Coffee Roasting, Blending, and Grinding: Nutritional, Sensorial and Sustainable Aspects
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Coffee Blends: Development and Innovative Aspects
3.2. Roasting and Grinding
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- OIC—Organização Internacional do Café. Estatísticas do Comércio. Available online: http://www.ico.org/pt/trade_statisticsp.asp?section=Estat%EDstica (accessed on 30 October 2023).
- ABIC—Associação Brasileira da Indústria de Café. Indicadores da Indústria de Café no Brasil. Available online: http://abic.com.br/estatisticas/indicadores-da-industria/indicadores-da-industria-de-cafe-2018/#consint2018 (accessed on 30 October 2023).
- CONAB—Companhia de Nacional de Abastecimento. Acompanhamento de Safra Brasileira: Café. Available online: https://www.conab.gov.br/info-agro/safras/cafe (accessed on 10 June 2019).
- Cheng, B.; Furtado, A.; Smyth, H.E.; Henry, R.J. Influence of genotype and environment on coffee quality. Trends Food Sci. Technol. 2016, 57, 20–30. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N.; Taniwaki, M.H. Coffee, mycotoxins and climate change. Food Res. Int. 2014, 61, 1–15. [Google Scholar]
- Illy, A.; Viani, R. Espresso Coffee: The Chemistry of Quality, 2nd ed.; Academic Press: San Diego, CA, USA, 1996; 253p. [Google Scholar]
- Pacetti, D.; Boselli, E.; Balzano, M.; Frega, N.G. Authentication of Italian Espresso coffee blends through the GC peak ratio between kahweol and 16-O-methylcafestol. Food Chem. 2012, 135, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, M.K.; Lee, H.-G. Effect of reversed coffee grinding and roasting process on physicochemical properties including volatile compound profiles. Innov. Food Sci. Emerg. Technol. 2017, 44, 97–102. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Ko, J.-A.; Kang, B.-S.; Park, H.-J. Prediction of key aroma development in coffees roasted to different degrees by colorimetric sensor array. Food Chem. 2018, 240, 808–816. [Google Scholar] [CrossRef]
- Lópes-Galilea, I.; Penã, M.P.; Cid, C.I. Correlation of selected constituents with the total antioxidant capacity of coffee beverages: Influence of the brewing procedure. J. Agric. Food Chem. 2007, 55, 6110–6117. [Google Scholar] [CrossRef]
- Schmidt, C.A.P.; Miglioranza, É.; Prudêncio, S.H. Interação da torra e moagem do café na preferência do consumidor do oeste paranaense. Ciência Rural. 2008, 38, 1111–1117. [Google Scholar]
- Oliveira, G.H.H.; Corrêa, P.C.; Oliveira, A.P.L.R.; Baptestini, F.M.; Vargas-Elías, G.A. Roasting, grinding, and storage impact on thermodynamic properties and adsorption isotherms of Arabica coffee. J. Food Proc. Pres. 2017, 41, e12779. [Google Scholar] [CrossRef]
- Corrêa, P.C.; Oliveira, G.H.H.; Oliveira, A.P.L.R.; Vargas-Elías, G.A.; Santos, F.L.; Baptestini, F.M. Preservation of roasted and ground coffee during storage Part 1: Moisture content and repose angle. Ver. Bras. Eng. Agric. Amb. 2016, 20, 581–587. [Google Scholar] [CrossRef]
- Baptestini, F.M.; Corrêa, P.C.; Oliveira, G.H.H.; Cecon, P.R.; Soares, N.F.F. Kinetic modeling of water sorption by roasted and ground coffee. Acta Sci. Agron. 2017, 39, 273–281. [Google Scholar] [CrossRef]
- Andueza, S.; De Peña, M.P.; Cid, C. Chemical and sensorial characteristics of espresso coffee as affected by grinding and torrefacto roast. J. Agric. Food Chem. 2003, 51, 7034–7039. [Google Scholar]
- Galvão, M.C.B.; Ricarte, I.L.M. Revisão Sistemática da Literatura: Conceituação, Produção e Publicação. Logeion Filos. Informação 2019, 6, 57–73. [Google Scholar] [CrossRef]
- Wintgens, J.N. Coffee: Growing, Processing, Sustainable Production; Wiley-VCH: Weenheim, Germany, 2004. [Google Scholar]
- Oliveira, A.P.L.R.; Corrêa, P.C.; Reis, E.L.; Oliveira, G.H.H. Comparative Study of the Physical and Chemical Characteristics of Coffee and Sensorial Analysis by Principal Components. Food Anal. Methods 2015, 8, 1303–1314. [Google Scholar] [CrossRef]
- Larmond, E. Laboratory Methods for Sensory Evaluation of Food; Food Research Institute/Canada Department of Agriculture: Ottawa, ON, Canada, 1977; 73p. [Google Scholar]
- Santos, E.S.M.; Deliza, R.; Freitas, D.D.G.C.; Corrêa, F.M. Effect onilonilon beans on the sensory profile and consumer acceptance of coffee beverages. Semin. Cienc. Agr. 2013, 34, 2297–2306. [Google Scholar]
- Bakuradze, T.; Parra, G.A.M.; Riedel, A.; Somoza, V.; Lang, R.; Dieminger, N.; Hofmann, T.; Winkler, S.; Hasmann, U.; Marko, D.; et al. Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Res. Int. 2014, 63, 420–427. [Google Scholar]
- Wongsa, P.; Khampa, N.; Horadee, S.; Chaiwarith, J.; Rattanapanone, N. Quality and bioactive compounds of blends of Arabica and Robusta spray dried coffee. Food Chem. 2019, 283, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Kalschne, D.L.; Biasuz, T.; De Conti, A.J.; Viegas, M.C.; Corso, M.P.; Benassi, M.T. Sensory characterization and acceptance of coffee brews of C. arabica and C. canephora blended with steamed defective coffee. Food Res. Int. 2019, 124, 234–238. [Google Scholar]
- Couto, C.C.; Santos, T.F.; Mamede, A.M.G.N.; Oliveira, T.C.; Souza, A.M.; Freitas-Silva, O.; Oliveira, E.M.M. Coffea arabica and C. canephora discrimination in roasted and ground coffee from reference material candidates by real-time PCR. Food Res. Int. 2019, 115, 227–233. [Google Scholar]
- Alves, R.C.; Soares, C.; Susana Casal, J.O.F.; Oliveira, M.B.P.P. Acrylamide in espresso coffee: Influence of species, roast degree and brew length. Food Chem. 2010, 119, 929–934. [Google Scholar] [CrossRef]
- Liu, C.; Yang, N.; Yang, Q.; Ayed, C.; Linforth, R.; Fisk, I.D. Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Food Chem. 2019, 281, 8–17. [Google Scholar] [PubMed]
- Liu, C.; Yang, Q.; Linforth, R.; Fisk, I.D.; Yang, N. Modifying Robusta coffee aroma by green bean chemical pre-treatment. Food Chem. 2019, 272, 251–257. [Google Scholar] [CrossRef]
- SAA. Secretaria da Agriculta e Abastecimento do Estado de São Paulo. In Resolução SAA 30, Norma de Padrões Mínimos de Qualidade para Café Torrado em Grão e Torrado e Moído; Diário Oficial: Brasília, Brazil, 2007. [Google Scholar]
- SAA. Secretaria da Agriculta e Abastecimento do Estado de São Paulo. In Resolução SAA 31, Norma de Padrões Mínimos de Qualidade para Café Torrado em Grão e Torrado e Moído; Diário Oficial: Brasília, Brazil, 2007. [Google Scholar]
- Martín, M.J.; Pablos, F.; González, A.G. Characterization of arabica and robusta roasted coffee varieties and mixture resolution according to their metal content. Food Chem. 1999, 66, 365–370. [Google Scholar] [CrossRef]
- Romano, R.; Santini, A.; Grottaglie, L.L.; Manzo, N.; Visconti, A.; Ritieni, A. Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. J. Food Compos. Anal. 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Colzi, I.; Taiti, C.; Marone, E.; Magnelli, S.; Gonnelli, C.; Mancuso, S. Covering the different steps of the coffee processing: Can headspace VOC emissions be exploited to successfully distinguish between Arabica and Robusta? Food Chem. 2017, 237, 257–263. [Google Scholar] [CrossRef]
- Kalschne, D.L.; Viegas, M.C.; De Conti, A.J.; Corso, M.P.; Benassi, M.T. Steam pressure treatment of defective Coffea canephora beans improves the volatile profile and sensory acceptance of roasted coffee blends. Food Res. Int. 2018, 105, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.C.E.; Valderrama, P.; Março, P.H.; Scholz, M.B.S.; Edelmann, M.; Yeretzian, C. Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Food Chem. 2018, 255, 132–138. [Google Scholar]
- Ribeiro, V.S.; Leitão, A.E.; Ramalho, J.C.; Lidon, F.C. Chemical characterization and antioxidant properties of a new coffee blend with cocoa, coffee silverskin and green coffee minimally processed. Food Res. Int. 2014, 61, 39–47. [Google Scholar] [CrossRef]
- Borrelli, R.C.; Esposito, F.; Napolitano, A.; Ritieni, A.; Fogliano, V. Characterization of a new potential functional ingredient: Coffee silverskin. J. Agric. Food Chem. 2004, 52, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/prooxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufián-Henares, J.A. Revalorization of coffee byproducts. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci. Technol. 2015, 61, 12–18. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora silverskin from different geographical origins: A comparative study. Sci. Total Environ. 2018, 645, 1021–2028. [Google Scholar] [CrossRef]
- Wrigley, G. Coffee; Longman Scientific and Technical: Harlow, UK, 1988. [Google Scholar]
- Franca, A.S.; Mendonça, J.C.F.; Oliveira, S.D. Composition of green and roasted coffees of different cup qualities. LWT 2005, 38, 709–715. [Google Scholar] [CrossRef]
- De Maria, C.A.B.; Trugo, L.C.; Aquino Neto, F.R.; Moreira, R.F.A.; Alviano, C.S. Composition of green coffee water soluble fractions and identification of volatiles formed during roasting. Food Chem. 1996, 55, 203–207. [Google Scholar] [CrossRef]
- Bollinger, D. Coffee Roasting. Available online: https://en.wikipedia.org/wiki/Coffee_roasting (accessed on 9 March 2020).
- Specialty Coffee Association of America (SCA). Protocols. Available online: https://sca.coffee/research/protocols-best-practices (accessed on 9 March 2020).
- Vargas-Elias, G.A. Avaliação das Propriedades Físicas e Qualidade do Café em Diferentes Condições de Torrefação. Master’s Thesis, Master in Agriculture Engineering. Universidade Federal de Viçosa, Viçosa, Brazil, 2011. [Google Scholar]
- Melo, W.L.B. A importância da informação sobre do grau de torra do café e sua influência nas características organolépticas da bebida. Comun. Técnico Embrapa 2004, 58, 1–3. [Google Scholar]
- Monteiro, M.A.M.; Minim, V.P.R.; Silva, A.F.; Chaves, J.B.P. Influência da torra sobre a aceitação da bebida café. Rev. Ceres 2010, 57, 145–150. [Google Scholar] [CrossRef]
- Bhumiratana, N.; Adhikari, K.; Chambers IV, E. Evolution of sensory aroma attributes from coffee beans to brewed coffee. LWT Food Sci. Technol. 2011, 44, 2185–2192. [Google Scholar] [CrossRef]
- Hecimovic, I.; Belscak-Cvitanovic, A.; Horzic, D.; Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 2011, 129, 991–1000. [Google Scholar] [CrossRef]
- Yeretzian, C.; Pascual, E.C.; Goodman, B.A. Effect of roasting conditions and grinding on free radical contents of coffee beans stored in air. Food Chem. 2012, 131, 811–816. [Google Scholar] [CrossRef]
- Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
- Bell, L.N.; Wetzel, C.R.; Grand, A.N. Caffeine content in coffee as influenced by grinding and brewing techniques. Food Res. Int. 1996, 29, 185–189. [Google Scholar] [CrossRef]
- Santos, W.P.C.; Hatje, V.; Lima, L.N.; Trignano, S.V.; Barros, F.; Castro, J.T.; Korn, M.G.A. Evaluation of sample preparation (grinding and sieving) of bivalves, coffee and cowpea beans for multi-element analysis. Microchem. J. 2008, 89, 123–130. [Google Scholar] [CrossRef]
- Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Res. Int. 2019, 116, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
Composition | Dry Matter Range (%) | |
---|---|---|
Arabica | Robusta | |
Kahweol | 0.7–1.1 | NA |
Caffeine | 0.6–1.5 | 2.2–2.7 |
Chlorogenic acids | 6.2–7.9 | 7.4–11.2 |
Sucrose and reducing sugars | 5.3–9.3 | 3.7–7.1 |
Total free amino acids | 0.4–2.4 | 0.8–0.9 |
Strecker-active | 0.1–0.5 | 0.2–0.3 |
Araban | 9.0–13.0 | 6.0–8.0 |
Reserve Mannane | 25.0–30.0 | 19.0–22.0 |
Reserve Galactan | 4.0–6.0 | 10.0–14.0 |
Other polysaccharides | 8.0–10.0 | 8.0–10.0 |
Triglycerides | 10.0–14.0 | 8.0–10.0 |
Proteins | 12.0 | 12.0 |
Trigonelline | 1.0 | 1.0 |
Other lipids | 2.0 | 2.0 |
Other acids | 2.0 | 2.0 |
Ash | 4.0 | 4.0 |
Totals * | 90.0–114.0 | 86.0–107.0 |
Coffee Types Blended | Blending Ration | Main Findings | Reference |
---|---|---|---|
Arabica and Robusta (A/R) | (A/R): (100, 0; 90, 10; 80, 20; 60, 40; 40/60; 20/80; 0/100%) | Blends with up to 40% Robusta coffee were accepted by the consumers | [20] |
Special Blend (SB) and Market Blend (MB) | SB coffee: 100% Arabica with different roasting degrees MB coffee: 5 coffee brands, 4 were 100% arabica and 1 with some Robusta | Decrease in body fat and increases in energy and nutrient intake were more pronounced with the consumption of SB coffee | [21] |
Arabica and Robusta (A/R) | (A/R): (0/100; 15/85; 20/80; 25/75; 35/65%) | Coffee brews prepared from blended coffee beans were well accepted by sensory panelists | [22] |
Arabica, Robusta and defective coffee | 100% Arabica; 50% of Arabica and 50% defective coffee; 100% Robusta; 50% of Robusta and 50% of defective coffee | The coffee species used had more relevance for differentiating the sensory characteristics of the brews than the addition of defective coffee | [23] |
Arabica and Robusta (A/R) | (A/R): (100:0; 50:50; 25:75; 0:100%) | All samples containing Arabica coffee presented amplification for real-time PCR | [24] |
Geographical Origin | Nutritional Composition | |||||||
---|---|---|---|---|---|---|---|---|
Moisture (%) | Ash (%) | Fat (%) | Protein (%) | Insoluble Fiber (%) | Soluble Fiber (%) | Available Carbohydrate (%) | Caffeine (mg 100 g−1) | |
Cameroon | 9.91 | 8.31 | 1.81 | 20.6 | 49.5 | 5.95 | 3.95 | 1154 |
India | 10.30 | 7.34 | 1.19 | 18.9 | 50.6 | 9.00 | 2.70 | 676 |
Indonesia | 9.28 | 8.71 | 2.46 | 18.2 | 47.5 | 7.55 | 6.35 | 1100 |
Brazil | 9.53 | 10.4 | 3.15 | 16.7 | 44.2 | 11.20 | 4.80 | 1215 |
Vietnam | 9.55 | 9.29 | 2.27 | 20.3 | 47.4 | 10.95 | 0.25 | 1140 |
Uganda | 9.35 | 10.5 | 1.86 | 19.5 | 45.0 | 7.85 | 5.85 | 709 |
Roasting | Weight Loss (%) | Agtron Number | Bean Temperature (°C) | Characteristics |
---|---|---|---|---|
Cinnamon | 13.0 | 80–75 | 90–130 | Volatile compounds start to expand the beans. |
American | 14.0 | 74–65 | 170–190 | First crack. Acidity higher than sugar. |
City | 15.0 | 64–60 | 210–220 | First crack ends. |
Full City | 16.5 | 60–50 | 224–230 | Second crack. Balance between acidity and sugar. Oils start to appear. |
Vienna | 17.0 | 49–45 | 230–235 | Second crack ends. Lower acidity. |
Espresso | 18.0 | 44–35 | 235–240 | Black with oil stains. Shiny surface. Sweet bitterness overpowers acidity. |
French | 19.0 | 34–25 | 240–246 | Caramelization of sugars. Decrease in acidity. Burning smell |
Italian | 20.0 | 24–15 | 246–265 | Loss of flavor. Shiny surface (oil). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, G.H.H.d.; Oliveira, A.P.L.R.d. Coffee Roasting, Blending, and Grinding: Nutritional, Sensorial and Sustainable Aspects. Agriculture 2023, 13, 2116. https://doi.org/10.3390/agriculture13112116
Oliveira GHHd, Oliveira APLRd. Coffee Roasting, Blending, and Grinding: Nutritional, Sensorial and Sustainable Aspects. Agriculture. 2023; 13(11):2116. https://doi.org/10.3390/agriculture13112116
Chicago/Turabian StyleOliveira, Gabriel Henrique Horta de, and Ana Paula Lelis Rodrigues de Oliveira. 2023. "Coffee Roasting, Blending, and Grinding: Nutritional, Sensorial and Sustainable Aspects" Agriculture 13, no. 11: 2116. https://doi.org/10.3390/agriculture13112116
APA StyleOliveira, G. H. H. d., & Oliveira, A. P. L. R. d. (2023). Coffee Roasting, Blending, and Grinding: Nutritional, Sensorial and Sustainable Aspects. Agriculture, 13(11), 2116. https://doi.org/10.3390/agriculture13112116