Concentration of Heavy Metals in Pollen and Bees Osmia bicornis L. in Three Different Habitats in the Łowicz District in Central Poland
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
- (1)
- berry plantations (currants, Kamchatka berry, blueberry), 8 sites, with an area of 1.78–3.6 ha, in a plantation structure—row spacing of plants 1.5–3 m, distance between plants 1–1.2 m, tree height 1.8–2 m,
- (2)
- orchards (apple trees, pear trees, plums trees), 10 sites, with an area of 1.6–4.1 ha, in a orchard structure—row spacing of plants 3–4 m, distance between plants 2–3 m, plants height 3.5–4 m;
- (3)
- urban areas (9 sites located near a power plant, landfill, residential areas, and heavy vehicle traffic).
2.2. Nest Construction and Material
2.3. Collection and Conservation of Samples
2.4. Preparation of Samples and Heavy-Metal Analysis
2.5. Nest Analysis and Bees’ Reproductive Parameters
2.6. Statistical Analysis
3. Results and Discussion
3.1. Heavy-Metal Level in Samples of Pollen and Osmia bicornis Body
3.2. Pollen Samples
3.3. Bees Samples
3.4. Bee Population Grow Rate in Urban, Orchards and Berry-Plant Habitats
3.5. Implications of Using Osmia bicornis as Biomonitorsg
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burger, J. Bioindicators: A Review of Their Use in the Environmental Literature 1970–2005. Environ. Bioindic. 2006, 1–2, 136–144. [Google Scholar] [CrossRef]
- Moroń, D.; Grześ, I.; Skórka, P.; Szentgyörgyi, H.; Laskowski, R.; Potts, S.; Woyciechowski, M. Abundance and diversity of wild bees along gradients of heavy metal pollution. J. Appl. Ecol. 2012, 49, 118–125. [Google Scholar] [CrossRef]
- Roman, A.; Popiela-Pleban, E.; Migdał, P.; Kruszyński, W. As, Cr, Cd, and Pb in bee products from a Polish industrialized regions. Open Chem. 2016, 14, 33–36. [Google Scholar] [CrossRef]
- Skorbiłowicz, E.; Skorbiłowicz, M.; Cieśluk, I. Bees as bioindicators of environmental pollution with metals in an urban area. J. Ecol. Eng. 2018, 19, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Kozanecka, T.; Czarnowska, K.; Jaworska, A. Content of heavy metals in road coarse dust of Warsaw environs. Rocz. Glebozn. Tom LIV 2003, 3, 73–78. [Google Scholar]
- Kaniuczak, J.; Trąba, G.; Godzisz, J. Zawartość ołowiu i kadmu w glebach i roślinach przy wybranych szlakach komunikacyjnych rejonu zamojskiego. Zesz. Probl. Postępów Nauk. Rol. 2003, 493, 193–199. (In Polish) [Google Scholar]
- Bohdanov, H.O.; Polishchuk, V.P.; Rivis, Y.F.; Lokutova, O.A. Biological evaluation of the pollen basket. Sci. J. Lviv. Natl. Univ. Vet. Med. Biotechnol. Named After S. Z. Gzhytskyi. 2005, 1, 14–19. [Google Scholar]
- Butsiak, V.I.; Pechar, N.P. Heavy metals in soil and foodstuff in private agricultural enterprise ‘Berezhnytsia’. Sci. J. Lviv. Natl. Univ. Vet. Med. Biotechnol. Named After S. Z. Gzhytskyi. 2007, 3, 121–125. [Google Scholar]
- Bodnarchuk, L.I.; Musialkovska, A.O. Minerals in bee products. Apiary 2008, 8, 10–18. [Google Scholar]
- Toth, G.; Da Hermann, T.; Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Klym, O.; Stadnytska, O. Heavy metals in the dandelion and apple tree pollen from the different terrestrial ecosystems of the carpathian region. Acta Sci. Pol. Zootech. 2019, 18, 15–20. [Google Scholar] [CrossRef]
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation; Chapter 1. Special Collection: 2014 ebook Collection; 2011–2015 Biosciences Subject Collection; ECCC Environmental eBooks 1968–2022; Royal Society of Chemistry: London, UK, 2014; pp. 1–24. [Google Scholar] [CrossRef]
- Skaldina, O.; Peräniemi, S.; Sorvari, J. Ants and their nests as indicators for industrial heavy metal contamination. Environ. Pollut. 2018, 240, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Nahmani, J.; Lavelle, P. Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. Eur. J. Soil Biol. 2002, 38, 297–300. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Al-Jabr, A.M.; Al-Kahtani, S.N. Honey bees, bee collected pollen and honey as monitors of environmental pollution at an industrial cement area in Saudi Arabia. J. Kans. Entomol. Soc. 2017, 90, 1–10. [Google Scholar] [CrossRef]
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Shah, S.M.A.; et al. Heavy metal contamination of natural foods is a serious health issue: A Review. Sustainability 2022, 14, 161. [Google Scholar] [CrossRef]
- Mulder, C.H.; Aldenberg, T.; de Zwart, D.; Van Wijnen, H.J.; Breure, A.M. Evaluating the impact of pollution on plant-Lepidoptera relations. Environmetrics 2005, 16, 357–373. [Google Scholar] [CrossRef]
- Nieminen, M.; Nuorteva, P.; Tulisalo, E. The effect of metals on the mortality of Parnassius apollo larvae (Lepidoptera: Papilionidae). J. Insect Conserv. 2001, 5, 1–7. [Google Scholar] [CrossRef]
- Kosior, A.; Celary, W.; Olejniczak, P.; Fijał, J.; Król, W.; Solarz, W.; Płonka, P. The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. Oryx 2007, 41, 79–88. [Google Scholar] [CrossRef]
- Sivakoff, F.S.; Prajzner, S.P.; Gardiner, M.M. Urban heavy metal contamination limits bumble bee colony growth. J. Appl. Ecol. 2020, 57, 1561–1569. [Google Scholar] [CrossRef]
- Moroń, D.; Szentgyörgyi, H.; Skórka, P.; Potts, S.; Woyciechowski, M. Survival, reproduction and population growth of the bee pollinator, Osmia rufa (Hymenoptera: Megachilidae), along gradients of heavy metal pollution. Insect Conser. Divers. 2014, 7, 113–121. [Google Scholar] [CrossRef]
- Shi, X.; Ma, C.; Gustave, W.; Orr, M.C.; Yuan, Z.; Chen, J.; Yang, G.; Niu, Z.; Zhou, Q.; Xia, C.; et al. The impact of heavy metal pollution on wild bee communities in smallholder farmlands. Environ. Res. 2023, 233, 116515. [Google Scholar] [CrossRef]
- Kevan, P.G. Pollinators as bioindicators of the state of the environment: Species, activity and diversity. Agric. Ecosyst. Environ. 1999, 74, 373–393. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissiere, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Lenda, M.; Skórka, P.; Moroń, D. Invasive alien plant species a threat or a chance for pollinating insects in agricultural landscapes. In Agricultural Economics: New Research; Lee, T.H., Ed.; Nova Science Publishers: New York, NY, USA, 2010; pp. 67–87. [Google Scholar]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweige, O.; Kunin, W.E. Global pollination declines: Trends, impact and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Szentgyörgyi, H.; Moroń, D.; Nawrocka, A.; Tofilski, A.; Woyciechowski, M. Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient. Ecotoxicology 2017, 26, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Biliński, M.; Teper, D. Rearing and utilization of the red mason bee Osmia rufa L. (Hymenoptera, Megachilidae) for orchard pollination. J. Apic. Sci. 2004, 48, 69–74. [Google Scholar]
- Fliszkiewicz, M.; Giejdasz, K.; Wilkaniec, Z. The importance of male red mason bee (Osmia rufa L.) and male bufftailed bumblebee (Bombus terrestris L.) pollination in blackcurrant (Ribes nigrum L.). J. Hortic. Sci. Biotechnol. 2011, 86, 457–460. [Google Scholar] [CrossRef]
- Giejdasz, K.; Wilkaniec, Z. Suitability of nesting substrates for the cavity-nesting bee Osmia rufa. J. Apic. Res. 2003, 42, 29–31. [Google Scholar] [CrossRef]
- Hansted, L.; Grout, B.W.; Toldam-Andersen, T.B.; Eilenberg, J. An assessment of Osmia rufa (syn. bicornis) as a pollinator of the sour cherry (Prunus cerasus) cv. Stevnsbaer in eastern Denmark. J. Apic. Res. 2014, 53, 177–182. [Google Scholar] [CrossRef]
- Sedivy, C.; Dorn, S. Towards a sustainable management of bees of the subgenus Osmia (Megachilidae; Osmia) as fruit tree pollinators. Apidologie 2014, 45, 88–105. [Google Scholar] [CrossRef]
- Teper, D.; Biliński, M. Red mason bee (Osmia rufa L.) as a pollinator of rape plantations. J. Apic. Sci. 2009, 52, 115–120. [Google Scholar]
- Wilkaniec, Z.; Giejdasz, K.; Prószyński, G. Effect of pollination of onion seeds under isolation by red mason bee (Osmia rufa L.) (Apoidea: Megachilidae) on the setting and quality of obtained seeds. J. Apic. Sci. 2004, 49, 35–41. [Google Scholar]
- Peterson, E.M.; Thompson, K.N.; Shaw, K.R.; Tomlinson, C.; Longing, S.D.; Smith, P.N. Use of nest bundles to monitor agrochemical exposure and effects among cavity nesting pollinators. Environ. Pollut. 2021, 286, 117142. [Google Scholar] [CrossRef] [PubMed]
- Radmacher, S.; Strohm, E. Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidologie 2010, 41, 169–177. [Google Scholar] [CrossRef]
- Long, J. Analytical Methods for Atomic Absorption Spectrometry. J. Daxian Teach. Coll. 2002. Available online: https://api.semanticscholar.org/CorpusID:102108710 (accessed on 3 October 2023).
- Roman, A. Content of Some Trace Elements in Fresh Honeybee Pollen. Pol. J. Food Nutr. Sci. 2007, 57, 475–478. [Google Scholar]
- Taha, E.A.; Al-Kahtani, S. Macro- and trace elements content in honeybee pollen loads in relation to the harvest season. Saudi J. Biol. Sci. 2020, 27, 1797–1800. [Google Scholar] [CrossRef] [PubMed]
- Matuszewska, E.; Klupczynska, A.; Maciołek, K.; Kokot, Z.J.; Matysiak, J. Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland. Molecules 2021, 26, 2415. [Google Scholar] [CrossRef] [PubMed]
- Zajdel, B.; Borański, M.; Kucharska, K.; Teper, D. Reproduction and accompanying fauna of red mason bee Osmia rufa L. (syn. Osmia bicornis L.) in areas with different levels of urbanization. J. Apic. Sci. 2021, 65, 1–15. [Google Scholar] [CrossRef]
- Ahmida, N.H.; Elagori, M.; Agha, A.; Elwerfali, S.; Ahmida, M.H. Physicochemical, heavy metals and phenolic compounds analysis of Libyan honey samples collected from Benghazi during 2009–2010. Food Sci. Nutr. 2012, 4, 33. [Google Scholar] [CrossRef]
- Bayir, H.; Aygun, A. Heavy metal in honey bees, honey, and pollen produced in rural and urban areas of Konya province in Turkey. Environ. Sci. Pollut. Res. 2022, 29, 74569–74578. [Google Scholar] [CrossRef] [PubMed]
- Dubey, V.K.; Sahoo, S.K.; Sujatha, B.; Das, A. Impact of Heavy Metals on Honey Bees. Vigyan Varta 2022, 3, 101–103. [Google Scholar]
- Fakhimzadeh, K.; Lodenius, M. Honey, Pollen and Bees as Indicator of Heavy Metal Pollution. Acta Univ. Carol. Environ. 2000, 14, 13–20. [Google Scholar] [CrossRef]
- Hladun, K.R.; Smith, B.H.; Mustard, J.A.; Morton, R.R.; Trumble, J.T. Selenium toxicity to honey bee (Apis mellifera L.) pollinators: Effects on behaviours and survival. PLoS ONE 2012, 7, e34137. [Google Scholar] [CrossRef] [PubMed]
- Porrini, C.; Sabatini, A.G.; Girotti, S.; Ghini, S.; Medrzycki, P.; Grillenzoni, F.; Bortolotti, L.; Gattavecchia, E.; Celli, G. Honey bees and bee products as monitors of the environmental contamination. Apiacta 2003, 38, 63–70. [Google Scholar]
- Zarić, M.N.; Brodschneider, R.; Goessler, W. Honey bees as biomonitors—Variability in the elemental composition of individual bees. Environ. Res. 2021, 204, 112237. [Google Scholar] [CrossRef]
- Zhelyazkova, I. Honeybees—Bioindicators for environmental quality. Bulg. J. Agric. Sci. 2012, 18, 435–442. [Google Scholar]
- Arslan, S.; Arıkan, A. Accumulation of heavy metals in bee products effect of distance from highway. Turk. J. Agric. Food Sci. Technol. 2013, 1, 90–99. [Google Scholar] [CrossRef]
- Formicki, G.; Gren, A.; Stawarz, R.; Zysk, B.; Gal, A. Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol. J. Environ. Stud. 2013, 22, 99–106. [Google Scholar]
- Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2017, 5, 156–163. [Google Scholar] [CrossRef]
- Codex Alimentarius 1995 Amended. A General Standard for Contaminants and Toxins in Food and Feed (Codex STAN 193–1995). International Food Standards. 2019. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdfhttps://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 28 February 2023).
- Gutiérrez, M.; Molero, R.; Gaju, M.; van der Steen, J.; Porrini, C.; Ruiz, J.A. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee. Environ. Monit. Assess. 2015, 187, 651. [Google Scholar] [CrossRef]
- Roman, A. Levels of copper, selenium, lead, and cadmium in forager bees. Pol. J. Environ. Stud. 2010, 19, 663–669. [Google Scholar]
- Conti, M.E.; Botr, F. Honeybees and their products as potential bioindicators of heavy metals contamination. Environ. Monit. Assess. 2001, 69, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Van der Steen, J.J.M.; Cornelissen, B.; Blacquire, T.; Pijnenburg, J.E.M.L.; Severijnen, M. Think regionally, act locally: Metals in honeybee workers in the Netherlands (surveillance study 2008). Environ. Monit. Assess. 2018, 188, 463. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, C.; De Cristofaro, A.; Nuzzo, A.; Notardonato, I.; Ganassi, S.; Iafigliola, L.; Sardella, G.; Ciccone, M.; Nugnes, D.; Passarella, S.; et al. Biomonitoring of polycyclic aromatic hydrocarbons, heavy metals, and plasticizers residues: Role of bees and honey as bioindicators of environmental contamination. Environ. Sci. Pollut. Res. 2023, 30, 44234–44250. [Google Scholar] [CrossRef] [PubMed]
- Silici, S.; Uluozlu, O.D.; Tuzen, M.; Soylak, M. Honeybees and honey as monitors for heavy metal contamination near thermal power plants in Mugla. Toxicol. Ind. Health 2016, 32, 507–516. [Google Scholar] [CrossRef]
- Cempel, M.; Nikel, G. Nickel: A Review of Its Sources and Environmental Toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Shivay, Y.S.; Rajendra, S. Prasad. Nickel in Environment and Plant Nutrition: A Mini Review. Int. J. Plant. Environ. 2019, 5, 239–242. [Google Scholar] [CrossRef]
- Mihandoos, M.; Rafati, M. Effect of biochar and vermicompost on the absorb of nickel metal from soil by cherry tomato (Solanum lycopersicum var. cerasiforme). Water Soil Manag. Model. 2022, 3, 157–170. [Google Scholar] [CrossRef]
- Perugini, M.; Manera, M.; Grotta, L.; Abete, M.C.; Tarasco, R.; Amorena, M. Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: Honeybees as bioindicators. Biol. Trace Elem. Res. 2011, 140, 170–176. [Google Scholar] [CrossRef]
- Borsuk, G.; Sulborska, A.; Stawiarz, E.; Olszewski, K.; Wiącek, D.; Noor, R.; Nawrocka, A.; Jędryczak, M. Capacity of honeybees to remove heavy metals from nectar and excrete the contaminants from their bodies. Apidologie 2021, 52, 1098–1111. [Google Scholar] [CrossRef]
- Fliszkiewicz, M.; Kuśnierczak, A.; Szymaś, B. Reproduction of the red mason solitary bee Osmia rufa (syn. Osmia bicornis) (Hymenoptera: Megachilidae) in various habitats. Eur. J. Entomol. 2014, 112, 100–105. [Google Scholar] [CrossRef]
- Murawska, A.; Migdał, P.; Zajdel, B.; Popiela, E.; Roman, A. The composition of red mason bee cocoons. J. Apic. Res. 2022, 61, 227–232. [Google Scholar] [CrossRef]
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Dżugan, M.; Wesołowska, M.; Zaguła, G.; Kaczmarski, M.; Czernicka, M.; Puchalski, C. Honeybees (Apis mellifera) as a biological barrier for contamination of honey by environmental toxic metals. Environ. Monit. Assess. 2018, 190, 101–109. [Google Scholar] [CrossRef]
- Ruschioni, S.; Riolo, P.; Minuz, R.L.; Stefano, M.; Cannella, M.; Porrini, C.; Isidoro, N. Biomonitoring with honeybees of heavy metals and pesticides in nature reserves of the Marche Region (Italy). Biol. Trace Elem. Res. 2013, 154, 226–233. [Google Scholar] [CrossRef]
- De Vere, N.; Jones, L.; Gilmore, T.; Moscrop, J.; Lowe, A.; Smith, D.; Hegarty, M.J.; Creer, J.C.R. Ford Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 2017, 7, 42838. [Google Scholar] [CrossRef]
- Dimou, M.; Thrasyvoulou, A. Seasonal variation in vegetation and pollen collected by honeybees in Thessaloniki, Greece. Grana 2007, 46, 292–299. [Google Scholar] [CrossRef]
- Leita, L.; Muhlbachova, G.; Cesco, S.; Barbattini, R.; Mondini, C. Investigation of the use of honey bees and honey bee products to assess heavy metals contamination. Environ. Monit. Assess. 1996, 43, 1–9. [Google Scholar] [CrossRef]
Habitat | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Orchards | Berry Plantations | Urban | ||||||||||
Mean | Median | Min–Max | SD | Mean | Median | Min-Max | SD | Mean | Median | Min–Max | SD | |
occupied tubes (%) | 62.0 | 74.7 | 22.3–85.7 | 26.0 | 52.9 | 65.8 | 4.74–87.6 | 38.3 | 51.9 | 33.3 | 8.4–97.6 | 38.7 |
cocoons/tube | 6.75 | 6.76 | 4.9–8.83 | 1.36 | 6.76 | 7.32 | 4.22–8.01 | 1.25 | 6.03 | 5.93 | 5.21–7.41 | 0.881 |
death larvae and pupa/tube | 1.73 | 1.56 B * | 1.19–3.1 | 0.585 | 2.27 | 2.26 A | 1.71–2.98 | 0.436 | 2.0 | 2.05 AB | 1.57–2.38 | 0.389 |
chambers occupied by parasites/tube | 0.901 | 0.36 | 0.22–2.86 | 1.01 | 0.342 | 0.405 | 0–0.71 | 0.245 | 0.848 | 0.84 | 0.29–1.88 | 0.632 |
population growth rate | 3.97 | 3.87 | 0.85–7.55 | 2.11 | 3.11 | 3.6 | 0.22–5.61 | 2.46 | 3.09 | 1.93 | 0.438–6.05 | 2.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajdel, B.; Migdał, P.; Murawska, A.; Jojczyk, A.; Berbeć, E.; Kucharska, K.; Gąbka, J. Concentration of Heavy Metals in Pollen and Bees Osmia bicornis L. in Three Different Habitats in the Łowicz District in Central Poland. Agriculture 2023, 13, 2209. https://doi.org/10.3390/agriculture13122209
Zajdel B, Migdał P, Murawska A, Jojczyk A, Berbeć E, Kucharska K, Gąbka J. Concentration of Heavy Metals in Pollen and Bees Osmia bicornis L. in Three Different Habitats in the Łowicz District in Central Poland. Agriculture. 2023; 13(12):2209. https://doi.org/10.3390/agriculture13122209
Chicago/Turabian StyleZajdel, Barbara, Paweł Migdał, Agnieszka Murawska, Agata Jojczyk, Ewelina Berbeć, Kornelia Kucharska, and Jakub Gąbka. 2023. "Concentration of Heavy Metals in Pollen and Bees Osmia bicornis L. in Three Different Habitats in the Łowicz District in Central Poland" Agriculture 13, no. 12: 2209. https://doi.org/10.3390/agriculture13122209
APA StyleZajdel, B., Migdał, P., Murawska, A., Jojczyk, A., Berbeć, E., Kucharska, K., & Gąbka, J. (2023). Concentration of Heavy Metals in Pollen and Bees Osmia bicornis L. in Three Different Habitats in the Łowicz District in Central Poland. Agriculture, 13(12), 2209. https://doi.org/10.3390/agriculture13122209