Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landscape
2.3. Physiography and Laboratory Analyses
Landscape | Lithology/Origin | Relief | Landform | Map. Unit | Rep. Profile | Area (Km2) | Area (%) | Soil Sets | Type of Soil Sets |
---|---|---|---|---|---|---|---|---|---|
Flood plain | Alluvial deposits | Flat to gently undulating | High terraces | AT1 | 1 | 37.56 | 2.77 | Typic torrifluvents | Cons. |
Moderate terraces | AT2 | 4, 3, and 2 | 112.85 | 8.32 | Typic torrifluvents | Cons. | |||
Low terraces | AT3 | 9, 8, 7, 6, and 5 | 267.49 | 19.71 | Typic torrifluvents | Assoc. | |||
Gentle slope | Over flow basins | AB2 | 12, 11, and 10 | 136.49 | 10.06 | Typic torrifluvents | Comp. | ||
Decantation basins | AB1 | 16, 15, 14, and 13 | 146.88 | 10.83 | Vertic torrifluvents | Assoc. | |||
Flat to almost flat | Fish ponds | AF | -- | 8.22 | 0.6 | -- | -- | ||
Old deltaic deposits | Undulating | Isolated hills | ODH | -- | 5.77 | 0.43 | -- | -- | |
Lacustrine plain | Lacustrine deposits | Flat to gently undulating | High terraces | LT1 | 17 | 56.07 | 4.14 | Typic torrifluvents | Cons. |
Low terraces | LT3 | 18 | 40.18 | 2.96 | Typic torrifluvents | Cons. | |||
Gentle slope | Over flow basins | LB2 | 21, 20, and 19 | 151.74 | 11.18 | Vertic torrifluvents | Comp. | ||
Decantation basins | LB1 | 24, 23, and 22 | 98.22 | 7.25 | Vertic torrifluvents | Comp. | |||
Flat to almost flat | Fish ponds | LF | -- | 211.34 | 15.57 | -- | -- | ||
Lake bed | Flat to almost flat | Fish ponds | LbF | -- | 83.79 | 6.18 | -- | -- | |
Total | 1356.63 | 100 |
2.4. Soil Degradation Assessment
3. Results and Discussion
3.1. Soils of the Flood Plain
Map. Unit | Profile No. | Depth (cm) | PH 01:02.5 | EC (dS/m) | CEC (cmolc/kg) | ESP (%) | OM (%) | CaCO3 (%) | Bulk Density (g/cm3) | Particle Size Distribution (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coarse | Fine | Silt (%) | Clay (%) | Texture | ||||||||||
Sand (%) | Sand (%) | |||||||||||||
AT1 | 1 | 150 | 8.33 | 0.84 | 14.90 | 2.66 | 0.29 | 2.95 | 1.35 | 4.55 | 31.77 | 41.97 | 21.7 | Loam |
AT2 | 2 | 150 | 8.43 | 0.84 | 20.68 | 3.12 | 0.30 | 3.30 | 1.31 | 7.6 | 39.45 | 27.9 | 25.05 | Sandy clay loam |
3 | 120 | 8.22 | 3.13 | 26.21 | 13.04 | 0.29 | 2.36 | 1.44 | 5.32 | 27.67 | 33.22 | 33.77 | Clay loam | |
4 | 145 | 8.22 | 3.04 | 22.65 | 11.30 | 0.49 | 2.52 | 1.45 | 3.27 | 21.35 | 39.95 | 35.42 | Clay loam | |
AT3 | 5 | 138 | 8.14 | 3.44 | 27.12 | 7.54 | 0.65 | 1.56 | 1.48 | 2.16 | 22.43 | 39.33 | 36.06 | Clay loam |
6 | 95 | 8.37 | 5.81 | 32.72 | 18.97 | 0.76 | 3.12 | 1.24 | 2.65 | 16.35 | 38.35 | 42.6 | Clay | |
7 | 117 | 8.33 | 2.37 | 35.97 | 8.55 | 0.80 | 1.39 | 1.3 | 1.73 | 8.1 | 45.4 | 44.7 | Silty clay | |
8 | 91 | 8.43 | 5.42 | 34.97 | 14.66 | 0.77 | 1.94 | 1.28 | 5.2 | 15.13 | 36.8 | 42.8 | Clay | |
9 | 150 | 8.20 | 2.49 | 30.61 | 9.30 | 0.51 | 3.58 | 1.46 | 3.7 | 22.62 | 37.67 | 36.00 | Clay loam | |
AB2 | 10 | 115 | 8.44 | 4.88 | 43.95 | 11.91 | 1.30 | 3.71 | 1.20 | 1.65 | 9.75 | 37.35 | 51.25 | Clay |
11 | 110 | 8.17 | 3.55 | 41.45 | 10.63 | 0.83 | 4.77 | 1.06 | 4.36 | 13.03 | 38.5 | 44.26 | Clay | |
12 | 130 | 8.19 | 1.95 | 46.86 | 6.60 | 1.17 | 1.82 | 1.32 | 2.96 | 12.36 | 36.7 | 47.96 | Clay | |
AB1 | 13 | 125 | 8.48 | 4.13 | 44.41 | 13.30 | 1.51 | 2.90 | 1.16 | 2.6 | 11.2 | 32.43 | 53.76 | Clay |
14 | 120 | 8.42 | 3.56 | 52.03 | 8.42 | 0.90 | 2.52 | 1.16 | 3.06 | 12.03 | 29.16 | 55.73 | Clay | |
15 | 135 | 8.31 | 4.89 | 45.75 | 17.90 | 1.08 | 3.04 | 1.39 | 0.76 | 5.86 | 35.36 | 58.00 | Clay | |
16 | 110 | 8.29 | 5.97 | 51.71 | 20.77 | 1.79 | 2.47 | 1.22 | 2.6 | 8.1 | 30.3 | 59.00 | Clay | |
LT1 | 17 | 150 | 8.19 | 3.07 | 19.93 | 9.27 | 0.56 | 1.91 | 1.54 | 5.7 | 23.82 | 43.8 | 26.67 | Loam |
LT3 | 18 | 140 | 8.26 | 2.22 | 23.58 | 9.05 | 0.65 | 3.29 | 1.50 | 3.03 | 27.8 | 37.56 | 31.6 | Clay loam |
LB2 | 19 | 120 | 8.42 | 4.37 | 47.51 | 13.81 | 2.11 | 4.17 | 1.20 | 7.85 | 17.00 | 22.35 | 52.8 | Clay |
20 | 140 | 8.31 | 3.96 | 46.35 | 12.83 | 1.27 | 6.35 | 1.33 | 7.1 | 15.47 | 26.5 | 50.93 | Clay | |
21 | 115 | 8.38 | 4.81 | 41.89 | 12.89 | 1.50 | 1.38 | 1.23 | 4.85 | 12.05 | 25.35 | 57.75 | Clay | |
LB1 | 22 | 85 | 8.41 | 8.36 | 48.96 | 18.71 | 1.60 | 8.02 | 1.36 | 4.47 | 10.3 | 21.27 | 63.95 | Clay |
23 | 130 | 8.23 | 5.82 | 55.79 | 13.27 | 1.56 | 6.23 | 1.33 | 6.00 | 15.75 | 18.82 | 59.42 | Clay | |
24 | 80 | 8.37 | 9.20 | 43.11 | 22.87 | 1.36 | 5.36 | 1.02 | 2.32 | 8.9 | 21.95 | 66.82 | Clay |
Soils of the Lacustrine Plain
3.2. Heavy Metals
3.3. Soil Degradation
3.3.1. Spatial Soil Degradation Model
3.3.2. Soil Degradation Risk Assessment
3.4. Pollution Indices
3.4.1. Enrichment Factor (EF)
3.4.2. Pollution Load Index (PLI)
3.4.3. Potential Ecological Risk Index (PER)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aksoy, E.; Ozsoy, G.; Dirim, S.M. Soil mapping approach in GIS using Landsat satellite imagery and DEM data. Afr. J. Agric. Res. 2009, 4, 1295–1302. [Google Scholar]
- FAO. Soil is a non-renewable resource. In 2015 International Year of Soils; Food and Agriculture Organization: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i4373e.pdf (accessed on 1 July 2021).
- Shokr, M.S.; Abdellatif, M.A.; El Baroudy, A.A.; Elnashar, A.; Ali, E.F.; Belal, A.A.; Attia, W.; Ahmed, M.; Aldosari, A.A.; Szantoi, Z.; et al. Development of a spatial model for soil quality assessment under arid and semi-arid conditions. Sustainability 2021, 13, 2893. [Google Scholar] [CrossRef]
- Warren, A.; Agnew, C. An Assessment of Desertification and Land Degradation in Arid and Semi Arid Areas; Paper No. 2; International Institute for Environment and Development: London, UK, 1988. [Google Scholar]
- Lal, R.; Stewart, B.A. Advances in Soil Science, Soil Degradation; Springer: New York, NY, USA, 1990; p. 349. [Google Scholar]
- Wim, G.; El-Hadji, M. Causes, General Extent and Physical Consequence of Land Degradation in Arid, Semi Arid and Dry Subhumid Areas; Forest Conservation and Natural Resources, Forest Department; FAO: Rome, Italy, 2002. [Google Scholar]
- Liberti, M.; Simoniello, T.; Carone, M.T.; Coppola, R.; Emilio, M.D.; Macchiato, M. Mapping badland areas using LANDSAT TM/ETM satellite imagery and morphological data. Geomorphology 2009, 106, 333–343. [Google Scholar] [CrossRef]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security:Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Bridges, E.M.; Oldeman, L.R. Global assessment of human-induced soil degradation. Arid Soil Res. Rehabil. 1999, 13, 319–325. [Google Scholar] [CrossRef]
- Ali, R.; Abdel-Kawy, W.A. Land degradation risk assessment of El Fayoum depression, Egypt. Arab. J. Geosci. 2013, 6, 2767–2776. [Google Scholar] [CrossRef]
- UNCCD. United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa; UNCCD: Paris, France, 1994. [Google Scholar]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soils and sustainable agriculture, a review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Uchida, S. Applicability of satellite remote sensing for mapping hazardous state of land degradation by soil erosion on agricultural areas. Procedia Environ. Sci. 2015, 24, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, R.S.; Sreenivas, K.; Ramana, K.V. Inventory of salt affected soils and water-logged areas: A remote sensing approach. Int. J. Remote Sens. 1999, 20, 1589–1599. [Google Scholar] [CrossRef]
- Darwish, K.H.; Abdel Kawy, W.A. Quantitive Assessment of Soil Degradation in some Areas North Nile Delta, Egypt. Int. J. Geol. 2008, 2, 17–22. [Google Scholar]
- Wahab, M.A.; Rasheed, M.A.; Youssef, R.A. Degradation hazard assessment of some soils north Nile Delta, Egypt. J. Am. Sci. 2010, 6, 156–161. [Google Scholar]
- Abdel Kawy, W.A.; Ali, R.R. Assessment of soil degradation and resilience at northeast Nile Delta, Egypt: The impact on soil productivity. Egypt. J. Remote Sens. Space Sci. 2012, 15, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, A.; Ali, R.; Gad, A. Land Degradation Monitoring in the Nile Delta of Egypt, using Remote Sensing and GIS. Int. J. Basic Appl. Sci. 2012, 1, 292–303. [Google Scholar]
- Hamed, Y.; Salem, S.h.; Ali, A.; Sheshtawi, A. Environmental Effect of Using Polluted Water in New/Old Fish Farms. Recent Advances in Fish Farms In Tech. 2011. Available online: http://cdn.intechopen.com/pdfs-wm/24077.pdf (accessed on 10 November 2014).
- Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; Söderlund, L.; Liu, G.H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef]
- Ai, P.; Jin, K.; Alengebawy, A.; Elsayed, M.; Meng, L.; Chen, M.; Ran, Y. Effect of application of different biogas fertilizer on eggplant production: Analysis of fertilizer value and risk assessment. Environ. Technol. 2020, 19, 101019. [Google Scholar] [CrossRef]
- Mbah, C.; Anikwe, M. Variation in heavy metal contents on roadside soils along a major expressway in south east Nigeria. N. Y. Sci. J. 2010, 3, 103–107. [Google Scholar]
- Sofianska, E.; Michailidis, K.; Mladenova, V.; Filippidis, A. Multivariate Statistical and GIS-Based Approach to Identify Heavy Metal Sources in Soils of the Drama Plain, Northern Greece. National Conference with International Participation, Geosci. 2013, pp. 131–132. Available online: https://www.bgd.bg/CONFERENCES/Geonauki_2013/Sbornik/pdf/55_Sofianska_GeoSci_2013.pdf (accessed on 1 July 2021).
- Farmer, J.G. The perturbation of historical pollution records in aquatic sediments. Environ. Geochem. Health 1991, 13, 76–83. [Google Scholar] [CrossRef]
- He, H.; Shi, L.; Yang, G.; You, M.; Vasseur, L. Ecological Risk Assessment of Soil Heavy Metals and Pesticide Residues in Tea Plantations. Agriculture 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Abowaly, M.E.; Belal, A.-A.A.; Abd Elkhalek, E.E.; Elsayed, S.; Abou Samra, R.M.; Alshammari, A.S.; Moghanm, F.S.; Shaltout, K.H.; Alamri, S.A.M.; Eid, E.M. Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling. Sustainability 2021, 13, 8027. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; Bessa, A.Z.E.; Elsayed, A.; El-Esawi, M.A.; AL-Harbi, M.S.; Samra, B.N.; Kotb, W.K. Assessment of the Heavy Metals Pollution and Ecological Risk in Sediments of Mediterranean Sea Drain Estuaries in Egypt and Phytoremediation Potential of Two Emergent Plants. Sustainability 2021, 13, 12244. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, Z.; Guo, Z.; Wang, B.; Hu, X.; Bai, L. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in XilinGol league. Acta Ecol. Sin. 2017, 37, 219–228. [Google Scholar] [CrossRef]
- Egyptian Meteorological Authority. Climatic Atlas of Egypt; Arab Republic of Egypt, Ministry of Transport: Cairo, Egypt, 2016. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy; Department of Agriculture, Natural Resources Conservation Service: Washington, WA, USA, 2014. [Google Scholar]
- Shata, A.A.; Fayoumy, E.I. Remarks on the regional geological structure of the Nile Delta. In Proceedings of the Bucharest Symposium for Hydrology of the Delta, Bucharest, Romania, 6–9 May 1969. [Google Scholar]
- Abou El Enain, A.S. Use G.I.S. Remote Sensing and Aerial Photo-Interpretation Techniques for Mapping and Evaluating Soil Improvement in Some Areas of North Nile Delta, Egypt. Ph.D. Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt, 1997. [Google Scholar]
- ITT. ITT Corporation ENVI 5.1 Software, ITT: White Plains, NY, USA, 2009.
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation; John Wiley: New York, NY, USA, 2007. [Google Scholar]
- Zinck, J.A.; Valenzuela, C.R. Soil geographic database structure and application examples. ITC J. 1990, 3, 270–294. [Google Scholar]
- Dobos, E.; Norman, B.; Bruee, W.; Luca, M.; Chris, J.; Erika, M. The Use of DEM and Satellite Images for Regional Scale Soil Database. In Proceedings of the 17th World Congress of Soil Science (WCSS), Bangkok, Thailand, 14–21 August 2002. [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006. [Google Scholar]
- Klute, A. (Ed.) Methods of Soil Analysis (Part 1) Physical and Mineralogical Methods; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Burt, R. Soil Survey Laboratory Methods Manual, Soil Survey Investigation; Report No. 42 Version 4.0; USDA: Washington, WA, USA, 2004. [Google Scholar]
- Cottenie, A.; Verloo, M.; Velghe, G.; Kiekens, L. Biological and Analytical Aspects of Soil Pollution; Laboratory of Analytical Agrochemistry, State University: Gent, Belgium, 1982. [Google Scholar]
- FAO/UNEP. A Provisional Methodology for Soil Degradation Assessment; FAO: Rome, Italy, 1979; p. 48. [Google Scholar]
- Abuzaid, A.S. Assessing degradation of floodplain soils in north east Nile Delta, Egypt. Egypt. J. Soil Sci. 2018, 58, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Kome, G.K.; Enang, R.K.; Tabi, F.O.; Yerima, B.P.K. Influence of clay minerals on some soil fertility attributes: A review. Open J. Soil Sci. 2019, 9, 155–188. [Google Scholar] [CrossRef]
- Bedard-Haughn, A. Gleysolic soils of Canada: Genesis, distribution, and classification. Can. J. Soil Sci. 2011, 91, 763–779. [Google Scholar] [CrossRef]
- Draz, S.E.O.; Youssef, D.H.; El-Said, G.F. Sedimentological characteristics and distribution of fluoride in granulometric fractions of subsurface sediments in Suez and Aqaba Gulfs, Egypt. J. Egypt. Acad. Soc. Environ. Dev. D-Environ. Stud. 2009, 10, 73–91. [Google Scholar]
- Chen, Y.; Stevenson, F.J. The Role of Organic Matter in Modern Agriculture; Chen, Y., Acenmelech, Y., Eds.; Martinus Nijhoff: Dorderecht, The Netherlands, 1986; pp. 73–112. [Google Scholar]
- Chen, Y.M.; Gao, J.B.; Yuan, Y.Q.; Ma, J.; Yu, S. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Cont. Shelf Res. 2016, 124, 125–133. [Google Scholar] [CrossRef]
- Krzysztof, F.; Małgorzata, K.; Anna, G.; Agnieszka, P. The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska 2012, 15, 81–92. [Google Scholar]
- Sutherland, R.A. Lead in grain size fractions of road deposited sediment. Environ. Pollut. 2003, 121, 229–237. [Google Scholar] [CrossRef]
- Boiteau, R.M.; Till, C.P.; Ruacho, A.; Bundy, R.M.; Hawco, N.J.; McKenna, A.M.; Repeta, D.J. Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect. Front. Mar. Sci. 2016, 3, 243. [Google Scholar] [CrossRef] [Green Version]
- Damian, F.; Damian, G.; Radu, L.R.; Macovei, G.; Iepure, G.; Napradean, I.; Chira, R.; Kollar, L.; Rata, L.; Zaharia, D.C. Soils from the Baia Mare Zone and the Heavy Metals Pollution. Carpthian J. Earth Environ. Sci. 2008, 3, 85–98. [Google Scholar]
- Damian, G.; Iepure, Z.S.G.; Damian, F. Distribution of heavy metals in granulometric fractions and on soil profiles. Carpathian J. Earth Environ. Sci. 2019, 14, 343–351. [Google Scholar] [CrossRef]
- Pazira, E.; Homaee, M. Salt leaching efficiency of subsurface drainage systems at presence of diffusing saline water table boundary: A case study in Khuzestan plains, Iran. In Proceedings of the 9th International Drainage Symposium Held Jointly with CIGR and CSBE/SCGAB Proceedings, Quebec City, QC, Canada, 13–16 June 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010; p. 1. [Google Scholar]
- Ghafoor, A.; Murtaza, G.; Rehman, M.Z.; Sabir, M. Reclamation and salt leaching efficiency for tile drained saline-sodic soil using marginal quality water for irrigating rice and wheat crops. Land Degrad. Dev. 2012, 23, 1–9. [Google Scholar] [CrossRef]
- Van Hoorn, J.W. Salt transport in heavy clay soil. In Proceedings of the ISSS Symposium on Water and Solute Movement in Heavy Clay Soils, Wageningen, The Netherlands, 27–31 August 1984; pp. 229–240. [Google Scholar]
- Xu, Y.; Jimenez, M.A.; Parent, S.É.; Leblanc, M.; Ziadi, N.; Parent, L.E. Compaction of coarse-textured soils: Balance models across mineral and organic compositions. Front. Ecol. Evol. 2017, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Li, Z.; Li, D.; Yuan, Z.; Chen, Z.; Huang, J. Distribution characteristics of heavy metal(loid)s in aggregates of different size fractions along contaminated paddy soil profile. Environ. Sci. Pollut. Res. 2017, 24, 23939–23952. [Google Scholar] [CrossRef]
- Kawy, W.A.M.; Darwish, K.M. Assessment of land degradation and implications on agricultural land in Qalyubia Governorate, Egypt. Bull. Natl. Res. Cent. 2019, 43, 70. [Google Scholar] [CrossRef]
- Praveena, S.M.; Aris, A.Z.; Radojevic, M. Heavy metals dynamics and source in intertidal mangrove sediment of Sabah Borneo Island. Environ. Asia 2010, 3, 79–83. [Google Scholar]
- Rule, J.H. Assessment of trace element geochemistry of Hampton roads harbor and lower Chesapeake Bay sediments area. Geol. Water Sci. 1986, 8, 209–219. [Google Scholar] [CrossRef]
- Rubio, B.; Nombela, M.A.; Vilas, F. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain) an assessment of metal pollution. Mar. Pollut. Bull. 2000, 40, 968–980. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Birch, G. A scheme for assessing human impacts on coastal aquatic environments using sediments. In Coastal GIS; Woodcoffe, C.D., Furness, R.A., Eds.; Wollongong University Papers in Center for Maritime Policy: Wollongong, Australia, 2003; Volume 14. [Google Scholar]
- Kelliher, F.M.; Gray, C.W.; Noble, A.D. Superphosphate fertiliser application and cadmium accumulation in a pastoral soil. N. Z. J. Agric. Res. 2017, 60, 404–422. [Google Scholar] [CrossRef]
- Tomilson, D.C.; Wilson, D.J.; Harris, C.R.; Jeffrey, D.W. Problem in assessment of heavy metals in estuaries and the formation of pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar]
- Chakravarty, M.; Patgiri, A.D. Metal pollution assessment in sediments of the Dikrong River, NE India. J. Hum. Ecol. 2009, 27, 63–67. [Google Scholar] [CrossRef]
- Seshan, B.R.R.; Natesan, U.; Deepthi, K. Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. Int. J. Environ. Sci. Technol. 2010, 7, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An ecological risk assessment index for aquatic contamination control, a sedimentogical approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
Fe | Mn | Zn | Cu | Pb | Ni | Co | Cd | |
---|---|---|---|---|---|---|---|---|
Max | 67,359.3 | 1394.72 | 310.15 | 86.14 | 168.51 | 145.32 | 87.26 | 5.43 |
Min | 2871.5 | 74.51 | 11.21 | 7.98 | 7.31 | 4.88 | 7.87 | 0.20 |
Mean | 34,621.7 | 569.93 | 122.66 | 44.02 | 63.12 | 61.45 | 32.87 | 1.98 |
Map. Unit | Chemical Degradation | Physical Degradation | ||||||
---|---|---|---|---|---|---|---|---|
Salinization | Alkalization | Compaction | Water Logging | |||||
EC dS/m | Class | ESP (%) | Class | BD (g/cm3) | Class | W.T cm | Class | |
AT1 | 0.89 | 1 | 2.55 | 1 | 1.36 | 2 | 150 | 1 |
AT2 | 2.38 | 1 | 9.14 | 1 | 1.4 | 3 | 138 | 1 |
AT3 | 4.5 | 2 | 13.11 | 2 | 1.36 | 2 | 118 | 2 |
AB2 | 3.69 | 1 | 9.97 | 1 | 1.19 | 1 | 118 | 1 |
AB1 | 4.72 | 2 | 15.24 | 3 | 1.22 | 2 | 122 | 3 |
LT1 | 3.54 | 1 | 10.27 | 2 | 1.55 | 3 | 150 | 2 |
LT3 | 2.62 | 1 | 10.39 | 2 | 1.51 | 3 | 140 | 2 |
LB2 | 4.79 | 2 | 12.54 | 2 | 1.27 | 2 | 125 | 2 |
LB1 | 7.87 | 2 | 18.64 | 3 | 1.23 | 2 | 98 | 3 |
Map. Unit | Chemical Degradation Risk | Physical Degradation Risk | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SR | TR | CR | Risk | Class | SR | TR | CR | Risk | Class | |
AT1 | 1 | 1 | 0.76 | 0.76 | 1 | 1.93 | 1 | 4.60 | 8.87 | 4 |
AT2 | 1 | 1 | 0.76 | 0.76 | 1 | 1.07 | 1 | 4.60 | 4.92 | 3 |
AT3 | 1.9 | 1 | 1.03 | 1.95 | 1 | 0.97 | 1 | 4.60 | 4.46 | 3 |
AB2 | 1.5 | 1 | 0.66 | 0.99 | 1 | 0.78 | 1 | 4.60 | 3.58 | 2 |
AB1 | 1.5 | 1 | 0.87 | 1.30 | 1 | 0.55 | 1 | 4.60 | 2.53 | 2 |
LT1 | 1 | 1 | 1.51 | 1.51 | 1 | 1.64 | 1 | 4.60 | 7.54 | 4 |
LT3 | 1 | 1 | 0.76 | 0.76 | 1 | 1.18 | 1 | 4.60 | 5.42 | 3 |
LB2 | 1.5 | 1 | 1.01 | 1.51 | 1 | 0.45 | 1 | 4.60 | 2.07 | 2 |
LB1 | 2.5 | 1 | 2.02 | 5.05 | 3 | 0.32 | 1 | 4.60 | 1.47 | 1 |
Map. Unit | Mn | Zn | Cu | Pb | Ni | Co | Cd |
---|---|---|---|---|---|---|---|
AT1 | 2.37 | 2.64 | 4.41 | 15.59 | 1.41 | 10.10 | 22.31 |
AT2 | 0.78 | 1.70 | 2.05 | 4.09 | 1.00 | 2.62 | 10.80 |
AT3 | 1.01 | 2.03 | 2.14 | 4.78 | 1.26 | 2.87 | 11.83 |
AB2 | 0.69 | 1.79 | 1.13 | 3.10 | 1.08 | 2.45 | 11.54 |
AB1 | 0.93 | 1.87 | 1.17 | 3.52 | 1.50 | 2.29 | 7.88 |
LT1 | 2.41 | 1.47 | 3.93 | 14.71 | 2.03 | 5.96 | 26.99 |
LT3 | 0.45 | 1.84 | 2.05 | 1.66 | 1.99 | 3.57 | 12.41 |
LB2 | 0.70 | 1.38 | 1.07 | 4.77 | 1.25 | 1.29 | 7.98 |
LB1 | 1.04 | 2.04 | 1.22 | 5.05 | 1.18 | 2.47 | 8.92 |
Map. Unit | PLI | PER | ||
---|---|---|---|---|
Value | Level | Value | Level | |
AT1 | 0.48 | Unpolluted | 95.28 | Low risk |
AT2 | 0.77 | Unpolluted | 153.62 | Moderate risk |
AT3 | 0.88 | Unpolluted | 149.02 | Low risk |
AB2 | 1.22 | Polluted | 239.66 | Moderate risk |
AB1 | 1.59 | Polluted | 239.80 | Moderate risk |
LT1 | 1.11 | Polluted | 275.43 | Moderate risk |
LT3 | 0.83 | Unpolluted | 194.34 | Moderate risk |
LB2 | 1.69 | Polluted | 316.46 | Considerable risk |
LB1 | 2.63 | Polluted | 414.65 | Considerable risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abowaly, M.E.; Ali, R.A.; Moghanm, F.S.; Gharib, M.S.; Moustapha, M.E.; Elbagory, M.; Omara, A.E.-D.; Elmahdy, S.M. Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt. Agriculture 2023, 13, 76. https://doi.org/10.3390/agriculture13010076
Abowaly ME, Ali RA, Moghanm FS, Gharib MS, Moustapha ME, Elbagory M, Omara AE-D, Elmahdy SM. Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt. Agriculture. 2023; 13(1):76. https://doi.org/10.3390/agriculture13010076
Chicago/Turabian StyleAbowaly, Mohamed E., Raafat A. Ali, Farahat S. Moghanm, Mohamed S. Gharib, Moustapha Eid Moustapha, Mohssen Elbagory, Alaa El-Dein Omara, and Shimaa M. Elmahdy. 2023. "Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt" Agriculture 13, no. 1: 76. https://doi.org/10.3390/agriculture13010076
APA StyleAbowaly, M. E., Ali, R. A., Moghanm, F. S., Gharib, M. S., Moustapha, M. E., Elbagory, M., Omara, A. E. -D., & Elmahdy, S. M. (2023). Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt. Agriculture, 13(1), 76. https://doi.org/10.3390/agriculture13010076