Identification of a Novel KTi-1 Allele Associated with Reduced Trypsin Inhibitor Activity in Soybean Accessions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. TIA Assay
2.3. Calculation of TIA
2.4. DNA Extraction and Kompetitive Allele-Specific PCR (KASP) Assay
2.5. Whole-Genome Re-Sequencing
2.6. RT-qPCR Assay
2.7. Evaluation of Agronomic Traits
2.8. Statistical Analysis
3. Results
3.1. Analysis of TIA in 999 Soybean Accessions
3.2. Results of KASP Assay Screening for KTi-3 Allele
3.3. Whole-Genome Re-Sequencing
3.4. Novel Allele in KTi-1 Gene
3.5. Analysis of mRNA Expression Levels of KTi-1 Genes
3.6. Detection of Mutations in KTi-1 Candidate Genes Using KASP Markers
3.7. Evaluation of Agronomic Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dahl, E.; Nelson, R. Oilseeds. Agric. Commod. 2021, 11, 53–61. [Google Scholar]
- Liu, K. Chemistry and nutritional value of soybean components. In Soybeans; Springer: Boston, MA, USA, 1997; pp. 25–113. [Google Scholar]
- O’Keefe, S.F.; Bianchi, L.; Sharman, J. Soybean nutrition. SM J. Nutr. Metab. 2015, 1, 1006. [Google Scholar]
- Adeyemo, S.; Onilude, A. Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Niger. Food J. 2013, 31, 84–90. [Google Scholar] [CrossRef]
- Hwang, C.; Lee, S.; Kang, J.; Kwon, M.; Kwon, H.; Chung, J.; Sung, N. Physicochemical characteristics and antioxidant activity of Kanjang made from soybean cultivars lacking lipoxygenase and kunitz trypsin inhibitor protein. J. Agric. Life Sci. 2012, 46, 111–125. [Google Scholar]
- Kunitz, M. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. Physiol. 1947, 30, 291–310. [Google Scholar] [CrossRef]
- Liener, I.E.; Goodale, R.L.; Deshmukh, A.; Satterberg, T.L.; Ward, G.; DiPietro, C.M.; Bankey, P.E.; Borner, J.W. Effect of a trypsin inhibitor from soybeans (Bowman-Birk) on the secretory activity of the human pancreas. Gastroenterology 1988, 94, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Palacios, M.; Easter, R.; Soltwedel, K.; Parsons, C.; Douglas, M.; Hymowitz, T.; Pettigrew, J. Effect of soybean variety and processing on growth performance of young chicks and pigs. J. Anim. Sci. 2004, 82, 1108–1114. [Google Scholar] [CrossRef]
- Smith, J.; Wilson, F.; Allen, P.; Berry, D. Hypertrophy and hyperplasia of the rat pancreas produced by short-term dietary administration of soya-derived protein and soybean trypsin inhibitor. J. Appl. Toxicol. 1989, 9, 175–179. [Google Scholar] [CrossRef]
- DiPietro, C.; Liener, I. Soybean protease inhibitors in foods. J. Food Sci. 1989, 54, 606–609. [Google Scholar] [CrossRef]
- DiPietro, C.M.; Liener, I.E. Heat inactivation of the Kunitz and Bowman-Birk soybean protease inhibitors. J. Agric. Food Chem. 1989, 37, 39–44. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L.; Bates, A.H.; Hymowitz, T. Comparison of a commercial soybean cultivar and an isoline lacking the Kunitz trypsin inhibitor: Composition, nutritional value, and effects of heating. J. Agric. Food Chem. 1991, 39, 327–335. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, S.K.C.; Zhang, Y. Determination of protease inhibitors, glycinin, and beta-conglycinin in soybeans and their relationships. J. Food Sci. 2022, 87, 1082–1095. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Rani, A.; Mittal, P.; Shuaib, M. Kunitz trypsin inhibitor in soybean: Contribution to total trypsin inhibitor activity as a function of genotype and fate during processing. J. Food Meas. Charact. 2019, 13, 1583–1590. [Google Scholar] [CrossRef]
- Pesic, M.B.; Vucelic-Radovic, B.V.; Barac, M.B.; Stanojevic, S.P.; Nedovic, V.A. Influence of different genotypes on trypsin inhibitor levels and activity in soybeans. Sensors 2007, 7, 67–74. [Google Scholar] [CrossRef]
- Sweet, R.; Wright, H.; Janin, J.; Chothia, C.; Blow, D.A. Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6 Å resolution. Biochemistry 1974, 13, 4212–4228. [Google Scholar] [CrossRef]
- Voss, R.H.; Ermler, U.; Essen, L.O.; Wenzl, G.; Kim, Y.M.; Flecker, P. Crystal Structure of the Bifunctional Soybean Bowman-Birk Inhibitor at 0.28-nm Resolution: Structural Peculiarities in a Folded Protein Conformation. Eur. J. Biochem. 1996, 242, 122–131. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Zhang, C.; Kong, X.; Hua, Y. Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and Bowman-Birk inhibitor in soymilk processing. Food Chem. 2014, 154, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Jofuku, K.D.; Schipper, R.D.; Goldberg, R.B. A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos. Plant Cell 1989, 1, 427–435. [Google Scholar]
- Jofuku, K.D.; Goldberg, R.B. Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants. Plant Cell 1989, 1, 1079–1093. [Google Scholar]
- Gillman, J.D.; Kim, W.-S.; Krishnan, H.B. Identification of a New Soybean Kunitz Trypsin Inhibitor Mutation and Its Effect on Bowman− Birk Protease Inhibitor Content in Soybean Seed. J. Agric. Food Chem. 2015, 63, 1352–1359. [Google Scholar] [CrossRef]
- McGrain, A.K.; Chen, J.C.; Wilson, K.A.; Tan-Wilson, A.L. Proteases catalysing processing and degradation of Kunitz soybean trypsin inhibitor during seed maturation. Phytochemistry 1992, 31, 421–426. [Google Scholar] [CrossRef]
- De Moraes, R.M.A.; Soares, T.C.B.; Colombo, L.R.; Salla, M.F.S.; de Almeida Barros, J.G.; Piovesan, N.D.; De Barros, E.G.; Moreira, M.A. Assisted selection by specific DNA markers for genetic elimination of the kunitz trypsin inhibitor and lectin in soybean seeds. Euphytica 2006, 149, 221–226. [Google Scholar] [CrossRef]
- Orf, J.; Hymowitz, T. Inheritance of the Absence of the Kunitz Trypsin Inhibitor in Seed Protein of Soybeans 1. Crop Sci. 1979, 19, 107–109. [Google Scholar] [CrossRef]
- Liu, K.; Markakis, P. An improved colorimetric method for determining antitryptic activity in soybean products. Cereal Chem. 1989, 66, 415–422. [Google Scholar]
- Maranna, S.; Verma, K.; Talukdar, A.; Lal, S.K.; Kumar, A.; Mukherjee, K. Introgression of null allele of Kunitz trypsin inhibitor through marker-assisted backcross breeding in soybean (Glycine max L. Merr.). BMC Genet. 2016, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Kumar, V.; Shukla, S.; Jha, P.; Tayalkar, T.; Mittal, P. Changes in storage protein composition on genetic removal of Kunitz trypsin inhibitor maintain protein content in soybean (Glycine max). J. Agric. Food Res. 2020, 2, 100065. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, M.J.; Jeong, W.H.; Nam, K.C.; Chung, J.I. SSR marker tightly linked to the Ti locus in soybean [Glycine max (L.) Merr.]. Euphytica 2006, 152, 361–366. [Google Scholar] [CrossRef]
- Rosso, M.L.; Shang, C.; Song, Q.; Escamilla, D.; Gillenwater, J.; Zhang, B. Development of Breeder-Friendly KASP Markers for Low Concentration of Kunitz Trypsin Inhibitor in Soybean Seeds. Int. J. Mol. Sci. 2021, 22, 2675. [Google Scholar] [CrossRef]
- Duranti, M.; Barbiroli, A.; Scarafoni, A.; Tedeschi, G.; Morazzoni, P. One-step purification of Kunitz soybean trypsin inhibitor. Protein Expr. Purif. 2003, 30, 167–170. [Google Scholar] [CrossRef]
- Brandon, D.L.; Bates, A.H.; Friedman, M. ELISA analysis of soybean trypsin inhibitors in processed foods. In Nutritional and Toxicological Consequences of Food Processing; Springer: Boston, MA, USA, 1991; pp. 321–337. [Google Scholar]
- Rosso, M.L.; Shang, C.; Correa, E.; Zhang, B. An Efficient HPLC Approach to Quantify Kunitz Trypsin Inhibitor in Soybean Seeds. Crop Sci. 2018, 58, 1616–1623. [Google Scholar] [CrossRef]
- Rouquié, D.; Capt, A.; Eby, W.H.; Sekar, V.; Hérouet-Guicheney, C. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach. Regul. Toxicol. Pharmacol. 2010, 58, S47–S53. [Google Scholar] [CrossRef]
- Zhou, T.; Han, S.; Li, Z.; He, P. Purification and quantification of Kunitz trypsin inhibitor in soybean using two-dimensional liquid chromatography. Food Anal. Methods 2017, 10, 3350–3360. [Google Scholar] [CrossRef]
- Call, L.; Reiter, E.V.; Wenger-Oehn, G.; Strnad, I.; Grausgruber, H.; Schoenlechner, R.; D’Amico, S. Development of an enzymatic assay for the quantitative determination of trypsin inhibitory activity in wheat. Food Chem. 2019, 299, 125038. [Google Scholar] [CrossRef] [PubMed]
- Kakade, M.; Rackis, J.; McGhee, J.; Puski, G. Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chem. 1974, 51, 376–381. [Google Scholar]
- Liu, K. Soybean trypsin inhibitor assay: Further improvement of the standard method approved and reapproved by American oil Chemists’ Society and American Association of Cereal Chemists International. J. Am. Oil Chem. Soc. 2019, 96, 635–645. [Google Scholar] [CrossRef]
- Liu, K. Trypsin Inhibitor Assay: Expressing, Calculating, and Standardizing Inhibitor Activity in Absolute Amounts of Trypsin Inhibited or Trypsin Inhibitors. J. Am. Oil Chem. Soc. 2021, 98, 355–373. [Google Scholar] [CrossRef]
- Van Eys, J.; Offner, A.; Bach, A. Manual of quality analyses for soybean products in the feed industry. Am. Soybean Assoc. Bruss. Belg. 2004. [Google Scholar]
- Schmutz, J.; Cannon, S.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Libault, M.; Thibivilliers, S.; Bilgin, D.; Radwan, O.; Benitez, M.; Clough, S.; Stacey, G. Identification of four soybean reference genes for gene expression normalization. Plant Genome 2008, 1, 44–54. [Google Scholar] [CrossRef]
- Levesque, R. SPSS Programming and Data Management. A Guide for SPSS and SAS Users; SPSS Inc.: Chicago, IL, USA, 2007. [Google Scholar]
- Makkar, H.P.; Siddhuraju, P.; Becker, K. Trypsin Inhibitor. In Plant Secondary Metabolites; Springer: Boston, MA, USA, 2007; pp. 1–6. [Google Scholar]
- Baker, E.; Mustakas, G. Heat inactivation of trypsin inhibitor, lipoxygenase and urease in soybeans: Effect of acid and base additives. J. Am. Oil Chem. Soc. 1973, 50, 137–141. [Google Scholar] [CrossRef]
- Barać, M.; Stanojević, S. The effect of microwave roasting on soybean protein composition and components with trypsin inhibitor activity. Acta Aliment. 2005, 34, 23–31. [Google Scholar] [CrossRef]
- Vagadia, B.H.; Vanga, S.K.; Raghavan, V. Inactivation methods of soybean trypsin inhibitor–A review. Trends Food Sci. Technol. 2017, 64, 115–125. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Rawal, R.; Mourya, V. Marker assisted accelerated introgression of null allele of kunitz trypsin inhibitor in soybean. Breed. Sci. 2015, 65, 447–452. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Hymowitz, T.; Herman, E.M. Breeding and characterization of soybean Triple Null; a stack of recessive alleles of Kunitz Trypsin Inhibitor, Soybean Agglutinin, and P34 allergen nulls. Plant Breed. 2015, 134, 310–315. [Google Scholar] [CrossRef]
- Krishnan, H.B. Characterization of a soybean [Glycine max (L.) Merr.] mutant with reduced levels of Kunitz trypsin inhibitor. Plant Sci. 2001, 160, 979–986. [Google Scholar] [CrossRef]
Marker | Gene ID (Glyma.Wm82.gnm2) | Fluorescent Primer | Sequence |
---|---|---|---|
KTi-1 | Glyma01g095000 | FAM_primer | CTACTGTATCGCGTGCAGCAAGTT |
HEX_primer | TACTGTATCGCGTGCAGCAAGTG | ||
Common reverse primer | GAGAGAGAGGGTCTACAAGCTGTTA | ||
KTi-3 | Glyma08g341500 | FAM_primer | TGCAATGGATGGTTGGTTTAGACTTG |
HEX_primer | ATGCAATGGATGGTTGGTTTAGACTTT | ||
Common reverse primer | CTGTGGACAGAACACAAGCTTATAGTTAT |
Gene | Gene ID (Glyma.Wm82.gnm2) | Forward Primer (5′ → 3′) | Reverse Primer (5′ → 3′) | Product Size | Purpose |
---|---|---|---|---|---|
KTi-1 | Glyma01g09500 | TGGAGAGAGAGGGTCTACAAGC | TTAGACAGCACTAAACGCCTGA | 196 bp | RT-qPCR |
cons7 | None | ATGAATGACGGTTCCCATGTA | GGCATTAAGGCAGCTCACTCT | 114 bp | RT-qPCR |
Accession Name | Genotype Name | TIA (%) | Origin |
---|---|---|---|
IT274515 | 014502 | 43.70 ± 0.21 | KOR |
IT273590 | MNG-PSARI-1998-11 | 53.10 ± 2.67 | KOR |
IT274513 | 014499 | 54.50 ±4.38 | KOR |
IT170889 | Hood 75 | 62.90 ± 0.57 | USA |
IT276197 | GSI 014099 | 64.15 ± 5.71 | Unknown |
IT022891 | PI 74866 | 64.75 ± 1.34 | Unknown |
IT105782 | Kongnamul Kong | 68.98 ± 1.89 | KOR |
IT269977 | Daepung 2 (normal KTi) | 89.15 ± 0.22 | KOR |
PI542044 | Kunitz (null KTi-3) | 66.60 ± 1.41 | USA |
IT105782 | IT170889 | IT273590 | Mean | Total | |
---|---|---|---|---|---|
Total reads | 196,617,960 | 199,490,702 | 191,750,912 | 195,953,191 | 587,859,574 |
Average sequence length (bp) | 151 | 151 | 151 | 151 | 151 |
Total size | 29,689,311,960 | 30,123,096,002 | 28,954,387,712 | 29,588,931,891 | 88,766,795,674 |
Total size (Mb) | 29,689 | 30,123 | 28,954 | 29,588.7 | 88,766 |
Sequencing depth (×) | 26.99 | 27.38 | 26.32 | 26.90 | - |
Mapped reads | 186,915,887 | 189,267,121 | 182,758,171 | 186,313,726 | 558,941,179 |
Genome coverage (%) | 95.81% | 95.75% | 95.80% | 95.79% | - |
Number of SNPs | 1,583,974 | 1,561,108 | 1,504,380 | 1,549,821 | 4,649,462 |
Number of indels | 333,575 | 320,010 | 316,578 | 323,388 | 970,163 |
Total variation | 1,917,549 | 1,881,118 | 1,820,958 | 1,873,208 | 5,619,625 |
Cultivar | Plant Height (cm) | Number of Branches | Number of Nodes | Number of Pods | Seeds per Pod | 100-Seed Weight (g) | Flowering Date | Maturity Date |
---|---|---|---|---|---|---|---|---|
Daepung 2 | 50.8 ± 3.27 a† | 2.6 ± 0.55 a | 12.4 ± 2.07 a | 57.0 ± 10.44 a | 3 | 30.9 ± 1.60 d | 29 July | 27 October |
IT105782 | 70.0 ± 5.05 b | 11.0 ± 1.87 b | 15.4 ± 1.14 b | 120.4 ± 14.84 b | 2 | 12.7 ± 0.74 a | 2 August | 15 October |
IT170889 | 88.6 ± 1.34 c | 13.0 ± 2.35 c | 15.8 ± 0.84 b | 178.4 ± 12.78 c | 3 | 22.9 ± 0.70 c | 6 August | 6 November |
IT273590 | 133.2 ± 9.83 d | 9.4 ± 2.70 b | 22.0 ± 1.22 c | 122.0 ± 38.94 b | 2 | 15.1 ± 0.61 b | 18 August | 15 November |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, A.; Kang, S.-H.; Kang, B.-H.; Chowdhury, S.; Shin, S.-Y.; Lee, W.-H.; Lee, J.-D.; Lee, S.; Choi, Y.-M.; Ha, B.-K. Identification of a Novel KTi-1 Allele Associated with Reduced Trypsin Inhibitor Activity in Soybean Accessions. Agriculture 2023, 13, 2070. https://doi.org/10.3390/agriculture13112070
Park A, Kang S-H, Kang B-H, Chowdhury S, Shin S-Y, Lee W-H, Lee J-D, Lee S, Choi Y-M, Ha B-K. Identification of a Novel KTi-1 Allele Associated with Reduced Trypsin Inhibitor Activity in Soybean Accessions. Agriculture. 2023; 13(11):2070. https://doi.org/10.3390/agriculture13112070
Chicago/Turabian StylePark, Aron, Se-Hee Kang, Byeong-Hee Kang, Sreeparna Chowdhury, Seo-Young Shin, Won-Ho Lee, Jeong-Dong Lee, Sungwoo Lee, Yu-Mi Choi, and Bo-Keun Ha. 2023. "Identification of a Novel KTi-1 Allele Associated with Reduced Trypsin Inhibitor Activity in Soybean Accessions" Agriculture 13, no. 11: 2070. https://doi.org/10.3390/agriculture13112070