The Effect of Humic Substances on the Meat Quality in the Fattening of Farm Pheasants (Phasianus colchicus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Feeding
2.3. Slaughter and Carcass Analysis
2.4. Sampling and Laboratory Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tucak, Z.; Škrivanko, M.; Posavčević, Š.; Periškić, M.; Bošković, I.; Jumić, V. The influence of keeping pheasants in captivity vs. nature on the biological value of meat and its use in human nutrition. Coll. Antropol. 2008, 32, 959–962. [Google Scholar] [PubMed]
- Hofbauer, P.; Smulders, F.J.M.; Vodnansky, M.; Paulsen, P.; El-Ghareebet, W.R. A note on meat quality traits of pheasants (Phasianus colchicus). Eur. J. Wildl. Res. 2010, 56, 809–813. [Google Scholar] [CrossRef]
- Kuźniacka, J.; Adamski, M.; Bernacki, Z. Effect of age and sex of pheasants (Phasianus colchicus L.) on selected physical properties and chemical composition of meat. Ann. Anim. Sci. 2007, 7, 45–53. [Google Scholar]
- Rojas, M.; González, I.; De la Cruz, S.; Hernández, P.E.; García, T.; Martín, R. Application of species-specific polymerase chain reaction assays to verify the labeling of quail (Coturnix coturnix), pheasant (Phasianus colchicus) and ostrich (Struthio camelus) in pet foods. Anim. Feed Sci. Technol. 2011, 169, 128–133. [Google Scholar] [CrossRef]
- Yıldız, G.; Köksal, B.H.; Sızmaz, Ö. Influence of dietary boric acid and liquid humate inclusion on bone characteristics, growth performance and carcass traits in broiler chickens. Arch. Für Geflügelkunde 2013, 77, 260–265. [Google Scholar]
- Arif, M.; Rehman, A.; Saeed, M.; Abd El-Hack, M.E.; Arain, M.A.; Haseebarshad, M.; Zakria, H.M.; Abbasi, I.H. Impacts of dietary humic acid supplementation on growth performance, some blood metabolites and carcass traits of broiler chicks. Indian J. Anim. Sci. 2016, 86, 1073–1078. [Google Scholar]
- Arif, M.; Alagawany, M.; Abd El-Hack, M.E.; Saeed, M.; Arain, M.A.; Elnesr, S.S. Humic acid as a feed additive in poultry diets: A review. Iran. J. Vet. Res. 2019, 20, 167–172. [Google Scholar]
- Bahadori, Z.; Esmaielzadeh, L.; Karimi-Torshizi, M.A.; Seidavi, A.; Olivares, J.; Rojas, S.; Salem, A.Z.M.; Khusro, A.; López, S. The effect of earthworm (Eisenia foetida) meal with vermi-humus on growth performance, hematology, immunity, intestinal microbiota, carcass characteristics, and meat quality of broiler chickens. Livest. Sci. 2017, 202, 74–81. [Google Scholar] [CrossRef]
- Mikkelsen, R.L. Humic materials for agriculture. Better Crops 2005, 89, 6–10. [Google Scholar]
- Pena-Mendez, E.M.; Havel, J.; Patocka, J. Humic substances—Compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed. 2005, 31, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Efimova, I.V.; Khil’ko, S.L.; Smirnova, O.V. Antioxidant activity of humic acids in radical-chain oxidation processes. Russ. J. Appl. Chem. 2012, 85, 1351–1354. [Google Scholar] [CrossRef]
- Mvila, B.G.; Pilar-Izquierdo, M.C.; Busto, M.D.; Perez-Mateos, M.; Ortega, N. Synthesis and characterization of a stable humic-urease complex: Application to barley seed encapsulation for improving N uptake. J. Sci. Food Agric. 2016, 96, 2981–2989. [Google Scholar] [CrossRef]
- Kováčik, A.; Gašparovič, M.; Tvrdá, E.; Tokárová, K.; Kováčiková, E.; Rolinec, M.; Rumanová, L.; Capcarová, M.; Gálik, B. Effects of humic acid diet on the serum biochemistry and oxidative status markers in pheasants. Vet. Med. 2020, 65, 258–268. [Google Scholar] [CrossRef]
- Akaichia, A.; Jebalib, A.; Benlarbiac, M.; Mahjoubd, T.; Kaboudie, K.; Chaouacha-Chekira, R.B.; Haouasf, Z.; Boudhrioua, N. Effects of humic acid and organic acids supplements on performance, meat quality, leukocyte count, and histopathological changes in spleen and liver of broiler chickens. Res. Vet. Sci. 2022, 150, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Disetlhe, A.R.P.; Marume, U.; Mlambo, V.; Hugo, A. Effects of dietary humic acid and enzymes on meat quality and fatty acid profiles of broiler chickens fed canola-based diets. Asian-Australas. J. Anim. Sci. 2019, 32, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceylan, N.; Ciftci, I.; Ilhan, Z. The effects of some alternative feed additives for antibiotic growth promoters on the performance and gut microflora of broiler chicks. Turk. J. Vet. Anim. Sci. 2003, 27, 727–733. [Google Scholar]
- Mutus, R.; Kocabagli, N.; Alp, M.; Acar, N.; Eren, M.; Gezen, S.S. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult. Sci. 2006, 85, 1621–1625. [Google Scholar] [CrossRef]
- Ur Rehman, Z.; Haq, A.U.; Akram, N.; Abd El-Hack, M.E.; Saeed, M.; Ur Rehman, S.; Meng, C.; Alagawany, M.; Sayab, M.; Dhama, K.; et al. Growth performance, intestinal histomorphology, blood hematology and serum metabolites of broilers chickens fed diet supplemented with graded levels of acetic acid. Int. J. Pharmacol. 2016, 12, 874–883. [Google Scholar] [CrossRef] [Green Version]
- Arafat, R.Y.; Khan, S.H.; Baig, S. Evaluation of humic acid as an aflatoxin binder in broiler chickens. Ann. Anim. Sci. 2017, 17, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Gašparovič, M.; Hrnčár, C.; Gálik, B. The effect of feed additives in pheasants fattening: A review. J. Cent. Eur. Agric. 2017, 18, 749–761. [Google Scholar] [CrossRef]
- Kamel, M.M.; Elhady, M.; El Iraqi, K.G.; Wahba, F. Biological immune stimulants effects on immune response, behavioural and productive performance of broilers. Egypt. Poult. Sci. J. 2015, 35, 691–702. [Google Scholar]
- Sahin, A.; Iskender, H.; Terim, K.K.; Altinkaynak, K.; Hayirli, A.; Gonultas, A.; Kaynar, O. The effect of humic acid substances on the thyroid function and structure in lead poisoning. Rev. Bras. De Cienc. Avic. 2016, 18, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Hrnčár, C.; Nikolova, N.; Bujko, J. The effect of single and combined use of probiotic and humate on fattening performance, carcass characteristics and internal organs of broiler chickens. Maced. J. Anim. Sci. 2018, 8, 81–87. [Google Scholar] [CrossRef]
- Semjon, B.; Marcinčáková, D.; Koréneková, B.; Bartkovský, M.; Nagy, J.; Turek, P.; Marcinčák, S. Multiple factorial analysis of physicochemical and organoleptic properties of breast and thigh meat of broilers fed a diet supplemented with humic substances. Poult. Sci. 2020, 99, 1750–1760. [Google Scholar] [CrossRef] [PubMed]
- Jaďuttová, I.; Marcinčáková, D.; Bartkovský, M.; Semjon, B.; Harčarová, M.; Nagyová, A.; Váczi, P.; Marcinčák, S. Effect of dietary humic substances on fattening performance, carcass yield, biochemical blood parameters and bone mineral profile of broiler chickens. Acta Vet. Brno 2019, 88, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Marcinčáková, D.; Mačanga, J.; Nagy, J.; Marcinčák, S.; Popelka, P.; Vašková, J.; Jaďuttová, I.; Mellen, M. Effect of supplementation of the diet with humic acids on growth performance and carcass yield of broilers. Folia Vet. 2015, 59, 165–168. [Google Scholar]
- Naď, P.; Marcin, A.; Bujňák, L.; Skalická, M.; Gancarčíková, S. Evaluation of the growth performance and some blood parameters in broilers with the addition of humic substances in the diet. Acta Fytotech. Zootech. 2021, 24, 150–154. [Google Scholar] [CrossRef]
- Ozturk, E.; Coskun, I.; Ocak, N.; Erener, G.; Dervisoglu, M.; Turhan, S. Effects of humic substances supplementation provided through drinking water on performance, meat color and cecal microbial population of broilers. In Proceedings of the IV Ulusal Hayvan Besleme Kongresi, Uludağ, Turkey, 24–28 June 2007; pp. 243–245. [Google Scholar]
- Ozturk, E.; Ocak, N.; Coskun, I.; Turhan, S.; Erener, E. Effects of humic substances supplementation provided through drinking water on performance, carcass traits and meat quality of broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 78–85. [Google Scholar] [CrossRef]
- Nagaraju, R.; Reddy, B.S.V.; Gloridoss, R.; Suresh, B.N.; Ramesh, C. Effect of dietary supplementation oh humic acids on performance of broilers. Indian J. Anim. Sci. 2014, 84, 447–452. [Google Scholar]
- Ozturk, E.; Coskun, I.; Ocak, N.; Erener, G.; Dervisoglu, M.; Turhan, S. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers. Br. Poult. Sci. 2014, 55, 668–674. [Google Scholar] [CrossRef]
- Korsakov, K.; Simakova, L.; Vasilyev, A.; Lifanova, S.; Gulyaeva, L. The effect of humic acids on the natural resistance of the body of broiler chickens and the quality of their meat. Agron. Res. 2019, 17, 1356–1366. [Google Scholar] [CrossRef]
- Ozturk, E.; Ocak, N.; Turan, A.; Erener, G.; Altop, A.; Cankaya, S. Performance, carcass, gastrointestinal tract and meat quality traits, and selected blood parameters of broilers fed diets supplemented with humic substances. J. Sci. Food Agric. 2012, 92, 59–65. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Janssen, W.M.M.A. European Table of Energy Values for Poultry Feedstuffs; Spelderholt Center for Poultry Research and Information Services: Beekbergen, The Netherlands, 1989. [Google Scholar]
- JASP 0.8.6 Software. 2018. Available online: https://jasp-stats.org/ (accessed on 9 January 2019).
- Duncan, D.B. Multiple ranges and multiple F-test. Biometric 1955, 11, 10–42. [Google Scholar] [CrossRef]
- Kocabagli, N.; Alp, M.; Acar, N.; Kahraman, R. The effects of dietary humate supplementation on broiler growth and carcass yield. Poult. Sci. 2002, 81, 227–230. [Google Scholar] [CrossRef]
- Abdel-Mageed, M.A. Effect of dietary humic substances supplementation on performance and immunity of Japanese quail. Egypt. Poult. Sci. 2012, 32, 645–660. [Google Scholar]
- Mirnawati, Y.R.; Marida, Y. Effects of humic acid addition via drinking water on the performance of broilers fed diets containing fermented and non-fermented palm kernel cake. Arch. Zootech. 2013, 16, 41–53. [Google Scholar]
- Elnaggar, A.S.; El-Kelawy, M.I. Effect of humic acid supplementation on productive performance, blood constituents, immune response and carcass characteristics of Sasso chicken. Egypt. J. Anim. Prod. 2018, 55, 75–84. [Google Scholar] [CrossRef]
- Pistová, V.; Arpášová, H.; Hrnčár, C. The effect of the humic acid and garlic (Allium sativum L.) on performance parameters and carcass characteristic of broiler chicken. J. Cent. Eur. Agric. 2016, 17, 1168–1178. [Google Scholar] [CrossRef] [Green Version]
- Arpášová, H.; Pistová, V.; Hrnčár, C.; Fik, M.; Haščík, P.; Kačániová, M.; Gálik, B.; Bučko, O. The impact of the humic acid and phytobiotics on performance and carcass parameters of broiler chickens. Acta Fytotech. Et Zootech. 2018, 21, 173–178. [Google Scholar] [CrossRef]
- Arpášová, H.; Pistová, V.; Hrnčár, C.; Fik, M. The effect of the humic substances and thyme on carcass parameters of broiler chickens. Sci. Pap. Anim. Sci. Biotechnol. 2018, 51, 1–5. [Google Scholar]
- Li, X.K.; Wang, J.Z.; Wang, C.Q.; Zhang, C.H.; Li, X.; Tang, C.H.; Wei, X.L. Effect of dietary phosphorus levels on meat quality and lipid metabolism in broiler chickens. Food Chem. 2016, 205, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Hudák, M.; Semjon, B.; Marcinčáková, D.; Bujňák, L.; Naď, P.; Koréneková, B.; Nagy, J.; Bartkovský, M.; Marcinčák, S. Effect of broilers chicken diet supplementation with natural and acidified humic substances on quality of produced breast meat. Animals 2021, 11, 1087. [Google Scholar] [CrossRef] [PubMed]
- Haščík, P.; Arpášová, H.; Pavelková, A.; Bobko, M.; Čuboň, J.; Bučko, O. Chemical composition of chicken meat after application of humic acid and probiotic Lactobacillus fermentum. Potravin. Slovak J. Food Sci. 2018, 12, 694–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudadio, V.; Tufarelli, V. Growth performance and carcass and meat quality of broiler chickens fed diets containing micronizeddehulled peas (Pisum sativum cv. Spirale) as a substitute of soybean meal. Poult. Sci. 2010, 89, 1537–1543. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.M.; Bostami, A.B.M.R.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) byproducts. Food Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef]
- FAO; WHO. Fats and fatty acids in human nutrition. In Proceedings of the Joint FAO/WHO Expert Consultation, Geneva, Switzerland, 10–14 November 2008. [Google Scholar]
- Haščík, P.; Pavelková, A.; Arpášová, H.; Čuboň, J.; Bobko, M.; Tkáčová, J.; Kačániová, M.; Bučko, O. The profile of fatty acids in chicken’s meat after humic acid and phytobiotics application. J. Microbiol. Biotechology Food Sci. 2019, 9, 439–444. [Google Scholar] [CrossRef]
Nutrient | Unit | Control | 0.50% HS | 0.75% HS | 1.00% HS |
---|---|---|---|---|---|
Crude protein | % | 29.00 | 28.09 | 28.35 | 28.62 |
Crude fat | % | 1.63 | 1.82 | 1.80 | 1.80 |
Crude fiber | % | 3.90 | 4.66 | 3.53 | 3.72 |
Crude ash | % | 7.27 | 8.73 | 7.90 | 7.70 |
Ca | g/kg | 11.88 | 17.93 | 16.23 | 16.94 |
P | g/kg | 9.53 | 9.81 | 9.83 | 10.44 |
Mg | g/kg | 3.48 | 3.66 | 3.47 | 4.22 |
Na | g/kg | 1.61 | 1.99 | 1.83 | 2.77 |
K | g/kg | 14.66 | 12.77 | 12.79 | 9.80 |
Cu | mg/kg | 17.21 | 17.26 | 21.72 | 12.67 |
Fe | mg/kg | 217.46 | 297.51 | 296.96 | 311.81 |
Mn | mg/kg | 45.37 | 51.90 | 49.33 | 56.25 |
Zn | mg/kg | 115.10 | 125.40 | 112.40 | 90.20 |
Nutrient | Unit | Control | 0.50% HS | 0.75% HS | 1.00% HS |
---|---|---|---|---|---|
Crude protein | % | 24.74 | 26.62 | 26.17 | 26.11 |
Crude fat | % | 1.89 | 1.89 | 1.86 | 1.67 |
Crude fiber | % | 3.25 | 3.49 | 2.91 | 2.85 |
Crude ash | % | 9.62 | 9.40 | 9.06 | 7.86 |
Ca | g/kg | 18.65 | 18.15 | 16.97 | 16.06 |
P | g/kg | 9.65 | 10.05 | 9.92 | 9.52 |
Mg | g/kg | 3.86 | 3.88 | 3.73 | 4.02 |
Na | g/kg | 3.77 | 3.51 | 2.88 | 3.21 |
K | g/kg | 12.98 | 13.15 | 12.92 | 9.12 |
Cu | mg/kg | 17.43 | 17.10 | 18.46 | 13.44 |
Fe | mg/kg | 273.41 | 306.39 | 313.26 | 314.64 |
Mn | mg/kg | 53.58 | 56.45 | 51.90 | 53.69 |
Zn | mg/kg | 127.90 | 113.30 | 99.60 | 89.70 |
Parameter | Sex | Control | 0.50% HS | 0.75% HS | 1.00% HS |
---|---|---|---|---|---|
Initial weight (g) | Male | 22.31 ± 1.89 | 22.46 ± 1.91 | 22.38 ± 1.88 | 22.33 ± 1.89 |
Female | 21.84 ± 1.86 | 21.88 ± 1.87 | 21.73 ± 1.83 | 21.93 ± 1.88 | |
Final weight (g) | Male | 1025.97 ± 53.58 b | 1201.38 ± 56.12 a | 1166.89 ± 55.18 a | 1045.34 ± 54.55 b |
Female | 861.87 ± 33.18 b | 934.51 ± 35.77 a | 926.02 ± 35.21 a | 876.59 ± 33.85 b | |
Carcass weight (g) | Male | 717.26 ± 34.68 b | 841.16 ± 87.51 a | 816.01 ± 83.85 a | 731.34 ± 67.46 b |
Female | 602.06 ± 28.20 b | 653.51 ± 62.04 a | 646.86 ± 48.96 a | 613.10 ± 59.54 b | |
Breast (g) | Male | 203.26 ± 11.04 b | 279.60 ± 18.29 a | 270.59 ± 26.35 a | 240.54 ± 34.52 a |
Female | 155.22 ± 12.86 b | 223.96 ± 13.99 a | 220.90 ± 14.23 a | 209.19 ± 14.16 a | |
Thigh (g) | Male | 204.06 ± 10.30 b | 246.21 ± 27.80 a | 244.64 ± 28.57 a | 216.18 ± 14.63 b |
Female | 164.30 ± 9.48 | 188.60 ± 10.38 | 186.04 ± 10.33 | 171.61 ± 10.09 | |
Wing (g) | Male | 89.80 ± 4.29 b | 105.48 ± 4.89 a | 101.92 ± 4.76 a | 91.27 ± 4.42 b |
Female | 69.48 ± 3.76 | 75.94 ± 3.82 | 74.97 ± 3.77 | 70.99 ± 3.81 | |
Back (g) | Male | 119.85 ± 5.22 b | 140.81 ± 5.57 a | 136.19 ± 5.42 a | 121.84 ± 5.41 b |
Female | 95.13 ± 4.03 b | 109.39 ± 4.22 a | 107.96 ± 4.17 a | 102.14 ± 4.11 b | |
Neck (g) | Male | 16.43 ± 1.88 b | 19.59 ± 1.92 a | 18.84 ± 1.87 a | 16.68 ± 1.89 b |
Female | 11.62 ± 1.12 | 12.94 ± 1.18 | 12.61 ± 1.14 | 11.83 ± 1.16 | |
Gizzard (g) | Male | 19.79 ± 1.45 b | 24.14 ± 1.56 a | 22.93 ± 1.51 a | 20.48 ± 1.46 b |
Female | 17.34 ± 1.31 | 19.34 ± 1.39 | 18.95 ± 1.38 | 17.90 ± 1.34 | |
Heart (g) | Male | 7.96 ± 0.68 b | 9.59 ± 0.76 a | 9.14 ± 0.72 a | 8.12 ± 0.74 b |
Female | 5.42 ± 0.44 b | 7.45 ± 0.54 a | 6.15 ± 0.51 a | 5.70 ± 0.48 b | |
Liver (g) | Male | 17.65 ± 1.63 b | 21.11 ± 1.79 a | 20.24 ± 1.65 a | 17.85 ± 1.64 b |
Female | 16.74 ± 2.10 b | 18.63 ± 2.22 a | 18.31 ± 2.17 a | 17.23 ± 2.13 b | |
Abdominal fat (g) | Male | 3.01 ± 0.63 a | 2.69 ± 0.59 b | 2.77 ± 0.61 b | 2.48 ± 0.61 b |
Female | 6.29 ± 0.83 a | 5.09 ± 0.82 b | 5.30 ± 0.88 b | 5.08 ± 0.78 b | |
Breast (%) | Male | 32.47 ± 1.84 | 33.24 ± 0.53 | 33.16 ± 1.33 | 32.89 ± 2.58 |
Female | 33.76 ± 1.31 | 34.27 ± 2.05 | 34.15 ± 1.34 | 34.12 ± 4.78 | |
Thigh (%) | Male | 28.45 ± 0.90 | 29.27 ± 0.42 | 29.98 ± 0.09 | 29.56 ± 0.90 |
Female | 27.29 ± 0.83 | 28.86 ± 2.75 | 28.76 ± 1.65 | 27.99 ± 5.58 | |
Wing (%) | Male | 12.52 ± 0.55 | 12.54 ± 0.62 | 12.49 ± 0.53 | 12.48 ± 0.54 |
Female | 11.54 ± 0.54 | 11.62 ± 0.59 | 11.59 ± 0.55 | 11.58 ± 0.56 | |
Back (%) | Male | 16.71 ± 0.73 | 16.74 ± 0.80 | 16.69 ± 0.72 | 16.66 ± 0.69 |
Female | 15.80 ± 0.69 | 15.82 ± 0.71 | 15.77 ± 0.66 | 15.76 ± 0.62 | |
Neck (%) | Male | 2.29 ± 0.09 | 2.33 ± 0.11 | 2.31 ± 0.10 | 2.28 ± 0.09 |
Female | 1.93 ± 0.04 | 1.98 ± 0.06 | 1.95 ± 0.05 | 1.93 ± 0.05 | |
Gizzard (%) | Male | 2.76 ± 0.15 | 2.87 ± 0.18 | 2.81 ± 0.16 | 2.80 ± 0.16 |
Female | 2.88 ± 0.19 | 2.96 ± 0.21 | 2.93 ± 0.19 | 2.92 ± 0.19 | |
Heart (%) | Male | 1.11 ± 0.01 | 1.14 ± 0.02 | 1.12 ± 0.02 | 1.11 ± 0.01 |
Female | 0.90 ± 0.01 | 0.92 ± 0.01 | 0.95 ± 0.01 | 0.93 ± 0.01 | |
Liver (%) | Male | 2.46 ± 0.16 | 2.51 ± 0.19 | 2.48 ± 0.18 | 2.44 ± 0.18 |
Female | 2.78 ± 0.21 | 2.85 ± 0.23 | 2.83 ± 0.22 | 2.81 ± 0.22 | |
Abdominal fat (%) | Male | 0.42 ± 0.03 a | 0.32 ± 0.02 b | 0.34 ± 0.02 b | 0.34 ± 0.02 b |
Female | 0.88 ± 0.05 a | 0.78 ± 0.04 b | 0.82 ± 0.04 a | 0.83 ± 0.04 a | |
Carcass yield (%) | Male | 72.51 ± 1.04 | 72.63 ± 1.11 | 72.59 ± 1.09 | 72.56 ± 1.07 |
Female | 72.29 ± 0.99 | 72.36 ± 1.05 | 72.35 ± 1.08 | 72.31 ± 1.04 |
Nutrient | Sex | Control | 0.50% HS | 0.75% HS | 1.00% HS |
---|---|---|---|---|---|
Dry matter (g) | Male | 270.01 ± 4.45 | 271.36 ± 3.75 | 270.88 ± 3.65 | 270.29 ± 3.26 |
Female | 272.61 ± 2.86 | 273.31 ± 1.37 | 273.03 ± 3.40 | 273.23 ± 3.96 | |
Crude protein (g) | Male | 877.71 ± 18.07 b | 892.85 ± 19.11 a | 892.71 ± 20.25 a | 893.29 ± 19.84 a |
Female | 881.71 ± 19.86 b | 898.11 ± 18.58 a | 897.84 ± 19.69 a | 899.93 ± 19.22 a | |
Fat (g) | Male | 26.26 ± 3.01 a | 24.65 ± 2.77 b | 24.80 ± 2.06 b | 26.68 ± 1.26 a |
Female | 26.88 ± 3.46 a | 24.83 ± 3.50 b | 24.78 ± 3.83 b | 26.16 ± 2.77 a | |
Energy (MJ) | Male | 17.05 ± 0.22 | 16.72 ± 1.01 | 17.33 ± 0.19 | 17.09 ± 0.12 |
Female | 17.20 ± 0.35 | 17.09 ± 0.26 | 17.12 ± 0.32 | 17.09 ± 0.10 | |
Ash (g) | Male | 44.20 ± 0.81 | 44.53 ± 0.87 | 44.40 ± 0.45 | 45.28 ± 2.19 |
Female | 43.65 ± 0.89 | 43.99 ± 0.47 | 45.60 ± 1.53 | 46.31 ± 0.67 |
Nutrient | Sex | Control | 0.50% HS | 0.75% HS | 1.00% HS |
---|---|---|---|---|---|
Dry matter (g) | Male | 259.41 ± 7.93 | 260.05 ± 8.73 | 259.73 ± 6.53 | 259.76 ± 8.27 |
Female | 262.05 ± 7.30 | 262.64 ± 7.28 | 261.70 ± 5.03 | 262.83 ± 4.78 | |
Crude protein (g) | Male | 754.66 ± 33.71 b | 768.06 ± 35.86 a | 772.60 ± 53.66 a | 758.63 ± 31.45 b |
Female | 740.80 ± 15.99 b | 759.18 ± 17.07 a | 755.94 ± 53.33 a | 742.08 ± 19.91 b | |
Fat (g) | Male | 141.25 ± 42.54 a | 139.83 ± 37.27 b | 139.28 ± 51.59 b | 141.05 ± 23.05 a |
Female | 144.51 ± 18.76 a | 141.01 ± 12.16 b | 141.51 ± 50.06 b | 144.05 ± 23.05 a | |
Energy (MJ) | Male | 18.73 ± 1.01 | 19.02 ± 0.82 | 19.53 ± 1.00 | 18.99 ± 0.51 |
Female | 19.73 ± 0.49 | 18.98 ± 0.26 | 20.47 ± 095 | 20.24 ± 0.52 | |
Ash (g) | Male | 45.51 ± 3.24 | 45.05 ± 2.60 | 44.84 ± 5.11 | 44.01 ± 1.14 |
Female | 42.80 ± 1.11 | 42.91 ± 1.58 | 42.11 ± 3.25 | 41.63 ± 1.90 |
Fat Acid | Sex | Control | 0.50% HS | 0.75% HS | 1.00% HS |
---|---|---|---|---|---|
Palmitic (g) | Male | 36.82 ± 0.20 | 36.04 ± 0.57 | 35.83 ± 0.24 | 36.73 ± 0.50 |
Female | 35.57 ± 0.45 | 34.69 ± 0.79 | 34.52 ± 0.27 | 34.92 ± 0.35 | |
Stearic (g) | Male | 16.17 ± 0.13 | 15.09 ± 0.21 | 15.32 ± 0.08 | 15.53 ± 0.30 |
Female | 14.37 ± 0.22 a | 14.17 ± 0.36 a | 13.83 ± 0.11 b | 13.94 ± 0.21 b | |
Oleic (g) | Male | 27.95 ± 0.09 | 27.74 ± 0.38 | 27.88 ± 0.09 | 27.34 ± 0.28 |
Female | 29.87 ± 0.48 | 29.17 ± 0.77 | 29.81 ± 0.12 | 29.13 ± 0.19 | |
PUFA (g) | Male | 38.82 ± 0.33 | 39.78 ± 0.68 | 38.48 ± 0.37 | 39.11 ± 0.83 |
Female | 38.37 ± 0.58 b | 39.28 ± 0.85 a | 38.78 ± 0.40 b | 38.89 ± 0.53 b | |
MUFA (g) | Male | 29.95 ± 0.09 | 28.64 ± 0.38 | 28.98 ± 0.09 | 29.34 ± 0.28 |
Female | 29.89 ± 0.46 | 28.47 ± 0.77 | 28.87 ± 0.12 | 29.13 ± 0.19 | |
SFA (g) | Male | 56.27 ± 0.02 | 54.58 ± 0.37 | 55.99 ± 0.14 | 55.74 ± 0.17 |
Female | 57.86 ± 0.40 | 57.08 ± 0.37 | 57.51 ± 0.14 | 57.69 ± 0.12 |
Fat Acid | Sex | Control | 0.50% HS | 0.75% HS | 1.00% HS |
---|---|---|---|---|---|
Palmitic (g) | Male | 33.32 ± 0.30 | 32.99 ± 0.75 | 32.31 ± 1.71 | 32.89 ± 0.19 |
Female | 32.63 ± 0.33 | 31.75 ± 0.25 | 31.94 ± 0.26 | 32.13 ± 0.24 | |
Stearic (g) | Male | 11.33 ± 0.11 | 11.19 ± 0.27 | 11.28 ± 0.39 | 11.08 ± 0.07 |
Female | 9.82 ± 0.10 | 9.19 ± 0.08 | 9.04 ± 0.08 | 9.65 ± 0.06 | |
Oleic (g) | Male | 30.27 ± 0.16 | 29.87 ± 0.27 | 29.95 ± 3.67 | 29.33 ± 0.13 |
Female | 30.58 ± 0.14 | 30.45 ± 0.12 | 29.98 ± 0.20 | 29.17 ± 0.04 | |
PUFA (g) | Male | 35.44 ± 0.37 | 34.87 ± 1.02 | 34.79 ± 1.73 | 34.86 ± 0.18 |
Female | 34.91 ± 0.37 | 34.37 ± 0.30 | 34.14 ± 0.27 | 34.19 ± 0.35 | |
MUFA (g) | Male | 30.58 ± 0.14 | 30.12 ± 0.21 | 30.34 ± 3.64 | 29.95 ± 0.11 |
Female | 30.79 ± 0.12 | 30.70 ± 0.09 | 30.23 ± 0.16 | 29.57 ± 0.04 | |
SFA (g) | Male | 54.85 ± 0.34 | 53.09 ± 0.51 | 54.04 ± 2.45 | 53.74 ± 0.23 |
Female | 56.16 ± 0.26 | 55.18 ± 0.25 | 55.35 ± 0.27 | 55.51 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gálik, B.; Hrnčár, C.; Gašparovič, M.; Rolinec, M.; Hanušovský, O.; Juráček, M.; Šimko, M.; Zábranský, L.; Kovacik, A. The Effect of Humic Substances on the Meat Quality in the Fattening of Farm Pheasants (Phasianus colchicus). Agriculture 2023, 13, 295. https://doi.org/10.3390/agriculture13020295
Gálik B, Hrnčár C, Gašparovič M, Rolinec M, Hanušovský O, Juráček M, Šimko M, Zábranský L, Kovacik A. The Effect of Humic Substances on the Meat Quality in the Fattening of Farm Pheasants (Phasianus colchicus). Agriculture. 2023; 13(2):295. https://doi.org/10.3390/agriculture13020295
Chicago/Turabian StyleGálik, Branislav, Cyril Hrnčár, Martin Gašparovič, Michal Rolinec, Ondrej Hanušovský, Miroslav Juráček, Milan Šimko, Luboš Zábranský, and Anton Kovacik. 2023. "The Effect of Humic Substances on the Meat Quality in the Fattening of Farm Pheasants (Phasianus colchicus)" Agriculture 13, no. 2: 295. https://doi.org/10.3390/agriculture13020295
APA StyleGálik, B., Hrnčár, C., Gašparovič, M., Rolinec, M., Hanušovský, O., Juráček, M., Šimko, M., Zábranský, L., & Kovacik, A. (2023). The Effect of Humic Substances on the Meat Quality in the Fattening of Farm Pheasants (Phasianus colchicus). Agriculture, 13(2), 295. https://doi.org/10.3390/agriculture13020295