Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta
Abstract
:1. Introduction
2. Water Quality Monitoring (WQM)
Development of Automated Continuous WQM Systems
- The use of commercially available and reliable sensors in conjunction with data acquisition instruments.
- The development of low-cost prototypes based on open-source hardware (OSH).
3. Overview of the Automated Continuous Monitoring System (ACMS) in Neretva River Delta (NRD)
3.1. Neretva River Delta
3.2. Monitoring of Water and Soil in NRD
3.3. Site Selection
3.4. Automated Continuous Monitoring System
3.4.1. Monitoring of Surface Water and Groundwater Quality
3.4.2. Monitoring of Soil Salinity
3.4.3. Monitoring of Surface Water Regime
3.4.4. Monitoring of Weather Conditions
3.4.5. Developed Data Base and Web Application for Various Stakeholders
3.4.6. Data Usage and Application
4. Benefits and Challenges of ACMS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammed, R.; Scholz, M. Critical Review of Salinity Intrusion in Rivers and Estuaries. J. Water Clim. Chang. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.M.; Gulev, S.; Hanawa, K.; le Quéré, C.; Levitus, S.; Nojiri, Y.; et al. Observations: Oceanic Climate and Sea Leve. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Domazetović, F.; Lončar, N.; Šiljeg, A. Kvantitativna Analiza Utjecaja Porasta Razine Jadranskog Mora Na Hrvatsku Obalu: GIS Pristup. Naše More 2017, 64, 33–43. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Wong, P.P.; Losada, I.J.; Gattuso, J.-P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal Systems and Low-Lying Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 361–410. [Google Scholar]
- Frollini, E.; Parrone, D.; Ghergo, S.; Masciale, R.; Passarella, G.; Pennisi, M.; Salvadori, M.; Preziosi, E. An Integrated Approach for Investigating the Salinity Evolution in a Mediterranean Coastal Karst Aquifer. Water 2022, 14, 1725. [Google Scholar] [CrossRef]
- Savenije, H.H.G. Introduction. In Salinity and Tides in Alluvial Estuaries; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–22. [Google Scholar]
- Mcleod, E.; Poulter, B.; Hinkel, J.; Reyes, E.; Salm, R. Sea-Level Rise Impact Models and Environmental Conservation: A Review of Models and Their Applications. Ocean Coast Manag. 2010, 53, 507–517. [Google Scholar] [CrossRef]
- Renaud, F.G.; Le, T.T.H.; Lindener, C.; Guong, V.T.; Sebesvari, Z. Resilience and Shifts in Agro-Ecosystems Facing Increasing Sea-Level Rise and Salinity Intrusion in Ben Tre Province, Mekong Delta. Clim. Chang. 2015, 133, 69–84. [Google Scholar] [CrossRef]
- Franceschini, F.; Signorini, R. Seawater Intrusion via Surface Water vs. Deep Shoreline Salt-Wedge: A Case History from the Pisa Coastal Plain (Italy). Groundw. Sustain. Dev. 2016, 2–3, 73–84. [Google Scholar] [CrossRef]
- Stephens, R.; Imberger, J. Dynamics of the Swan River Estuary: The Seasonal Variability. Mar. Freshw. Res. 1996, 47, 517. [Google Scholar] [CrossRef]
- Han, Z.; Pan, C.; Yu, J.; Chen, H. Effect of Large-Scale Reservoir and River Regulation/Reclamation on Saltwater Intrusion in Qiantang Estuary. Sci. China B Chem. 2001, 44, 221–229. [Google Scholar] [CrossRef]
- Ljubenkov, I.; Vranješ, M. Numerical Model of Stratified Flow—Case Study of the Neretva Riverbed Salination (2004). J. Croat. Assoc. Civ. Eng. 2012, 64, 101–113. [Google Scholar] [CrossRef]
- Simpson, H.J.; Herczeg, A.L. Delivery of Marine Chloride in Precipitation and Removal by Rivers in the Murray—Darling Basin, Australia. J Hydrol 1994, 154, 323–350. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, X.; Fang, Y.; Gao, F.; Wu, C.; Xia, J. Effects of Water and Salt for Groundwater-Soil Systems on Root Growth and Architecture of Tamarix Chinensis in the Yellow River Delta, China. J. For. Res. 2022, 13. [Google Scholar] [CrossRef]
- Rengasamy, P. World Salinization with Emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Geeson, N.A.; Brandt, C.J.; John, B.T. Mediterranean Desertification: A Mosaic of Processes and Responses; John Wiley & Sons: Chichester, UK, 2003. [Google Scholar]
- Egidi, G.; Cividino, S.; Paris, E.; Palma, A.; Salvati, L.; Cudlin, P. Assessing the Impact of Multiple Drivers of Land Sensitivity to Desertification in a Mediterranean Country. Environ. Impact. Assess. Rev. 2021, 89, 106594. [Google Scholar] [CrossRef]
- Marcos, M.; Tsimplis, M.N. Coastal Sea Level Trends in Southern Europe. Geophys. J. Int. 2008, 175, 70–82. [Google Scholar] [CrossRef]
- Ibaňez, C.; Pont, D.; Prat, N. Characterization of the Ebre and Rhone Estuaries: A Basis for Defining and Classifying Salt-Wedge Estuaries. Limnol. Oceanogr. 1997, 42, 89–101. [Google Scholar] [CrossRef]
- Simeoni, U.; Corbau, C. A Review of the Delta Po Evolution (Italy) Related to Climatic Changes and Human Impacts. Geomorphology 2009, 107, 64–71. [Google Scholar] [CrossRef]
- Romić, D.; Castrignanò, A.; Romić, M.; Buttafuoco, G.; Kovačić, M.B.; Ondrašek, G.; Zovko, M. Modelling Spatial and Temporal Variability of Water Quality from Different Monitoring Stations Using Mixed Effects Model Theory. Sci. Total Environ. 2020, 704, 135875. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.; Javadi, A.; Abdelaty, I.; Sherif, M. Simulation of Seawater Intrusion in the Nile Delta Aquifer under the Conditions of Climate Change. Hydrol. Res. 2016, 47, 1198–1210. [Google Scholar] [CrossRef]
- Ding, Z.; Koriem, M.A.; Ibrahim, S.M.; Antar, A.S.; Ewis, M.A.; He, Z.; Kheir, A.M.S. Seawater Intrusion Impacts on Groundwater and Soil Quality in the Northern Part of the Nile Delta, Egypt. Environ. Earth Sci. 2020, 79, 313. [Google Scholar] [CrossRef]
- Sefelnasr, A.; Sherif, M. Impacts of Seawater Rise on Seawater Intrusion in the Nile Delta Aquifer, Egypt. Groundwater 2014, 52, 264–276. [Google Scholar] [CrossRef]
- Rahman, M.M.; Penny, G.; Mondal, M.S.; Zaman, M.H.; Kryston, A.; Salehin, M.; Nahar, Q.; Islam, M.S.; Bolster, D.; Tank, J.L.; et al. Salinization in Large River Deltas: Drivers, Impacts and Socio-Hydrological Feedbacks. Water Secur. 2019, 6, 100024. [Google Scholar] [CrossRef]
- Tal, A.; Weinstein, Y.; Baïsset, M.; Golan, A.; Yechieli, Y. High Resolution Monitoring of Seawater Intrusion in a Multi-Aquifer System-Implementation of a New Downhole Geophysical Tool. Water 2019, 11, 1877. [Google Scholar] [CrossRef]
- O’Grady, J.; Zhang, D.; O’Connor, N.; Regan, F. A Comprehensive Review of Catchment Water Quality Monitoring Using a Tiered Framework of Integrated Sensing Technologies. Sci. Total Environ. 2021, 765, 142766. [Google Scholar] [CrossRef]
- Halliday, S.J.; Wade, A.J.; Skeffington, R.A.; Neal, C.; Reynolds, B.; Rowland, P.; Neal, M.; Norris, D. An Analysis of Long-Term Trends, Seasonality and Short-Term Dynamics in Water Quality Data from Plynlimon, Wales. Sci. Total Environ. 2012, 434, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Skeffington, R.A.; Halliday, S.J.; Wade, A.J.; Bowes, M.J.; Loewenthal, M. Using High-Frequency Water Quality Data to Assess Sampling Strategies for the EU Water Framework Directive. Hydrol. Earth Syst. Sci. 2015, 19, 2491–2504. [Google Scholar] [CrossRef]
- Cassidy, R.; Jordan, P. Limitations of Instantaneous Water Quality Sampling in Surface-Water Catchments: Comparison with near-Continuous Phosphorus Time-Series Data. J. Hydrol. 2011, 405, 182–193. [Google Scholar] [CrossRef]
- Wade, A.J.; Palmer-Felgate, E.J.; Halliday, S.J.; Skeffington, R.A.; Loewenthal, M.; Jarvie, H.P.; Bowes, M.J.; Greenway, G.M.; Haswell, S.J.; Bell, I.M.; et al. Hydrochemical Processes in Lowland Rivers: Insights from in Situ, High-Resolution Monitoring. Hydrol. Earth Syst. Sci. 2012, 16, 4323–4342. [Google Scholar] [CrossRef]
- Kirchner, J.W.; Feng, X.; Neal, C.; Robson, A.J. The Fine Structure of Water-Quality Dynamics: The(High-Frequency) Wave of the Future. Hydrol. Process. 2004, 18, 1353–1359. [Google Scholar] [CrossRef]
- Bartram, J.; Ballance, R. Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs; E & FN SPON, an imprint of Chapman & Hall: London, UK, 1996. [Google Scholar]
- Strobl, R.O.; Robillard, P.D. Network Design for Water Quality Monitoring of Surface Freshwaters: A Review. J. Environ. Manag. 2008, 87, 639–648. [Google Scholar] [CrossRef]
- Li, D.; Liu, S. System and Platform for Water Quality Monitoring. In Water Quality Monitoring and Management; Elsevier: Amsterdam, The Netherlands, 2019; pp. 101–112. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Postolache, O.; Silva, P.; Dias Pereir, J.M. Water Quality Monitoring and Associated Distributed Measurement Systems: An Overview. In Water Quality Monitoring and Assessment; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Savic, R.; Stajic, M.; Blagojević, B.; Bezdan, A.; Vranesevic, M.; Nikolić Jokanović, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
- Myers, D.N. Innovations in Monitoring With Water-Quality Sensors With Case Studies on Floods, Hurricanes, and Harmful Algal Blooms. In Separation Science and Technology; Academic Press: Cambridge, MA, USA, 2019; pp. 219–283. [Google Scholar]
- Piniewski, M.; Marcinkowski, P.; Koskiaho, J.; Tattari, S. The Effect of Sampling Frequency and Strategy on Water Quality Modelling Driven by High-Frequency Monitoring Data in a Boreal Catchment. J. Hydrol. 2019, 579, 124186. [Google Scholar] [CrossRef]
- Cohen, B.; McCarthy, L.T. Salinity of the Delaware Estuary; U.S. Geological Survey: Newark, Delaware, 1963.
- Linklater, N.; Örmeci, B. Real-Time and Near Real-Time Monitoring Options for Water Quality. In Monitoring Water Quality; Elsevier: Amsterdam, The Netherlands, 2013; pp. 189–225. [Google Scholar]
- Rode, M.; Wade, A.J.; Cohen, M.J.; Hensley, R.T.; Bowes, M.J.; Kirchner, J.W.; Arhonditsis, G.B.; Jordan, P.; Kronvang, B.; Halliday, S.J.; et al. Sensors in the Stream: The High-Frequency Wave of the Present. Environ. Sci. Technol. 2016, 50, 10297–10307. [Google Scholar] [CrossRef] [PubMed]
- Storey, M.V.; van der Gaag, B.; Burns, B.P. Advances in On-Line Drinking Water Quality Monitoring and Early Warning Systems. Water Res. 2011, 45, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.F.; Martin, J.F.; Granata, T.; Bouchard, V.; Quigley, M.; Brown, L. Analysis and Modeling of Suspended Solids from High-Frequency Monitoring in a Stormwater Treatment Wetland. Ecol. Eng. 2005, 24, 157–174. [Google Scholar] [CrossRef]
- Preziosi, E.; Frollini, E.; Zoppini, A.; Ghergo, S.; Melita, M.; Parrone, D.; Rossi, D.; Amalfitano, S. Disentangling Natural and Anthropogenic Impacts on Groundwater by Hydrogeochemical, Isotopic and Microbiological Data: Hints from a Municipal Solid Waste Landfill. Waste Manag. 2019, 84, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Kohli, P.; Siver, P.A.; Marsicano, L.J.; Hamer, J.S.; Coffin, A.M. Assessment of Long-Term Trends for Management of Candlewood Lake, Connecticut, USA. Lake Reserv. Manag. 2017, 33, 280–300. [Google Scholar] [CrossRef]
- Nord, G.; Michielin, Y.; Biron, R.; Esteves, M.; Freche, G.; Geay, T.; Hauet, A.; Legoût, C.; Mercier, B. An Autonomous Low-Power Instrument Platform for Monitoring Water and Solid Discharges in Mesoscale Rivers. Geosci. Instrum. Methods Data Syst. 2020, 9, 41–67. [Google Scholar] [CrossRef]
- Hosen, J.D.; Aho, K.S.; Appling, A.P.; Creech, E.C.; Fair, J.H.; Hall, R.O.; Kyzivat, E.D.; Lowenthal, R.S.; Matt, S.; Morrison, J.; et al. Enhancement of Primary Production during Drought in a Temperate Watershed Is Greater in Larger Rivers than Headwater Streams. Limnol. Oceanogr. 2019, 64, 1458–1472. [Google Scholar] [CrossRef]
- Abdul Wahid, A.; Arunbabu, E. Forecasting Water Quality Using Seasonal ARIMA Model by Integrating In-Situ Measurements and Remote Sensing Techniques in Krishnagiri Reservoir, India. Water Pract. Technol. 2022, 17, 1230–1252. [Google Scholar] [CrossRef]
- Kotamäki, N.; Thessler, S.; Koskiaho, J.; Hannukkala, A.; Huitu, H.; Huttula, T.; Havento, J.; Järvenpää, M. Wireless In-Situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective. Sensors 2009, 9, 2862–2883. [Google Scholar] [CrossRef]
- Danielson, T.L. Sensor Recommendations for Long Term Monitoring of the F-Area Seepage Basins; Savannah River Site: Aiken, SC, USA, 2020. [Google Scholar]
- Aswin Kumer, S.V.; Kanakaraja, P.; Mounika, V.; Abhishek, D.; Praneeth Reddy, B. Environment Water Quality Monitoring System. Mater. Today Proc. 2021, 46, 4137–4141. [Google Scholar] [CrossRef]
- Hong, W.; Shamsuddin, N.; Abas, E.; Apong, R.; Masri, Z.; Suhaimi, H.; Gödeke, S.; Noh, M. Water Quality Monitoring with Arduino Based Sensors. Environments 2021, 8, 6. [Google Scholar] [CrossRef]
- Rao, A.S.; Marshall, S.; Gubbi, J.; Palaniswami, M.; Sinnott, R.; Pettigrovet, V. Design of Low-Cost Autonomous Water Quality Monitoring System. In Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore, India, 22–25 August 2013; pp. 14–19. [Google Scholar]
- Lockridge, G.; Dzwonkowski, B.; Nelson, R.; Powers, S. Development of a Low-Cost Arduino-Based Sonde for Coastal Applications. Sensors 2016, 16, 528. [Google Scholar] [CrossRef]
- Romić, D.; Romić, M.; Zovko, M.; Bakić, H.; Ondrašek, G. Trace Metals in the Coastal Soils Developed from Estuarine Floodplain Sediments in the Croatian Mediterranean Region. Environ. Geochem. Health 2012, 34, 399–416. [Google Scholar] [CrossRef] [PubMed]
- OG 46/2020; Official Gazette OG 46/2020 The Strategy for Adaptation to Climate Change of the Republic of Croatia until 2040 with a View to 2070. Zagreb, Croatia, 2020.
- Romić, D.; Zovko, M.; Bubalo Kovačić, M.; Ondrašek, G.; Bakić Begić, H.; Romić, M. Procesi, Dinamika i Trend Zaslanjivanja Voda i Tla u Poljoprivrednom Području Doline Rijeke Neretve. In Proceedings of the 7. Hrvatska Konferencija o Vodama. Hrvatske Vode u Zaštiti okoliša i Prirode, Opatija, Croatia, 30 May–1 June 2019. [Google Scholar]
- Liu, D.; Lei, X.; Gao, W.; Guo, H.; Xie, Y.; Fu, L.; Lei, Y.; Li, Y.; Zhang, Z.; Tang, S. Mapping the Potential Distribution Suitability of 16 Tree Species under Climate Change in Northeastern China Using Maxent Modelling. J. For. Res. 2022, 33, 1739–1750. [Google Scholar] [CrossRef]
- Zovko, M.; Romić, D.; Colombo, C.; di Iorio, E.; Romić, M.; Buttafuoco, G.; Castrignanò, A. A Geostatistical Vis-NIR Spectroscopy Index to Assess the Incipient Soil Salinization in the Neretva River Valley, Croatia. Geoderma 2018, 332, 60–72. [Google Scholar] [CrossRef]
- Lovrinović, I.; Bergamasco, A.; Srzić, V.; Cavallina, C.; Holjevći, D.; Donnici, S.; Erceg, J.; Zaggia, L.; Tosi, L. Groundwater Monitoring Systems to Understand Sea Water Intrusion Dynamics in the Mediterranean: The Neretva Valley and the Southern Venice Coastal Aquifers Case Studies. Water 2021, 13, 561. [Google Scholar] [CrossRef]
- Krvavica, N.; Ružić, I. Assessment of Sea-Level Rise Impacts on Salt-Wedge Intrusion in Idealized and Neretva River Estuary. Estuar. Coast Shelf Sci. 2020, 234, 106638. [Google Scholar] [CrossRef]
- Krvavica, N.; Gotovac, H.; Lončar, G. Salt-Wedge Dynamics in Microtidal Neretva River Estuary. Reg. Stud. Mar. Sci. 2021, 43, 101713. [Google Scholar] [CrossRef]
- Srzić, V.; Lovrinović, I.; Racetin, I.; Pletikosić, F. Hydrogeological Characterization of Coastal Aquifer on the Basis of Observed Sea Level and Groundwater Level Fluctuations: Neretva Valley Aquifer, Croatia. Water 2020, 12, 348. [Google Scholar] [CrossRef] [Green Version]
- OG 66/2019; Official Gazette OG 66/2019 The Water Act. Zagreb, Croatia, 2019.
- Samborska, K.; Ulanczyk, R.; Korszu, K. Monitoring and Modelling of Water Quality. In Water Quality Monitoring and Assessment; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Romić, D.; Zovko, M.; Romić, M.; Bubalo Kovačić, M.; Reljić, M.; Ondrašek, G.; Kranjceč, F.; Maurović, N.; Igrc, M.D.; Atlija, B.; et al. Monitoring of Water and Soil Salinisation in the Neretva River Valley: 2021 Annual Report; University of Zagreb Faculty of Agriculture: Zagreb, Croatia, 2022. [Google Scholar]
- Romić, D.; Zovko, M.; Romić, M.; Bubalo Kovačić, M.; Ondrašek, G.; Srzić, V.; Vranješ, M. Monitoring of Water and Soil Salinization in the Neretva River Valley—Five-Year Project Report for the Period 2014–2018; University of Zagreb Faculty of Agriculture: Zagreb, Croatia, 2019. [Google Scholar]
- Kralj, D.; Romić, D.; Romić, M.; Cukrov, N.; Mlakar, M.; Kontrec, J.; Barišić, D.; Širac, S. Geochemistry of Stream Sediments within the Reclaimed Coastal Floodplain as Indicator of Anthropogenic Impact (River Neretva, Croatia). J. Soils Sediments 2016, 16, 1150–1167. [Google Scholar] [CrossRef]
- Rhoades, J.D. Methods of Soil Analysis. Part 3—Chemical Methods; Soil Science Society of America Inc.: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Wagner, R.J.; Boulger, R.W., Jr.; Oblinger, C.J.; Smith, B.A. Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting; U.S. Geological Survey: Reston, VA, USA, 2006.
- Maupin, T.P.; Agouridis, C.T.; Barton, C.D.; Warner, R.C. Laboratory evaluation of conductivty sensor accuracy and temporal consistency. J. Am. Soc. Min. Reclam. 2012, 2012, 359–375. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–42. [Google Scholar]
- USSL Staff. Diagnosis and Improvement of Saline and Alkali Soils; Vol. USDA Handbook No 60; USDA: Washington DC, USA, 1954.
- Hardie, M.; Doyle, R. Measuring Soil Salinity. In Plant Salt Tolerance; Humana Press: Totowa, NJ, USA, 2012; pp. 415–425. [Google Scholar]
- Rhoades, J.D.; Raats, P.A.C.; Prather, R.J. Effects of Liquid-Phase Electrical Conductivity, Water Content, and Surface Conductivity on Bulk Soil Electrical Conductivity. Soil Sci. Soc. Am. J. 1976, 40, 651–655. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Adoghe, A.U.; Popoola, S.I.; Chukwuedo, O.M.; Airoboman, A.E.; Atayero, A.A. Smart Weather Station for Rural Agriculture Using Meteorological Sensors and Solar Energy. In Proceedings of the World Congress on Engineering, London, UK, 5–7 July 2017. [Google Scholar]
- van der Grift, B.; Broers, H.P.; Berendrecht, W.; Rozemeijer, J.; Osté, L.; Griffioen, J. High-Frequency Monitoring Reveals Nutrient Sources and Transport Processes in an Agriculture-Dominated Lowland Water System. Hydrol. Earth Syst. Sci. 2016, 20, 1851–1868. [Google Scholar] [CrossRef]
- Martins, G.O.; Santos, S.S.; Esteves, E.R.; de Melo Neto, R.R.; Gomes Filho, R.R.; de Melo, A.S.; Fernandes, P.D.; Gheyi, H.R.; Soares Filho, W.S.; Brito, M.E.B. Salt Tolerance Indicators in ‘Tahiti’ Acid Lime Grafted on 13 Rootstocks. Agriculture 2022, 12, 1673. [Google Scholar] [CrossRef]
- Sun, Y.; Niu, G.; Wallace, R.; Masabni, J.; Gu, M. Relative Salt Tolerance of Seven Strawberry Cultivars. Horticulturae 2015, 1, 27–43. [Google Scholar] [CrossRef]
- Sun, G.; Zhu, Y.; Gao, Z.; Yang, J.; Qu, Z.; Mao, W.; Wu, J. Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table. Agriculture 2022, 12, 1243. [Google Scholar] [CrossRef]
- Li, D.; Liu, S. Prediction of Water Quality. In Water Quality Monitoring and Management; Elsevier: Amsterdam, The Netherlands, 2019; pp. 161–197. [Google Scholar]
- Wang, X.; Zhou, Y.; Zhao, Z.; Wang, L.; Xu, J.; Yu, J. A Novel Water Quality Mechanism Modeling and Eutrophication Risk Assessment Method of Lakes and Reservoirs. Nonlinear Dyn. 2019, 96, 1037–1053. [Google Scholar] [CrossRef]
- Ullrich, A.; Volk, M. Application of the Soil and Water Assessment Tool (SWAT) to Predict the Impact of Alternative Management Practices on Water Quality and Quantity. Agric. Water Manag. 2009, 96, 1207–1217. [Google Scholar] [CrossRef]
- Wool, T.; Ambrose, R.B.; Martin, J.L.; Comer, A. WASP 8: The Next Generation in the 50-Year Evolution of USEPA’s Water Quality Model. Water 2020, 12, 1398. [Google Scholar] [CrossRef] [PubMed]
- Gibrilla, A.; Anornu, G.; Adomako, D. Trend Analysis and ARIMA Modelling of Recent Groundwater Levels in the White Volta River Basin of Ghana. Groundw. Sustain. Dev. 2018, 6, 150–163. [Google Scholar] [CrossRef]
- Yu, Z.; Lei, G.; Jiang, Z.; Liu, F. ARIMA Modelling and Forecasting of Water Level in the Middle Reach of the Yangtze River. In Proceedings of the 2017 4th International Conference on Transportation Information and Safety (ICTIS), Banff, AB, Canada, 8–10 August 2017; pp. 172–177. [Google Scholar]
- Sheikhy Narany, T.; Aris, A.Z.; Sefie, A.; Keesstra, S. Detecting and Predicting the Impact of Land Use Changes on Groundwater Quality, a Case Study in Northern Kelantan, Malaysia. Sci. Total Environ. 2017, 599–600, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Wan, Y. Time Series Modeling and Prediction of Salinity in the Caloosahatchee River Estuary. Water Resour. Res. 2013, 49, 5804–5816. [Google Scholar] [CrossRef]
- Ghashghaie, M.; Eslami, H.; Ostad-Ali-Askari, K. Applications of Time Series Analysis to Investigate Components of Madiyan-Rood River Water Quality. Appl. Water Sci. 2022, 12, 202. [Google Scholar] [CrossRef]
- Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A Review of the Application of Machine Learning in Water Quality Evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Lange, H.; Sippel, S. Machine Learning Applications in Hydrology; Springer International Publishing: Cham, Switzerland, 2020; pp. 233–257. [Google Scholar]
- Yang, Y.; Xiong, Q.; Wu, C.; Zou, Q.; Yu, Y.; Yi, H.; Gao, M. A Study on Water Quality Prediction by a Hybrid CNN-LSTM Model with Attention Mechanism. Environ. Sci. Pollut. Res. 2021, 28, 55129–55139. [Google Scholar] [CrossRef]
- Xiscatti, L.; Dziedzic, M. Comparing Methods to Improve Reliable Sensor Deployment Time in Continuous Water Quality Monitoring. Water Supply 2020, 20, 307–318. [Google Scholar] [CrossRef]
- Wagner, R.J.; Mattraw, H.C.; Ritz, G.F.; Smith, B.A. Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting; U.S. Geological Survey: Reston, VA, USA, 2000.
- Loving, B.; Putnam, J.; Turk, D. Continuous Real-Time Water Information: An Important Kansas Resource; U.S. Geological Survey: Reston, VA, USA, 2014.
- Bamsey, M.; Graham, T.; Thompson, C.; Berinstain, A.; Scott, A.; Dixon, M. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems. Sensors 2012, 12, 13349–13392. [Google Scholar] [CrossRef]
Application | Parameter | Unit | Range | Accuracy | Resolution |
---|---|---|---|---|---|
Water quality | Temperature | °C | −5–+50 °C | ±0.5 °C | 0.01 °C |
Depth | m | ±0–60 m | ±0.5% | 0.01 m | |
pH | - | 0–14 | ±0.1 | 0.01 | |
ORP | mV | ±2000 mV | ±5 mV | 0.1 mV | |
Electrical conductivity (EC) | mS cm−1 | 0–200 mS cm−1 | ±1% | 3 Auto range scales | |
TDS | ppm | 0–100,000 ppm | ±1% | 2 Auto range scales | |
SSG | σ T | 0–50 σT | ±1 σT | 0.1 σT | |
Salinity | PSU | 0–70 PSU | ±1% | 0.01 PSU | |
Resistivity | Ω cm | 5–1,000,000 Ωcm | ±1% | 2 Auto range scales | |
Dissolved oxygen | mg L−1 (%) | 0–500% | 0–200% (1%); 200–500% (10%) | 0.1% | |
Soil salinity | Temperature | % | −40–+60 °C | ±0.5 °C (−40–0 °C) ±0.3 °C (0–+60 °C) | 0.1 °C |
Moisture | m3 m−3 | 0.00–0.70 m3 m−3 | ±0.03 m3 m−3 | 0.001 m3 m−3 | |
Electrical conductivity (ECb) | dS m−1 | 0–20 dS m−1 | ±5% + 0.01 dS m−1 (0–10 dS m−1) ±8% (10–20 dS m−1) | 0.001 dS m−1 | |
Hydrometry | Water level | mm | - | ±2 mm | 0.5 mm |
Surface water velocity | m s−1 | 0.02–15 m s−1 | 1% | 0.001 m s−1 | |
Weather | Air temperature | °C | −40–125 °C | ±0.3 °C | 0.1 °C |
Air moisture | % | 0–100% | ±2% | 0.1% | |
Wind speed | m s−1 | 0.56–55.6 m s−1 | ±5% | 1 m s−1 | |
Global radiation | W m−2 | 0–1750 W m−2 | ±5% | 1 W m−2 | |
Precipitation | mm | - | 0.2–20 mm/h ± 10% >20 mm/h ± 5–15% | 0.1 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reljić, M.; Romić, M.; Romić, D.; Gilja, G.; Mornar, V.; Ondrasek, G.; Bubalo Kovačić, M.; Zovko, M. Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta. Agriculture 2023, 13, 369. https://doi.org/10.3390/agriculture13020369
Reljić M, Romić M, Romić D, Gilja G, Mornar V, Ondrasek G, Bubalo Kovačić M, Zovko M. Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta. Agriculture. 2023; 13(2):369. https://doi.org/10.3390/agriculture13020369
Chicago/Turabian StyleReljić, Marko, Marija Romić, Davor Romić, Gordon Gilja, Vedran Mornar, Gabrijel Ondrasek, Marina Bubalo Kovačić, and Monika Zovko. 2023. "Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta" Agriculture 13, no. 2: 369. https://doi.org/10.3390/agriculture13020369
APA StyleReljić, M., Romić, M., Romić, D., Gilja, G., Mornar, V., Ondrasek, G., Bubalo Kovačić, M., & Zovko, M. (2023). Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta. Agriculture, 13(2), 369. https://doi.org/10.3390/agriculture13020369