A Method of Polished Rice Image Segmentation Based on YO-LACTS for Quality Detection
Abstract
:1. Introduction
2. Methods and Materials
2.1. Overall Workflow
2.2. Image Acquisition Device
2.3. Polished Rice Dataset Production
2.4. Model Structure
3. Network Selection
3.1. Evaluation Indexes
3.2. Experimental Verification
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nie, L.; Peng, S. Rice production in China. In Rice Production Worldwide; Springer: Berlin/Heidelberg, Germany, 2017; pp. 33–52. [Google Scholar] [CrossRef]
- Yadav, B.; Jindal, V. Changes in head rice yield and whiteness during milling of rough rice (Oryza sativa L.). J. Food Eng. 2008, 86, 113–121. [Google Scholar] [CrossRef]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recognit. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Bali, A.; Singh, S.N. A review on the strategies and techniques of image segmentation. In Proceedings of the 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 21–22 February 2015; IEEE: New York, NY, USA, 2015; pp. 113–120. [Google Scholar] [CrossRef]
- Pham, D.L.; Xu, C.; Prince, J.L. Current Methods in Medical Image Segmentation. Annu. Rev. Biomed. Eng. 2000, 2, 315–337. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, N.; Das, I.; Maulik, U. Understanding Deep Learning Techniques for Image Segmentation. ACM Comput. Surv. 2019, 52, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Muda, T.Z.T.; Salam, R.A. Blood cell image segmentation using hybrid K-means and median-cut algorithms. In Proceedings of the IEEE International Conference on Control System, Penang, Malaysia, 25–27 November 2011; IEEE: New York, NY, USA, 2011; pp. 237–243. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, W.; Yang, T.; Liu, T.; Chen, W.; Chen, C.; Li, R.; Zhou, T.; Sun, C.; Zhou, Y.; et al. Head rice rate measurement based on concave point matching. Sci. Rep. 2017, 7, 41353. [Google Scholar] [CrossRef]
- Liang, J.; Li, H.; Xu, F.; Chen, J.; Zhou, M.; Yin, L.; Zhai, Z.; Chai, X. A Fast Deployable Instance Elimination Segmentation Algorithm Based on Watershed Transform for Dense Cereal Grain Images. Agriculture 2022, 12, 1486. [Google Scholar] [CrossRef]
- Gamarra, M.; Zurek, E.; Escalante, H.J.; Hurtado, L.; San-Juan-Vergara, H. Split and merge watershed: A two-step method for cell segmentation in fluorescence microscopy images. Biomed. Signal Process. Control 2019, 53, 101575. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, C.; Caragea, D.; Narayana, N.K.; Hein, N.T.; Bheemanahalli, R.; Somayanda, I.M.; Jagadish, S.V.K. Deep learning based high-throughput phenotyping of chalkiness in rice exposed to high night temperature. Plant Methods 2022, 18, 9. [Google Scholar] [CrossRef]
- Li, B.; Liu, B.; Li, S.; Liu, H. An Improved EfficientNet for Rice Germ Integrity Classification and Recognition. Agriculture 2022, 12, 863. [Google Scholar] [CrossRef]
- Xiong, X.; Duan, L.; Liu, L.; Tu, H.; Yang, P.; Wu, D.; Chen, G.; Xiong, L.; Yang, W.; Liu, Q. Panicle-SEG: A robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods 2017, 13, 104. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Takeda, F.; Jiang, H.; Yang, W.Q.; Saito, S.; Li, C. A deep learning-based web application for segmentation and quantification of blueberry internal bruising. Comput. Electron. Agric. 2022, 201, 107200. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Z.; Shao, W.; Hou, S.; Ji, Z.; Liu, G.; Yin, X. FoveaMask: A fast and accurate deep learning model for green fruit instance segmentation. Comput. Electron. Agric. 2021, 191, 106488. [Google Scholar] [CrossRef]
- Pérez-Borrero, I.; Marín-Santos, D.; Gegúndez-Arias, M.E.; Cortés-Ancos, E. A fast and accurate deep learning method for strawberry instance segmentation. Comput. Electron. Agric. 2020, 178, 105736. [Google Scholar] [CrossRef]
- Lu, J.; Xiang, J.; Liu, T.; Gao, Z.; Liao, M. Sichuan Pepper Recognition in Complex Environments: A Comparison Study of Traditional Segmentation versus Deep Learning Methods. Agriculture 2022, 12, 1631. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-Time Instance Segmentation. In Proceedings of the 2019 IEEE/CVF In-ternational Conference on Computer Vision (ICCV), Seoul, South Korea, 27 October–2 November 2019; pp. 9156–9165. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Bochkovskiy, A.; Wang, C.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; Wang, X. Mask Scoring R-CNN. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 6409–6418. [Google Scholar] [CrossRef]
- Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. SOLO: Segmenting Objects by Locations. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 649–665. [Google Scholar]
- Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. Solov2: Dynamic and fast instance segmentation. Adv. Neural Inf. Process. Syst. 2020, 33, 17721–17732. [Google Scholar]
Predicted | Actual | |
---|---|---|
Positive | Negative | |
Positive | TP (True positive) | FP (False positive) |
Negative | FN (False negative) | TN (True negative) |
Box APall (%) | Params (M) | Speed/Image (ms) | |
---|---|---|---|
YOLOv5n | 88.4 | 1.9 | 11.3 |
YOLOv5s | 92.1 | 7.2 | 11.4 |
YOLOv5m | 92.8 | 21.2 | 15.3 |
YOLOv5l | 94.4 | 46.5 | 17.4 |
YOLOv5x | 95.6 | 86.7 | 27.0 |
FPN Num | Params (M) | Speed (Frame/s) | Box (%) | Mask (%) | |||||
---|---|---|---|---|---|---|---|---|---|
APall | AP50 | AP75 | APall | AP50 | AP75 | ||||
ResNet101 | 3 | 194.4 | 3.76 | 79.34 | 97.91 | 89.84 | 79.99 | 97.85 | 91.44 |
4 | 196.7 | 3.74 | 77.55 | 97.86 | 89.43 | 81.28 | 98.83 | 91.58 | |
5 | 199.0 | 3.73 | 71.78 | 95.59 | 85.17 | 77.13 | 96.74 | 89.65 | |
ResNet50 | 3 | 118.0 | 4.54 | 78.57 | 98.76 | 90.50 | 80.17 | 97.88 | 90.99 |
4 | 120.4 | 4.52 | 77.53 | 97.83 | 89.52 | 80.55 | 97.86 | 91.51 | |
5 | 122.7 | 4.51 | 75.06 | 97.86 | 90.15 | 78.96 | 98.52 | 91.30 |
Image Size | Backbone | Params (M) | Speed (Frame/s) | Mask (%) | |||
---|---|---|---|---|---|---|---|
APall | AP50 | AP75 | |||||
YO-LACTS | 550 × 550, 256 × 256 | ResNet50 | 134.8 | 4.31 | 75.49 | 89.72 | 86.09 |
ResNet101 | 211.1 | 3.52 | 83.90 | 98.83 | 94.91 | ||
YOLACT | 550 × 550 | ResNet50 | 122.7 | 4.51 | 73.69 | 98.00 | 96.74 |
ResNet101 | 199.0 | 3.73 | 73.66 | 98.99 | 97.52 | ||
Mask R-CNN | 512 × 512 | ResNet50 | 170.0 | 2.38 | 78.00 | 97.00 | 93.80 |
ResNet101 | 244.0 | 1.76 | 76.80 | 98.00 | 95.80 | ||
Mask Scoring R-CNN | 1333 × 800 | ResNet50 | 481.4 | 1.63 | 75.49 | 89.72 | 86.09 |
ResNet101 | 630.9 | 1.15 | 81.90 | 96.00 | 93.80 | ||
SOLO | 1333 × 800 | ResNet50 | 318.3 | 1.72 | 82.50 | 95.00 | 93.70 |
ResNet101 | 470.6 | 1.26 | 82.60 | 95.00 | 93.50 | ||
SOLOv2 | 1333 × 800 | ResNet50 | 369.4 | 1.70 | 82.20 | 95.00 | 93.90 |
ResNet101 | 546.9 | 1.21 | 80.70 | 94.50 | 90.90 |
Predicted (Instance) | Actual (Instance) | Error Rate (%) | |
---|---|---|---|
Head rice | 14 | 19 | 26.3 |
Chalky rice | 31 | 26 | 19.2 |
Broken rice | 16 | 16 | 0.0 |
Predicted (Instance) | Actual (Instance) | Error Rate (%) | |
---|---|---|---|
Head rice | 15,917 | 15,949 | 0.2 |
Chalky rice | 5478 | 5446 | 0.6 |
Broken rice | 392 | 392 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zeng, S.; Chen, Y.; Kang, Z.; Li, H.; Sheng, Z. A Method of Polished Rice Image Segmentation Based on YO-LACTS for Quality Detection. Agriculture 2023, 13, 182. https://doi.org/10.3390/agriculture13010182
Zhou J, Zeng S, Chen Y, Kang Z, Li H, Sheng Z. A Method of Polished Rice Image Segmentation Based on YO-LACTS for Quality Detection. Agriculture. 2023; 13(1):182. https://doi.org/10.3390/agriculture13010182
Chicago/Turabian StyleZhou, Jinbo, Shan Zeng, Yulong Chen, Zhen Kang, Hao Li, and Zhongyin Sheng. 2023. "A Method of Polished Rice Image Segmentation Based on YO-LACTS for Quality Detection" Agriculture 13, no. 1: 182. https://doi.org/10.3390/agriculture13010182
APA StyleZhou, J., Zeng, S., Chen, Y., Kang, Z., Li, H., & Sheng, Z. (2023). A Method of Polished Rice Image Segmentation Based on YO-LACTS for Quality Detection. Agriculture, 13(1), 182. https://doi.org/10.3390/agriculture13010182