Phosphorus Utilization Efficiency and Status of Phosphorus Reuse in China from 1990 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Boundary
2.2. Phosphorus Cycle Model
2.3. Efficiency of Phosphorus Resource Utilization
2.3.1. Phosphorus Utilization Efficiency (PUE)
2.3.2. Phosphorus Recycling Rate
2.3.3. Proportion of Recycled P Use
2.4. Data Sources
2.5. Uncertainty Analysis
3. Results and Discussion
3.1. Overall P Resource Efficiency
3.2. P Mining and Chemical Production
3.2.1. P Mining
3.2.2. Phosphate Chemical Industry
3.3. Agricultural Planting
3.3.1. Crop Cultivation
3.3.2. PUE in Agriculture
3.3.3. Resource Reuse
3.3.4. Soil P Balance
3.4. Livestock and Aquaculture
3.4.1. Livestock P Utilization
3.4.2. Aquaculture P Utilization
3.4.3. Resource Reuse
3.5. Overall Human Activity
3.5.1. Agricultural Product Processing
3.5.2. Human Consumption
3.6. Phosphate Ore Trade Perspectives
3.7. Policy Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexandratos, N. World food and agriculture: Outlook for the medium and longer term. Proc. Natl. Acad. Sci. USA 1999, 96, 5908–5914. [Google Scholar] [CrossRef]
- National Bureau of Statistics (NBS), 2021; China Statistical Yearbook. China Statistics Press, Beijing. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm/ (accessed on 13 October 2022).
- Wart, J.V.; Kersebaum, K.C.; Peng, S.; Milner, M.; Cassman, K.G. Estimating crop yield potential at regional to national scales. Field Crops Res. 2013, 143, 34–43. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; He, D.; Chi, R. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef]
- Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Energy Environ. 2000, 25, 53–88. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Kloepper, J.W. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Geissler, B.; Mew, M.C.; Steiner, G. Phosphate supply security for importing countries: Developments and the current situation. Sci. Total Environ. 2019, 677, 511–523. [Google Scholar] [CrossRef]
- Ministry of Natural Resources of the People’s Republic of China (MNR), 2018; National Mineral Resource Plan (2016–2020). Available online: http://g.mnr.gov.cn/201701/t20170123_1430456.html/ (accessed on 15 November 2016).
- Nagarajan, D.; Lee, D.J.; Chen, C.Y.; Chang, J.S. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresour. Technol. 2020, 302, 122817. [Google Scholar] [CrossRef]
- Sattari, S.Z.; van Ittersum, M.K.; Giller, K.E.; Zhang, F.; Bouwman, A.F. Key role of China and its agriculture in global sustainable phosphorus management. Environ. Res. Lett. 2014, 9, 054003. [Google Scholar] [CrossRef]
- US Geological Survey (USGS), 2021; Mineral Commodity Summaries. Available online: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf (accessed on 20 February 2023).
- Mao, Y.; Hopkins, D.L.; Zhang, Y.; Luo, X. Consumption patterns and consumer attitudes to beef and sheep meat in China. Am. J. Food Nutr. 2016, 4, 30–39. [Google Scholar]
- Chen, M.; Graedel, T.E. The potential for mining trace elements from phosphate rock. J. Clean. Prod. 2015, 91, 337–346. [Google Scholar] [CrossRef]
- Veni, D.K.; Kannan, P.; Edison, T.N.J.I.; Senthilkumar, A. Biochar from green waste for phosphate removal with subsequent disposal. Waste Manag. 2017, 68, 752–759. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Huang, C.L.; Vause, J.; Ma, H.W.; Yu, C.P. Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook. Resour. Conserv. Recycl. 2012, 68, 104–116. [Google Scholar] [CrossRef]
- Liang, J.J.; Geng, Y.; Zeng, X.L.; Gao, Z.Y.; Tian, X. Toward sustainable utilization of tungsten: Evidence from dynamic substance flow analysis from 2001 to 2019 in China. Resour. Conserv. Recycl. 2022, 182, 106307. [Google Scholar] [CrossRef]
- Su, C.; Geng, Y.; Zeng, X.; Gao, Z.; Song, X. Uncovering the features of nickel flows in China. Resour. Conserv. Recycl. 2023, 188, 106702. [Google Scholar] [CrossRef]
- Rui, X.; Geng, Y.; Sun, X.; Hao, H.; Xiao, S. Dynamic material flow analysis of natural graphite in China for 2001–2018. Resour. Conserv. Recycl. 2021, 173, 105732. [Google Scholar] [CrossRef]
- Chen, M.; Graedel, T.E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 2016, 36, 139–152. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Zhang, X. Phosphorus use efficiency in agricultural systems: A comprehensive assessment through the review of national scale substance flow analyses. Ecol. Indic. 2021, 121, 107172. [Google Scholar] [CrossRef]
- Jiang, S.; Yuan, Z. Phosphorus flow patterns in the Chaohu Watershed from 1978 to 2012. Environ. Sci. Technol. 2015, 49, 13973–13982. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Strokal, M.; Chu, Y.; Kroeze, C. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agric. Syst. 2018, 163, 58–72. [Google Scholar] [CrossRef]
- Wu, H.; Yang, T.; Liu, X.; Li, H.; Gao, L.; Yang, J.; Li, X.; Zhang, L.; Jiang, S. Towards an integrated nutrient management in crop species to improve nitrogen and phosphorus use efficiencies of Chaohu Watershed. J. Clean. Prod. 2020, 272, 122765. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, Z.; Gao, L.; Zhang, L.; Zhang, Y. Life-cycle phosphorus management of the crop production–consumption system in China, 1980–2012. Sci. Total Environ. 2015, 502, 706–721. [Google Scholar] [CrossRef]
- Zou, T.; Zhang, X.; Davidson, E.A. Global trends of cropland phosphorus use and sustainability challenges. Nature 2022, 611, 81–87. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Rothwell, S.A.; Massam, M.J.; Albacete, A.; Zhang, H.; Dodd, I.C. Alternate wetting and drying irrigation increases water and phosphorus use efficiency independent of substrate phosphorus status of vegetative rice plants. Plant Physiol. Biochem. 2020, 155, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Chen, X.; Ma, C.; Cai, Y.; Cui, Z.; Chen, X.; Wu, L.; Zhang, F. What are the key factors affecting maize yield response to and agronomic efficiency of phosphorus fertilizer in China? Field Crops Res. 2021, 270, 108221. [Google Scholar] [CrossRef]
- Mayer, B.K.; Baker, L.A.; Boyer, T.H.; Drechsel, P.; Gifford, M.; Hanjra, M.A.; Parameswaran, P.; Stoltzfus, J.; Westerhoff, P.; Rittmann, B.E. Total value of phosphorus recovery. Environ. Sci. Technol. 2016, 50, 6606–6620. [Google Scholar] [CrossRef]
- Ma, D.; Hu, S.; Chen, D.; Li, Y. Substance flow analysis as a tool for the elucidation of anthropogenic phosphorus metabolism in China. J. Clean. Prod. 2012, 29–30, 188–198. [Google Scholar] [CrossRef]
- Antikainen, R.; Lemola, R.; Nousiainen, J.I.; Sokka, L.; Esala, M.; Huhtanen, P.; Rekolainen, S. Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system. Agric. Ecosyst. Environ. 2005, 107, 287–305. [Google Scholar] [CrossRef]
- Li, S.; Yuan, Z.; Bi, J.; Wu, H. Anthropogenic phosphorus flow analysis of Hefei City, China. Sci. Total Environ. 2010, 408, 5715–5722. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Shi, J.; Wu, H.; Zhang, L.; Bi, J. Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. J. Environ. Manag. 2011, 92, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Barrow, N.J.; Roy, D.; Debnath, A. Evaluating the benefits of legacy phosphate. Plant Soil 2022, 480, 561–570. [Google Scholar] [CrossRef]
- Barrow, N.J. Soil phosphate chemistry and the P-sparing effect of previous phosphate applications. Plant Soil 2015, 397, 401–409. [Google Scholar] [CrossRef]
- Liu, X.; Sheng, H.; Jiang, S.; Yuan, Z.; Zhang, C.; Elser, J.J. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl. Acad. Sci. USA 2016, 113, 2609–2614. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lu, Z.; Cao, J.; Wu, Q.; Ding, G. Analysis on status quo of development and utilization of large phosphate resources base in China. China Energy Environ. Prot. 2021, 43, 56–60. [Google Scholar]
- Jin, H.; Xin, S.; Chuang, C.; Li, W.; Wang, H.; Zhu, J.; Xie, H.; Zhang, T.; Wan, Y.; Qi, Z.; et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARA), 2017; Zero Growth in Using Fertilizer by 2020. Available online: http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2015/20150414/xgbd32698/Document/1414922/1414922.htm/ (accessed on 4 April 2021).
- Liu, X.; Yuan, Z.; Liu, X.; Zhang, Y.; Hua, H.; Jiang, S. Historic trends and future prospects of waste generation and recycling in China’s phosphorus cycle. Environ. Sci. Technol. 2020, 54, 5131–5139. [Google Scholar] [CrossRef]
- Haygarth, P.M.; Jarvie, H.P.; Powers, S.M.; Sharpley, A.N.; Elser, J.J.; Shen, J.; Peterson, H.M.; Chan, N.-I.; Howden NJ, K.; Burt, T.; et al. Sustainable Phosphorus Management and the Need for a Long-Term Perspective: The Legacy Hypothesis. Environ. Sci. Technol. 2014, 48, 8417–8419. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Qin, W.; Zhang, Q.; Wang, X.; Ma, Y.; Chen, Q. Evaluation of crop residues and manure production and their geographical distribution in China. J. Clean. Prod. 2018, 188, 954–965. [Google Scholar] [CrossRef]
- National People’s Congress (NPC), 2021; The 14th Five-Year Plan. Beijing. Available online: http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm/ (accessed on 13 March 2021).
- Cordell, D.; Jackson, M.; White, S. Phosphorus flows through the Australian food system: Identifying intervention points as a roadmap to phosphorus security. Environ. Sci. Policy 2013, 29, 87–102. [Google Scholar] [CrossRef]
- Smit, A.L.; van Middelkoop, J.C.; van Dijk, W.; van Reuler, H.; de Buck, A.J.; van de Sanden, P.A.C.M. A Quantification of Phosphorus Flows in the Netherlands through Agricultural Production, Industrial Processing and Households; Plant Research International: Wageningen, The Netherland, 2010. [Google Scholar]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Avnimelech, Y. Control of microbial activity in aquaculture systems: Active suspension ponds. World Aquacult. 2003, 34, 19–21. [Google Scholar]
- Li, X.; Li, J.; Wang, Y.; Fu, L.; Fu, Y.; Li, B.; Jiao, B. Aquaculture industry in China: Current state, challenges, and outlook. Rev. Fish. Sci. 2011, 19, 187–200. [Google Scholar] [CrossRef]
- Broughton, E.I.; Walker, D.G. Policies and practices for aquaculture food safety in China. Food Policy 2010, 35, 471–478. [Google Scholar] [CrossRef]
- Ma, M.; Wang, H.H.; Hua, Y.; Qin, F.; Yang, J. African swine fever in China: Impacts, responses, and policy implications. Food Policy 2021, 102, 102065. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. The Thirteenth Five-Year Plan for National Economic and Social Development of the People’s Republic of China (The Thirteenth Five-Year Plan). Beijing. 2016. Available online: http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm/ (accessed on 17 March 2016).
- The State Council of the People’s Republic of China. The Twelfth Five-Year Plan for National Economic and Social Development of the People’s Republic of China (The Twelfth Five-Year Plan). Beijing. 2011. Available online: http://www.gov.cn/2011lh/content_1825838.htm/ (accessed on 16 March 2011).
- Geng, Y.; Sarkis, J.; Ulgiati, S.; Zhang, P. Measuring China’s Circular Economy. Science 2013, 339, 1526–1527. [Google Scholar] [CrossRef]
Year | Output (P-Gg) | Input (P-Gg) | PUE (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crop | Straw | Exports | Total | Atmospheric Deposition | Weathering | Fertilizer & Pesticide | Manure & Compost | Total | ||||||||
1990 | 2255 | 141 | 392 | 188 | (40) | 2937 | 99 | 69 | 2263 | 18 | 1120 | 183 | 3 | 4 | 3759 | 63 |
2012 | 3715 | 337 | 224 | 393 | (458) | 4211 | 183 | 64 | 7549 | 135 | 1468 | 98 | 53 | 12 | 9562 | 38 |
2019 | 4163 | 229 | 139 | 324 | (629) | 4226 | 202 | 71 | 3761 | 48 | 988 | 89 | 71 | 20 | 5250 | 72 |
Year | Total Recycle (P-Gg) | Total | Total Input (P-Gg) | P Recycling Rate (%) | ||||
---|---|---|---|---|---|---|---|---|
Subsystem | Total | |||||||
L & P | Human Consumption | Wastewater Treatment | Solid Waste Treatment | Agriculture | ||||
Manure | Feces | Sludge | Compost | Straw | ||||
2012 | 1468 | 98 | 53 | 12 | 168 | 1799 | 9724 | 19 |
2019 | 988 | 115 | 63 | 19 | 527 | 1712 | 5417 | 32 |
Year | Total Recycle (P-Gg) | Total Waste (P-Gg) | P Recycling Rate (%) | |||||
---|---|---|---|---|---|---|---|---|
Subsystem | Methods | Destination | Methods | Total | ||||
Agriculture | Straw | Agriculture | Straw | |||||
2012 | 168 | 337 | 224 | 393 | 1122 | 15 | ||
2019 | 527 | 229 | 139 | 324 | 1219 | 43 |
Year | Output (P-Gg) | Input (P-Gg) | PUE (%) | ||||
---|---|---|---|---|---|---|---|
Livestock & Poultry | Eggs & Dairy | L&P Exports | Total | Feed | Pasture | ||
1990 | 248 | 16 | 0.00 | 264 | 932 | 902 | 14 |
2012 | 739 | 75 | 0.46 | 814 | 1978 | 1382 | 24% |
2019 | 535 | 78 | (0.24) | 612 | 1469 | 1293 | 22% |
Year | Output (P-Gg) | Input (P-Gg) | PUE (%) | ||
---|---|---|---|---|---|
Aquatic Products (Artificially Cultured) | Aquatic Products Exports | Total | Feed | ||
1990 | 12 | 0 | 12 | 131 | 9 |
2012 | 78 | 0.63 | 78 | 853 | 9 |
2019 | 95 | −3.15 | 92 | 1011 | 9 |
Year | Total Recycle (P-Gg) | Total Input (P-Gg) | Recycled-P Using Rate (%) | ||||
---|---|---|---|---|---|---|---|
Agriculture (Straw) | Agricultural Product Processing-Crop Residual | Non-Arable Land | Agricultural Product Processing | ||||
Feed | Feed | Total | Pasture | Feed | Total | ||
2000 | 213 | 846 | 1059 | 1316 | 1955 | 3271 | 32 |
2012 | 337 | 1321 | 1658 | 1382 | 2831 | 4213 | 39 |
2019 | 229 | 1339 | 1568 | 1293 | 2479 | 3773 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, J.; Geng, Y.; Wu, D. Phosphorus Utilization Efficiency and Status of Phosphorus Reuse in China from 1990 to 2019. Agriculture 2023, 13, 2262. https://doi.org/10.3390/agriculture13122262
Wu Y, Liu J, Geng Y, Wu D. Phosphorus Utilization Efficiency and Status of Phosphorus Reuse in China from 1990 to 2019. Agriculture. 2023; 13(12):2262. https://doi.org/10.3390/agriculture13122262
Chicago/Turabian StyleWu, Yifan, Jingyu Liu, Yong Geng, and Dong Wu. 2023. "Phosphorus Utilization Efficiency and Status of Phosphorus Reuse in China from 1990 to 2019" Agriculture 13, no. 12: 2262. https://doi.org/10.3390/agriculture13122262
APA StyleWu, Y., Liu, J., Geng, Y., & Wu, D. (2023). Phosphorus Utilization Efficiency and Status of Phosphorus Reuse in China from 1990 to 2019. Agriculture, 13(12), 2262. https://doi.org/10.3390/agriculture13122262