b | 3.00 | 258.00 | 0.56 | 0.01 |
Roy’s largest root | 0.01 | 0.696 b | 3.00 | 258.00 | 0.56 | 0.01 |
Effect | Multivariate Tests | |||||
---|---|---|---|---|---|---|
Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | |
Pillai’s trace | 0.00 | 0.129 a | 2.00 | 259.00 | 0.88 | 0.00 |
Wilks’ lambda | 1.00 | 0.129 a | 2.00 | 259.00 | 0.88 | 0.00 |
Hotelling’s trace | 0.00 | 0.129 a | 2.00 | 259.00 | 0.88 | 0.00 |
Roy’s largest root | 0.00 | 0.129 a | 2.00 | 259.00 | 0.88 | 0.00 |
SDG | Biogas Impact |
---|---|
Goal 2. Zero hunger | Increased crop yield. Valorisation of non-arable land. |
Goal 3. Good health and wellbeing | Reduced cooking time. Reduced firewood collection burden. Higher life expectancy. |
Goal 5. Gender equality | Builds user’s technical capacity. Women empowerment, rendering them independent. Women and children have time to participate in other developmental activities. |
Goal 6. Clean water and sanitation | Improved household sanitation. |
Goal 7. Affordable and clean energy for all | Reduced household particulate matter concentration. Smoke-free. Affordable technology for cooking and electricity generation. |
Goal 8. Decent work and economic growth | Job creation for the household members. Increased economic growth through the trading of biogas equipment. |
Goal 9. Industry, innovation, and infrastructure | Low-cost technology. Easy to operate and maintain biogas plant. |
Goal 13. Climate action | Reduction of greenhouse gas emissions. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukisa, P.J.; Ketuama, C.T.; Roubík, H. Biogas in Uganda and the Sustainable Development Goals: A Comparative Cross-Sectional Fuel Analysis of Biogas and Firewood. Agriculture 2022, 12, 1482. https://doi.org/10.3390/agriculture12091482
Mukisa PJ, Ketuama CT, Roubík H. Biogas in Uganda and the Sustainable Development Goals: A Comparative Cross-Sectional Fuel Analysis of Biogas and Firewood. Agriculture. 2022; 12(9):1482. https://doi.org/10.3390/agriculture12091482
Chicago/Turabian StyleMukisa, Phiona Jackline, Chama Theodore Ketuama, and Hynek Roubík. 2022. "Biogas in Uganda and the Sustainable Development Goals: A Comparative Cross-Sectional Fuel Analysis of Biogas and Firewood" Agriculture 12, no. 9: 1482. https://doi.org/10.3390/agriculture12091482
APA StyleMukisa, P. J., Ketuama, C. T., & Roubík, H. (2022). Biogas in Uganda and the Sustainable Development Goals: A Comparative Cross-Sectional Fuel Analysis of Biogas and Firewood. Agriculture, 12(9), 1482. https://doi.org/10.3390/agriculture12091482