Seroprevalence and Potential Risk Factors of Toxoplasma gondii in Dromedary Camels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Area
2.3. Sampling and Data Collection
2.4. Serological Examination
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selim, A.; Abdelhady, A. Neosporosis among Egyptian camels and its associated risk factors. Trop. Anim. Health Prod. 2020, 52, 3381–3385. [Google Scholar] [CrossRef]
- Selim, A.; Attia, K.A.; Alsubki, R.A.; Kimiko, I.; Sayed-Ahmed, M.Z. Cross-sectional survey on Mycobacterium avium Subsp. paratuberculosis in Dromedary Camels: Seroprevalence and risk factors. Acta Trop. 2022, 226, 106261. [Google Scholar] [CrossRef]
- Selim, A.; Ali, A.-F. Seroprevalence and risk factors for C. burentii infection in camels in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2020, 68, 101402. [Google Scholar] [CrossRef]
- Selim, A.; Marawan, M.A.; Ali, A.-F.; Manaa, E.; AbouelGhaut, H.A. Seroprevalence of bovine leukemia virus in cattle, buffalo, and camel in Egypt. Trop. Anim. Health Prod. 2020, 52, 1207–1210. [Google Scholar] [CrossRef]
- Kaufmann, B.A. Reproductive performance of camels (Camelus dromedarius) under pastoral management and its influence on herd development. Livest. Prod. Sci. 2005, 92, 17–29. [Google Scholar] [CrossRef]
- Tibary, A.; Abdelhaq, A.; Abdelmalek, S. Factors affecting reproductive performance of camels at the herd and individual level. In Proceedings of the Desertification Combat and Food Safety: The Added Value of Camel Producers, Ashkabad, Turkmenistan, 19–21 April 2004; pp. 97–114. [Google Scholar]
- Gwida, M.; El-Gohary, A.; Melzer, F.; Khan, I.; Rösler, U.; Neubauer, H. Brucellosis in camels. Res. Vet. Sci. 2012, 92, 351–355. [Google Scholar] [CrossRef]
- Gutierrez, C.; Corbera, J.; Juste, M.; Doreste, F.; Morales, I. An outbreak of abortions and high neonatal mortality associated with Trypanosoma evansi infection in dromedary camels in the Canary Islands. Vet. Parasitol. 2005, 130, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, E.Z.; Dima, N.; Beyi, A.F.; Dawo, F.; Feyissa, N.; Jorga, E.; Di Marco, V.; Vitale, M. Toxoplasmosis in camels (Camelus dromedarius) of Borana zone, Oromia region, Ethiopia: Seroprevalence and risk factors. Trop. Anim. Health Prod. 2016, 48, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Narnaware, S.D.; Dahiya, S.S.; Kumar, S.; Tuteja, F.C.; Nath, K.; Patil, N.V. Pathological and diagnostic investigations of abortions and neonatal mortality associated with natural infection of Brucella abortus in dromedary camels. Comp. Clin. Pathol. 2017, 26, 79–85. [Google Scholar] [CrossRef]
- Selim, A.; Abdelrahman, A.; Thiéry, R.; Sidi-Boumedine, K. Molecular typing of Coxiella burnetii from sheep in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101353. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.M.; Hussein, A.A.; Ewida, R.M. Occurrence of Toxoplasma gondii in raw goat, sheep, and camel milk in Upper Egypt. Vet. World 2018, 11, 1262. [Google Scholar] [CrossRef]
- Lass, A.; Ma, L.; Kontogeorgos, I.; Zhang, X.; Li, X.; Karanis, P. First molecular detection of Toxoplasma gondii in vegetable samples in China using qualitative, quantitative real-time PCR and multilocus genotyping. Sci. Rep. 2019, 9, 17581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, J. Toxoplasmosis in sheep—The last 20 years. Vet. Parasitol. 2009, 163, 1–14. [Google Scholar] [CrossRef]
- Buxton, D.; Maley, S.W.; Wright, S.E.; Rodger, S.; Bartley, P.; Innes, E.A. Toxoplasma gondii and ovine toxoplasmosis: New aspects of an old story. Vet. Parasitol. 2007, 149, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, E.Z.; Yunus, H.A.; Tesfamaryam, G.; Tessema, T.S.; Dawo, F.; Terefe, G.; Di Marco, V.; Vitale, M. First report of Toxoplasma gondii in camels (Camelus dromedarius) in Ethiopia: Bioassay and seroepidemiological investigation. BMC Vet. Res. 2014, 10, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavassoli, M.; Esmaeilnejad, B.; Malekifard, F.; Soleimanzadeh, A.; Dilmaghani, M. Detection of Toxoplasma gondii DNA in Sheep and Goat Milk in Northwest of Iran by PCR-RFLP. Jundishapur J. Microbiol. 2013, 6, e8201. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J. The one health approach to toxoplasmosis: Epidemiology, control, and prevention strategies. EcoHealth 2019, 16, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P. Toxoplasmosis of Animals and Humans; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Shaapan, R.; Khalil, A.F. Evaluation of different Toxoplasma gondii isolates as antigens used in the modified agglutination test for the detection of toxoplasmosis in camels and donkeys. Am.-Eurasian J. Agric. Environ. Sci. 2008, 3, 837–841. [Google Scholar]
- Dehkordi, F.S.; Haghighi Borujeni, M.R.; Rahimi, E.; Abdizadeh, R. Detection of Toxoplasma gondii in raw caprine, ovine, buffalo, bovine, and camel milk using cell cultivation, cat bioassay, capture ELISA, and PCR methods in Iran. Foodborne Pathog. Dis. 2013, 10, 120–125. [Google Scholar] [CrossRef]
- Abdallah, M.-C.; Kamel, M.; Karima, B.; Samir, A.; Djamel, K.; Rachid, K.; Khatima, A.-O. Cross-sectional survey on Toxoplasma gondii infection in cattle, sheep, and goats in Algeria: Seroprevalence and risk factors. Vet. Sci. 2019, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebremedhin, E.Z.; Agonafir, A.; Tessema, T.S.; Tilahun, G.; Medhin, G.; Vitale, M.; Marco, V.D.; Cox, E.; Vercruysse, J.; Dorny, P. Seroepidemiological study of ovine toxoplasmosis in East and West Shewa Zones of Oromia regional state, Central Ethiopia. BMC Vet. Res. 2013, 9, 117. [Google Scholar] [CrossRef]
- Shehzad, A.; Masud, A.; Fatima, T.; Khan, F.M.; Rehman, S.; Effendi, M.H.; Suwanti, L.T.; Khan, I.; Tyasningsih, W.; Faisal, S. Seroprevalence of Toxoplasma gondii and associated alterations in hematology and serum biochemistry of one-humped camels (Camelus dromedarius) in Pakistan. Vet. World 2022, 15, 110. [Google Scholar] [CrossRef]
- Utuk, A.; Kirbas, A.; Babur, C.; Balkaya, I. Detection of Toxoplasma gondii antibodies and some helminthic parasites in camels from Nevsehir province of Turkey. Isr. J. Vet. Med. 2012, 67, 106–108. [Google Scholar]
- Pietkiewicz, H.; Hiszczynska-Sawicka, E.; Kur, J.; Petersen, E.; Nielsen, H.; Stankiewicz, M.; Andrzejewska, I.; Myjak, P. Usefulness of Toxoplasma gondii-specific recombinant antigens in serodiagnosis of human toxoplasmosis. J. Clin. Microbiol. 2004, 42, 1779–1781. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Réguet, N.; Lebrun, M.; Fourmaux, M.N.; Mercereau-Puijalon, O.; Mann, T.; Beckers, C.J.; Samyn, B.; Van Beeumen, J.; Bout, D.; Dubremetz, J.F. The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cell. Microbiol. 2000, 2, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Ghazy, A.; Shaapan, R.; Abdel-Rahman, E.H. Comparative serological diagnosis of toxoplasmosis in horses using locally isolated Toxoplasma gondii. Vet. Parasitol. 2007, 145, 31–36. [Google Scholar] [CrossRef]
- Abdallah, M.-C.; Kamel, M.; Karima, B.; Samir, A.; Hocine, B.M.; Djamel, K.; Rachid, K.; Khatima, A.-O. First report of Toxoplasma gondii infection and associated risk factors in the dromedary camel (Camelus dromedarius) population in south East Algeria. Vet. Parasitol. Reg. Stud. Rep. 2020, 22, 100475. [Google Scholar] [CrossRef]
- Khattab, R.A.-H.; Barghash, S.M.; Mostafa, O.M.S.; Allam, S.A.; Taha, H.A.-H.; Ashour, A.A.E.-B. Seroprevalence and molecular characterization of Toxoplasma gondii infecting ruminants in the North-West of Egypt. Acta Trop. 2022, 225, 106139. [Google Scholar] [CrossRef] [PubMed]
- Fereig, R.M.; Mahmoud, H.Y.; Mohamed, S.G.; AbouLaila, M.R.; Abdel-Wahab, A.; Osman, S.A.; Zidan, S.A.; El-Khodary, S.A.; Mohamed, A.E.A.; Nishikawa, Y. Seroprevalence and epidemiology of Toxoplasma gondii in farm animals in different regions of Egypt. Vet. Parasitol. Reg. Stud. Rep. 2016, 3, 1–6. [Google Scholar] [CrossRef]
- Selim, A. Chlamydophila abortus infection in small ruminants: A review. Asian J. Anim. Vet. Adv. 2016, 11, 587–593. [Google Scholar] [CrossRef]
- Elhosseny, M.; Gwida, M.; Elsherbini, M.; Samra, M.; Ashmawy, A. Evaluation of physicochemical properties and microbiological quality of camel milk from Egypt. J. Dairy Vet. Anim. Res. 2018, 7, 92–97. [Google Scholar]
- Thrusfield, M. Veterinary Epidemiology; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Toaleb, N.I.; Shaapan, R.M.; Hassan, S.E.; El Moghazy, F.M. High diagnostic efficiency of affinity isolated fraction in camel and cattle toxoplasmosis. World Med. Sci. J. 2013, 8, 61–66. [Google Scholar]
- Abu-Zeid, Y.A. Protein G ELISA for detection of antibodies against Toxoplasma SAG1 in dromedaries. J. Egypt. Soc. Parasitol. 2002, 32, 247–257. [Google Scholar] [PubMed]
- Khalil, K.M.; Elrayah, I.E. Seroprevalence of Toxoplasma gondii antibodies in farm animals (camels, cattle, and sheep) in Sudan. J. Vet. Med. Anim. Health 2011, 3, 36–39. [Google Scholar]
- Al-Anazi, A.D. Prevalence of Neospora caninum and Toxoplasma gondii antibodies in sera from camels (Camelus dromedarius) in Riyadh Province, Saudi Arabia. J. Egypt Soc. Parasitol. 2011, 41, 245–250. [Google Scholar]
- Nasreen, N.; Niaz, S.; Khan, A.; Zaman, M.A.; Ayaz, S.; Naeem, H.; Khan, N.; Elgorban, A.M. The potential of Allium sativum and Cannabis sativa extracts for anti-tick activities against Rhipicephalus (Boophilus) microplus. Exp. Appl. Acarol. 2020, 82, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.; Jones, J. Toxoplasma gondii infection in humans and animals in the United States. Int. J. Parasitol. 2008, 38, 1257–1278. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.M.; Elhaig, M.M.; Moawed, S.A.; El-Nahas, E. Modeling the potential risk factors of bovine viral diarrhea prevalence in Egypt using univariable and multivariable logistic regression analyses. Vet. World 2018, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Reisberg, K.; Selim, A.M.; Gaede, W. Simultaneous detection of Chlamydia spp., Coxiella burnetii, and Neospora caninum in abortion material of ruminants by multiplex real-time polymerase chain reaction. J. Vet. Diagn. Investig. 2013, 25, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.; Alanazi, A.D.; Sazmand, A.; Otranto, D. Seroprevalence and associated risk factors for vector-borne pathogens in dogs from Egypt. Parasites Vectors 2021, 14, 175. [Google Scholar] [CrossRef]
- Selim, A.; Ali, A.-F.; Ramadan, E. Prevalence and molecular epidemiology of Johne’s disease in Egyptian cattle. Acta Trop. 2019, 195, 1–5. [Google Scholar] [CrossRef]
- Selim, A.; Radwan, A. Seroprevalence and molecular characterization of West Nile Virus in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2020, 71, 101473. [Google Scholar]
- Selim, A.; Yang, E.; Rousset, E.; ThiÚry, R.; Sidi-Boumedine, K. Characterization of Coxiella burnetii strains from ruminants in a Galleria mellonella host-based model. New Microbes New Infect. 2018, 24, 8–13. [Google Scholar] [CrossRef]
- Selim, A.; Megahed, A.A.; Kandeel, S.; Abdelhady, A. Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101517. [Google Scholar] [CrossRef]
- Selim, A.M.; Elhaig, M.M.; Gaede, W. Development of multiplex real-time PCR assay for the detection of Brucella spp., Leptospira spp. and Campylobacter foetus. Vet. Ital. 2014, 50, 75. [Google Scholar]
- Tilahun, B.; Tolossa, Y.H.; Tilahun, G.; Ashenafi, H.; Shimelis, S. Seroprevalence and risk factors of Toxoplasma gondii infection among domestic ruminants in East Hararghe zone of Oromia Region, Ethiopia. Vet. Med. Int. 2018, 2018, 4263470. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.; Alsubki, R.A.; Albohairy, F.M.; Attia, K.A.; Kimiko, I. A survey of bluetongue infection in one-humped camels (Camelus dromedarius); seroprevalence and risk factors analysis. BMC Vet. Res. 2022, 18, 322. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Radwan, A.; Arnaout, F.; Khater, H. The Recent Update of the Situation of West Nile Fever among Equids in Egypt after Three Decades of Missing Information. Pak. Vet. J. 2020, 40. [Google Scholar] [CrossRef]
- Hussein, M.; Bakkar, M.; Basmaeil, S.; El Nabi, A.G. Prevalence of toxoplasmosis in Saudi Arabian camels (Camelus dromedarius). Vet. Parasitol. 1988, 28, 175–178. [Google Scholar] [CrossRef]
- Silva, A.V.d.; Cunha, E.L.P.; Meireles, L.R.; Gottschalk, S.; Mota, R.A.; Langoni, H. Toxoplasmose em ovinos e caprinos: Estudo soroepidemiológico em duas regiões do Estado de Pernambuco, Brasil. Ciênc. Rural 2003, 33, 115–119. [Google Scholar] [CrossRef]
- Fahmy, M.; Mandour, A.; Arafa, M.; Abdel Rahman, B. Toxoplasmosis of camels in Assiut governorate. J. Egypt. Vet. Med. Assoc. 1979, 39, 27–31. [Google Scholar]
- Elamin, E.; Elias, S.; Daugschies, A.; Rommel, M. Prevalence of Toxoplasma gondii antibodies in pastoral camels (Camelus dromedarius) in the Butana plains, mid-Eastern Sudan. Vet. Parasitol. 1992, 43, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.; Meng, P.; Ye, Q.; Zhang, D. Toxoplasma gondii infection in Bactrian camel (Camelus bactrianus) in China. Vet. Parasitol. 2013, 192, 288–289. [Google Scholar] [CrossRef]
- Rouatbi, M.; Amairia, S.; Amdouni, Y.; Boussaadoun, M.A.; Ayadi, O.; Al-Hosary, A.A.T.; Rekik, M.; Abdallah, R.B.; Aoun, K.; Darghouth, M.A. Toxoplasma gondii infection and toxoplasmosis in North Africa: A review. Parasite 2019, 26. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, K. Toxoplasmosis in humans and animals in Saudi Arabia: A systematic review. J. Infect. Dev. Ctries. 2020, 14, 800–811. [Google Scholar] [CrossRef]
- Qublan, H.; Jumaian, N.; Abu-Salem, A.; Hamadelil, F.; Mashagbeh, M.; Abdel-Ghani, F. Toxoplasmosis and habitual abortion. J. Obstet. Gynaecol. 2002, 22, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. Trop. Anim. Health Prod. 2020, 52, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
Variable | Total of Tested Camels | No of Positive | No of Negative | % of Positive | 95% CI | Statistic |
---|---|---|---|---|---|---|
Locality | ||||||
Kafr ElSheikh | 120 | 47 | 73 | 39.2 | 30.9–48.11 | χ2 = 6.688 df = 2 p = 0.035 * |
Qalyubia | 120 | 54 | 66 | 45.0 | 36.39–53.92 | |
Marsa Matrouh | 150 | 82 | 68 | 54.7 | 46.69–62.42 | |
Sex | ||||||
Male | 75 | 11 | 64 | 14.7 | 8.39–24.39 | χ2 = 38.793 df = 1 p < 0.0001 * |
Female | 315 | 172 | 143 | 54.6 | 49.08–60.01 | |
Age | ||||||
<4 | 70 | 15 | 55 | 21.4 | 13.44–32.39 | χ2 = 33.582 df = 2 p < 0.0001 * |
>4–8 | 190 | 85 | 105 | 44.7 | 37.84–51-84 | |
>8 | 130 | 83 | 47 | 63.8 | 55.3–71.6 | |
Contact with sheep and goats | ||||||
Yes | 120 | 77 | 43 | 64.2 | 55.27–72.19 | χ2 = 20.694 df = 1 p < 0.0001 * |
No | 270 | 106 | 164 | 39.3 | 33.62–45.2 | |
History of abortion | ||||||
Yes | 60 | 41 | 19 | 68.3 | 55.76–78.69 | χ2 = 13.051 df = 1 p < 0.0001 * |
No | 330 | 142 | 188 | 43.0 | 37.8–48.42 | |
Parity | ||||||
1 | 10 | 2 | 8 | 20.0 | 5.67–50.98 | χ2 = 32.747 df = 2 p < 0.0001 * |
>1–4 | 170 | 72 | 98 | 42.4 | 35.17–49.87 | |
>4 | 135 | 98 | 37 | 72.6 | 64.52–79.41 | |
Total | 390 | 183 | 207 | 46.9 | 42.02–51.88 |
Factor | B | S.E. | OR | 95% C.I. for OR | p Value | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Locality | ||||||
Qalyubia | 0.118 | 0.352 | 1.13 | 0.56 | 2.24 | 0.737 |
Marsa Matrouh | 0.701 | 0.350 | 2.02 | 1.02 | 4.01 | 0.045 |
SexFemale | 1.957 | 0.397 | 7.07 | 3.25 | 15.39 | <0.0001 |
Age | ||||||
>4–8 | 0.556 | 0.407 | 1.74 | 0.79 | 3.87 | 0.172 |
>8 | 1.665 | 0.414 | 5.28 | 2.35 | 11.90 | <0.0001 |
Contact with sheep and goats | ||||||
Yes | 1.348 | 0.306 | 3.85 | 2.11 | 7.01 | 0.001 |
History of abortion | ||||||
Yes | 1.345 | 0.397 | 3.84 | 1.76 | 8.36 | <0.0001 |
Parity | ||||||
>1–4 | 1.519 | 1.020 | 4.57 | 0.62 | 33.74 | 0.137 |
>4 | 2.875 | 1.031 | 17.72 | 2.35 | 133.57 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selim, A.; Marawan, M.A.; Abdelhady, A.; Wakid, M.H. Seroprevalence and Potential Risk Factors of Toxoplasma gondii in Dromedary Camels. Agriculture 2023, 13, 129. https://doi.org/10.3390/agriculture13010129
Selim A, Marawan MA, Abdelhady A, Wakid MH. Seroprevalence and Potential Risk Factors of Toxoplasma gondii in Dromedary Camels. Agriculture. 2023; 13(1):129. https://doi.org/10.3390/agriculture13010129
Chicago/Turabian StyleSelim, Abdelfattah, Marawan A. Marawan, Abdelhamed Abdelhady, and Majed H. Wakid. 2023. "Seroprevalence and Potential Risk Factors of Toxoplasma gondii in Dromedary Camels" Agriculture 13, no. 1: 129. https://doi.org/10.3390/agriculture13010129
APA StyleSelim, A., Marawan, M. A., Abdelhady, A., & Wakid, M. H. (2023). Seroprevalence and Potential Risk Factors of Toxoplasma gondii in Dromedary Camels. Agriculture, 13(1), 129. https://doi.org/10.3390/agriculture13010129