Combined Effects of Parsnip Fermented Juice and Hawthorn Extract Regarding Pork Mince Stability: Physico-Chemical and Microbiological Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parsnip Fermented Juice (PFJ) Obtaining
2.2. Hawthorn Extract (HE) Obtaining
2.3. Experimental Setup and Preparation of Meat Samples
2.4. Physicochemical Analysis
pH Value
2.5. Chemical Analysis
2.5.1. Chromatographic Profile of Fatty Acids
Lipid Extraction and Fatty Acid Methyl Esters
Gas-chromatographic Analysis of Fatty Acid Methyl Esters
2.5.2. Thiobarbituric Acid Reactive Substances (TBARS) Value
2.5.3. Nitrosyl Hemochrome, Total Pigment Content, and the Heme Pigment Conversion Degree
2.5.4. Residual Nitrite Level
2.5.5. Volatile Basic Nitrogen (VBN) Value
2.5.6. Microbiological Analysis
2.6. Statistical Analysis
3. Results and Discussions
3.1. Physico-Chemical Analysis
pH Value
3.2. Chemical Analysis
pH Value
3.3. Thiobarbituric Acid Reactive Substances (TBARS) Value
3.4. Nitrosyl Hemochrome, Total Pigment Content, and the Heme Pigment Conversion Degree
3.5. Residual Nitrite Level
3.6. Volatile Basic Nitrogen (VBN) Value
3.7. Microbiological Analysis
3.8. Correlations between Analysed Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amaral, A.B.; Silva, M.V.; Lannes, S.C. Lipid oxidation in meat: Mechanisms and protective factors—a review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Nychas, G.J.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef]
- Dave, D.; Ghaly, A.E. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar] [CrossRef]
- Papuc, C.; Predescu, C.N.; Tudoreanu, L.; Nicorescu, V.; Gâjâilă, I. Comparative study of the influence of hawthorn (Crataegus monogyna) berry ethanolic extract and butylated hydroxyanisole (BHA) on lipid peroxidation, myoglobin oxidation, consistency and firmness of minced pork during refrigeration. J. Sci. Food Agric. 2018, 98, 1346–1361. [Google Scholar] [CrossRef]
- Chen, C.; Pearson, A.M.; Gray, J.I. Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chem. 1992, 43, 177–183. [Google Scholar] [CrossRef]
- Kahl, R.; Kappus, H. Toxikologie der synthetischen Antioxidantien BHA und BHT im Vergleich mit dem natürlichen Antioxidans Vitamin E [Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E]. Z Leb. Unters. 1993, 196, 329–338. (In German) [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Karwowska, M.; Stadnik, J.; Wójciak, K. The Effect of Different Levels of Sodium Nitrate on the Physicochemical Parameters and Nutritional Value of Traditionally Produced Fermented Loins. Appl. Sci. 2021, 11, 2983. [Google Scholar] [CrossRef]
- Sindelar, J.J.; Cordray, J.C.; Sevranek, J.G.; Love, J.A.; Ahn, D.J. Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham. J. Food Sci. 2007, 72, S388–S395. [Google Scholar] [CrossRef]
- Hossain, M.; Brunton, N.; Barry-Ryan, C.; Martin-Diana, A.; Wilkinson, M. Antioxidant Activity of Spice Extracts and Phenolics in Comparison to Synthetic Antioxidants. Rasayan J. Chem. 2008, 1, 751–756. [Google Scholar] [CrossRef]
- Terns, M.J.; Milkowski, A.L.; Rankin, S.A.; Sindelar, J.J. Determining the impact of varying levels of cherry powder and starter culture on quality and sensory attributes of indirectly cured, emulsified cooked sausages. Meat Sci. 2011, 88, 311–318. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Kim, T.K.; Kim, Y.B.; Jeon, K.H.; Park, J.D.; Sung, J.M.; Choi, H.W.; Hwang, K.E.; Choi, Y.S. Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin. Korean J. Food Sci. Anim. Resour. 2017, 37, 105–113. [Google Scholar] [CrossRef]
- Uzombah, T.A. The Implications of Replacing Synthetic Antioxidants with Natural Ones in the Food Systems. In Natural Food Additives; Prieto, M.A., Otero, P., Eds.; IntechOpen: London, UK, 2022; Available online: https://www.intechopen.com/chapters/81679 (accessed on 12 November 2022).
- Yong, H.I.; Kim, T.K.; Choi, H.D.; Jang, H.W.; Jung, S.; Choi, Y.S. Clean Label Meat Technology: Pre-Converted Nitrite as a Natural Curing. Food Sci. Anim. Resour. 2021, 41, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Predescu, C.N.; Papuc, C.; Nicorescu, V.; Dobrea, M. Optimization of fermentation parameters for vegetable juices with nitrate content to obtain natural nitrite. Sci. Pap. Vet. Med. 2015, 58, 76–82. [Google Scholar]
- Association of Official Analytical Chemists Official. Methods of Analysis. In 973.31 Nitrites in Cured Meat; Colorimetric method; Association of Official Analytical Chemists: Arlington, TX, USA, 1990. [Google Scholar]
- Singleton, V.L.; Rosi, J.A. Colorimetric of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Song, Y.; Liu, L.; Shen, H.; You, J.; Luo, Y. Effect of sodium alginate-based edible coating containing different antioxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control. 2011, 22, 608–615. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, Y.; Simşek, A.; Balikçi, E.; Kenar, M. The effects of extraction methods on the contents of fatty acids, especially EPA and DHA in marine lipids. Int. J. Food Sci. Nutr. 2012, 63, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, J.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Hornsey, H.C. The color of cooked cured pork. I. Estimation of the nitric oxide-haem pigments. J. Sci. Food Agri. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- American Meat Science Association. AMSA Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL USA, 2012. [Google Scholar]
- Kohsaka, K. Freshness preservation of food and measurement. Food Ind. 1975, 18, 105–111. [Google Scholar]
- AOAC. Official Methods of Analysis: Association of Official Analytical Chemists International; AOAC: Gaithersburg, MD, USA, 2002; Volume 1, pp. 4–5. [Google Scholar]
- Yang, C.C.; Chen, T.C. Effects of Refrigerated Storage, pH Adjustment, and Marinade on Color of Raw and Microwave Cooked Chicken Meat. Poult. Sci. 1993, 72, 355–362. [Google Scholar] [CrossRef]
- Stanišić, N.; Petričević, M.; Živković, D.; Petrović, M.M.; Ostojić-Andrić, D.; Aleksić, S.; Stajić, S. Changes of physical-chemical properties of beef during 14 days of chilling. Biotech. Anim. Husb. 2012, 28, 77–85. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef]
- Garcia -Lopez, M.L.; Prieto, M.; Otero, A. The physiological attributes of Gram-negative bacteria associated with spoilage of meat and meat products. In The Microbiology of Meat and Poultry; Davies, A., Board, R., Eds.; Blackie Academic and Professional: London, UK, 1998; pp. 1–34. [Google Scholar]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Ital. J. Anim. Sci. 2015, 14, 4011. [Google Scholar] [CrossRef]
- Buckley, D.J.; Morrissey, P.A.; Gray, J.I. Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 1995, 73, 3122–3130. [Google Scholar] [CrossRef]
- Morrissey, P.A.; Sheehy, P.J.A.; Galvin, K.; Kerry, J.P.; Buckley, D.J. Lipid stability in meat and meat products. Meat Sci. 1998, 49, S73–S86. [Google Scholar] [CrossRef]
- Estévez, M.; Cava, R. Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. Meat Sci. 2004, 68, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Bertol, T.M.; Fiorentini, A.M.; dos Santos, M.J.H.; Sawitzki, M.C.; Kawski, V.L.; Agnes, I.B.L.; Costa, C.D.; Coldebella, A.; dos Santos Lopes, L. Rosemary extract and celery-based products used as natural quality enhancers for colonial type salami with different ripening times. Food Sci. Technol. 2012, 32, 783–792. [Google Scholar] [CrossRef]
- Ganhão, R.; Estévez, M.; Armenteros, M.; Morcuende, D. Mediterranean Berries as Inhibitors of Lipid Oxidation in Porcine Burger Patties Subjected to Cooking and Chilled Storage. J. Integr. Agric. 2013, 12, 1982–1992. [Google Scholar] [CrossRef]
- Sheard, P.R.; Enser, M.; Wood, J.D.; Nute, G.R.; Gill, B.P.; Richardson, R.I. Shelf life and quality of pork and pork products with raised n-3 PUFA. Meat Sci. 2000, 55, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.D.; Geesink, G.H.; Ilian, M.A.; Morton, J.D.; Bickerstaffe, R. The effects of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties. Food Chem. 2003, 81, 175–187. [Google Scholar] [CrossRef]
- Richards, M.P. Redox Reactions of Myoglobin. Antioxid Redox Signal. 2013, 18, 2342–2351. [Google Scholar] [CrossRef]
- Yu, C.; Jiao, J.; Ma, L.; Sun, W. Effect of pH on the stability and molecular structure of nitrosyl hemochromogen. Food Chem. 2016, 196, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Takahama, U.; Hirota, S. Possible Reactions of Dietary Phenolic Compounds with Salivary Nitrite and Thiocyanate in the Stomach. Antioxidants 2017, 6, 53. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Fox, J.B., Jr. Rate of nitric oxide formation from nitrite as affected by chloride ion concentration. J. Muscle Foods 1991, 2, 11–20. [Google Scholar] [CrossRef]
- Fox, J.B., Jr.; Sebranek, J.G.; Phillips, J.G. Kinetic analylsis of the formation of nitrosylmyoglobin. J. Muscle Foods 1994, 5, 15–25. [Google Scholar] [CrossRef]
- Cassens, R.G.; Ito, T.; Lee, M.; Buege, D. The Use of Nitrite in Meat. BioScience 1978, 28, 633–637. [Google Scholar] [CrossRef]
- Christiansen, L.N.; Johnston, R.W.; Kaurter, D.A.; Howard, J.W.; Aunan, W.J. Effect of Nitrite and Nitrate on Toxin Production by Clostridium botulinum and on Nitrosamine Formation in Perishable Canned Comminuted Cured Meat. Appl. Microbiol. 1973, 25, 357–362. [Google Scholar] [CrossRef]
- Merino, L.; Darnerud, P.O.; Toldrá, F.; Ilbäck, N.G. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2016, 33, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Izumi, K. Reaction of Nitrite with Ascorbic Acid or Ascorbic Acid-2-Derivatives. J. Food Sci. 1992, 57, 1066–1067. [Google Scholar] [CrossRef]
- Izumi, K.; Cassens, R.G.; Marion, L.G. Reaction of nitrite with ascorbic acid and its significant role in nitrite-cured food. Meat Sci. 1989, 26, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Fernández-López, J.; Sayas-Barbera, E.; Sendra, E.; Navarro, C.; Pérez-Álvarez, J. Citrus Co-Products as Technological Strategy to Reduce Residual Nitrite Content in Meat Products. J. Food Sci. 2009, 74, R93–R100. [Google Scholar] [CrossRef] [PubMed]
- Lui, F.; Dai, R.; Zhu, J.; Li, X. Optimizing color lipid stability of beef patties with a mixture design incorporating with tea catechins, carnosine, and a-tocopherol. J. Food Eng. 2010, 98, 170–177. [Google Scholar]
- Abu-Salem, F.M.; Abou-Arab, E.A.; Ibrahim, H.M.; Abou-Arab, A.A. Effect of adding green tea extract thyme oil and/or their combination to luncheon roll meat during refrigerate storage. J. Am. Sci. 2011, 7, 538–548. [Google Scholar]
- Tanwisuit, N.; Peuchkamut, Y. Factors affecting residual nitrite content analysis by spectrophotometers and reduction by meat seasoning in vitro. In Proceedings of the 12th Asean Food Conference, Bangkok, Thailand, 16–18 June 2011; pp. 575–579, BITEC Rangna; PF-26. [Google Scholar]
- Mendes, R.; Pestana, C.; Gonçalves, A. The effects of soluble gas stabilization on the quality of packed sardine fillets (Sardina pilchardus) stored in air, VP and MAP. Int. J. Food Sci. Technol. 2008, 43, 2000–2009. [Google Scholar] [CrossRef]
- Özyurt, G.; Kuley, E.; Özkütük, S.; Özogul, F. Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. Food Chem. 2009, 114, 505–510. [Google Scholar] [CrossRef]
- Fraser, O.P.; Sumar, S. Compositional changes and spoilage in fish (part II)—Microbiological induced deterioration. Nutr. Food Sci. 1998, 98, 325–329. [Google Scholar] [CrossRef]
- Wenjiao, F.; Yongkui, Z.; Pan, D.; YuWen, Y. Effects of chitosan coating containing antioxidant of bamboo leaves on qualitative properties and shelf life of silver carp during chilled storage. Czech J. Food Sci. 2013, 31, 451–456. [Google Scholar] [CrossRef]
- Djeri, N.; Williams, S.K. Celery juice powder used as nitrite substitute in sliced vacuum-packaged turkey bologna stored at 4C for 10 weeks under retail display light. J. Food Qual. 2014, 37, 361–370. [Google Scholar] [CrossRef]
Additives | SN (ppm NO2−) | SA (ppm) | PFJ (ppm NO2−) | HE (ppm GAE) | |
---|---|---|---|---|---|
Treatments | |||||
NC | 0 | 0 | 0 | 0 | |
PC | 100 | 50 | 0 | 0 | |
T1 | 0 | 0 | 100 | 0 | |
T2 | 0 | 0 | 100 | 50 | |
T3 | 0 | 0 | 100 | 25 | |
T4 | 0 | 0 | 100 | 10 |
Days | Treatments | Main Effects | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | Time | p Values | ||||||||||
NC | PC | T1 | T2 | T3 | T4 | NC | 5.788 a | 0 | 5.460 c | Treatments | <0.0001 | |
0 | 5.52 a | 5.40 b | 5.43 ab | 5.45 ab | 5.47 ab | 5.49 ab | PC | 5.495 d | 3 | 5.492 c | Time | <0.0001 |
3 | 5.59 a | 5.43 b | 5.45 b | 5.47 b | 5.49 b | 5.52 ab | T1 | 5.628 b | 6 | 5.625 b | Treatments × time | <0.0001 |
6 | 5.81 a | 5.47 c | 5.7 b | 5.51 c | 5.55 c | 5.71 b | T2 | 5.533 d | 9 | 5.867 a | ||
9 | 6.23 a | 5.68 d | 5.93 b | 5.7 d | 5.81 c | 5.85 bc | T3 | 5.580 c | ||||
T4 | 5.643 b |
Fatty Acid 1 | NC | PC | T1 | T2 | T3 | T4 | SEM | p Value |
---|---|---|---|---|---|---|---|---|
(g/100 g) | ||||||||
C8:0 | 0.18 ab | 0.17 abc | 0.19 a | 0.16 bc | 0.14 c | 0.16 abc | 0.006 | 0.0001 |
C10:0 | 0.18 a | 0.17 b | 0.18 ab | 0.17 b | 0.05 c | 0.17 b | 0.007 | <0.0001 |
C12:0 | 0.10 cd | 0.11 d | 0.14 a | 0.11 d | 0.13 bc | 0.14 ab | 0.005 | <0.0001 |
C14:0 | 1.72 c | 0.75 b | 1.68 a | 1.66 a | 1.68 a | 1.67 a | 0.014 | <0.0001 |
C15:0 | 0.17 a | 0.17 a | 0.11 b | 0.17 a | 0.11 b | 0.07 c | 0.010 | <0.0001 |
C15:1 | 0.07 bc | 0.08 ab | 0.07 bc | 0.10 a | 0.05 c | 0.06 bc | 0.008 | 0.0001 |
C16:0 | 23.94 b | 23.35 f | 24.35 a | 23.44 e | 23.66 c | 23.58 d | 0.021 | <0.0001 |
C16:1 | 3.67 a | 3.39 c | 3.58 b | 3.59 b | 2.73 e | 3.08 d | 0.016 | <0.0001 |
C17:0 | 0.18 c | 0.19 bc | 0.22 b | 0.19 bc | 0.26 a | 0.20 bc | 0.010 | <0.0001 |
C17:1 | 0.20 a | 0.19 a | 0.19 a | 0.18 ab | 0.04 c | 0.15 b | 0.011 | <0.0001 |
C18:0 | 10.61 a | 10.13 c | 10.40 b | 10.20 c | 10.42 b | 10.32 bc | 0.062 | <0.0001 |
C18:1 | 44.67 b | 44.6 c | 44.79 a | 44.75 a | 44.58 c | 44.45 d | 0.021 | <0.0001 |
C18:2n−6 | 12.21 d | 13.80 a | 12.24 d | 12.99 c | 13.52 b | 13.52 b | 0.044 | <0.0001 |
C18:3n−6 (γ) | 0.14 b | 0.22 a | 0.16 b | 0.17 b | 0.20 a | 0.20 a | 0.009 | <0.0001 |
C18:3n−3(α) | 0.54 c | 0.71 a | 0.55 c | 0.55 c | 0.65 ab | 0.60 bc | 0.021 | <0.0001 |
C20:2n−6 | 0.64 a | 0.56 b | 0.43 d | 0.49 cd | 0.54 bc | 0.46 d | 0.082 | <0.0001 |
C20:3n−6 | 0.45 bc | 0.57 a | 0.30 d | 0.50 b | 0.46 bc | 0.43 c | 0.017 | <0.0001 |
C20:4n−6 | 0.43 c | 0.72 a | 0.39 d | 0.52 b | 0.7 a | 0.69 a | 0.014 | <0.0001 |
Others fatty acids | 0.08 a | 0.07 a | 0.03 b | 0.06 ab | 0.03 b | 0.05 ab | 0.008 | 0.001 |
∑FA | 100 | 100 | 100 | 100 | 100 | 100 | - | - |
∑SFA | 40.98 d | 35.04 e | 35.71 a | 36.10 c | 36.46 b | 36.31 bc | 0.037 | <0.0001 |
∑MUFA | 44.61 a | 48.26 b | 48.63 a | 48.62 a | 47.40 d | 47.74 c | 0.038 | <0.0001 |
∑PUFA | 14.41 e | 16.67 a | 14.30 f | 15.22 d | 16.12 b | 15.90 c | 0.060 | <0.0001 |
Days | Treatments | Main Effects | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | Time | p Values | ||||||||||
NC | PC | T1 | T2 | T3 | T4 | NC | 0.845 a | 0 | 0.123 b | Treatments | <0.0001 | |
0 | 0.121 a | 0.122 a | 0.121 a | 0.130 a | 0.122 a | 0.121 a | PC | 0.198 e | 3 | 0.328 a | Time | <0.0001 |
3 | 0.650 a | 0.17 d | 0.45 b | 0.27 c | 0.16 d | 0.27 c | T1 | 0.523 b | 6 | 0.632 d | Treatments × time | <0.0001 |
6 | 1.340 a | 0.22 e | 0.87 b | 0.65 c | 0.27 e | 0.44 d | T2 | 0.373 c | 9 | 0.557 c | ||
9 | 1.27 a | 0.28 e | 0.65 b | 0.44 c | 0.35 d | 0.35 d | T3 | 0.226 e | ||||
T4 | 0.295 d |
Treatments | NO-Heme (ppm Hematin Acid) | Total Heme (ppm Hematin Acid) | Heme Pigment Conversion Degree (%) |
---|---|---|---|
0 days | |||
NC | 0.00 c | 121.23 | 0.00 c |
PC | 26.23 a | 120.99 | 21.68 a |
T1 | 20.50 b | 121.45 | 16.87 b |
T2 | 26.20 a | 123.09 | 21.30 a |
T3 | 26.00 a | 121.40 | 21.41 a |
T4 | 25.89 a | 120.97 | 21.42 a |
3 days | |||
NC | 0.00 d | 120.46 | 0.00 c |
PC | 44.60 a | 120.90 | 36.68 a |
T1 | 26.70 c | 123.77 | 21.76 b |
T2 | 30.50 b | 123.09 | 23.99 b |
T3 | 30.70 b | 121.41 | 24.47 b |
T4 | 27.98 bc | 121.56 | 23.02 b |
6 days | |||
NC | 0.00 e | 119.00 b | 0.00 e |
PC | 55.60 a | 120.35 ab | 46.11 a |
T1 | 32.5 d | 123.56 a | 26.31 d |
T2 | 45.81 b | 122.67 ab | 37.34 b |
T3 | 43.21 bc | 120.50 ab | 34.70 bc |
T4 | 40.76 c | 121.67 ab | 33.50 c |
9 days | |||
NC | 0.00 d | 118.00 | 0.00 d |
PC | 60.50 ab | 119.30 | 50.71 ab |
T1 | 38.45 c | 120.15 | 32.00 c |
T2 | 63.50 a | 120.75 | 52.58 a |
T3 | 43.21 ab | 119.50 | 50.79 ab |
T4 | 40.76 b | 119.59 | 47.99 b |
Main effects | |||
Treatments | |||
NC | 0.000 e | 119.672 c | 0.000 e |
PC | 46.733 a | 120.438 bc | 38.794 a |
T1 | 29.540 d | 121.482 ab | 24.235 d |
T2 | 41.503 b | 122.400 a | 33.803 b |
T3 | 40.153 b | 120.703 abc | 32.843 bc |
T4 | 38.008 c | 120.950 abc | 31.482 c |
Time | |||
0 | 20.803 d | 121.522 a | 17.113 d |
3 | 26.747 c | 121.364 a | 21.653 c |
6 | 36.315 b | 121.327 a | 29.660 b |
9 | 46.758 a | 119.550 b | 39.012 a |
p value | |||
Diet | <0.0001 | 0.001 | <0.0001 |
Time | <0.0001 | 0.0001 | <0.0001 |
Diet × time | <0.0001 | 0.769 | <0.0001 |
Treatments | Residual Nitrite Level (ppm) | Volatile Basic Nitrogen (VBN) mg% |
---|---|---|
0 days | ||
NC | 0.00 b | 12.89 |
PC | 99.67 a | 12.82 |
T1 | 99.33 a | 12.89 |
T2 | 98.67 a | 12.84 |
T3 | 100.00 a | 12.81 |
T4 | 98.33 a | 12.88 |
3 days | ||
NC | 0.00 e | 23.55 a |
PC | 20.30 c | 16.84 c |
T1 | 80.50 a | 19.89 b |
T2 | 13.50 d | 17.87 bc |
T3 | 25.60 c | 18.02 bc |
T4 | 33.50 b | 20.10 b |
6 days | ||
NC | 0.00 d | 30.45 a |
PC | 16.00 c | 18.86 c |
T1 | 75.00 a | 23.78 b |
T2 | 10.50 c | 10.87 bc |
T3 | 15.50 c | 21.17 bc |
T4 | 23.00 b | 21.70 bc |
9 days | ||
NC | 0.00 d | 46.7 a |
PC | 10.00 bc | 20.11 d |
T1 | 69.00 a | 33.70 b |
T2 | 5.80 c | 22.39 cd |
T3 | 13.50 b | 24.50 c |
T4 | 14.00 b | 31.80 b |
Main effects | ||
Treatment | ||
NC | 0.000 e | 28.398 a |
PC | 36.492 c | 17.158 d |
T1 | 80.958 a | 22.565 b |
T2 | 32.117 d | 18.493 c |
T3 | 38.650 c | 19.125 c |
T4 | 42.208 b | 21.620 b |
Time | ||
0 | 82.667 a | 12.855 d |
3 | 28.900 b | 19.378 c |
6 | 23.333 c | 22.805 b |
9 | 18.717 d | 29.867 a |
p value | ||
Diet | <0.0001 | <0.0001 |
Time | <0.0001 | <0.0001 |
Diet × time | <0.0001 | <0.0001 |
Days | Treatments | Main Effects | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | Time | p Values | ||||||||||
NC | PC | T1 | T2 | T3 | T4 | NC | 7.325 a | 0 | 2.687 d | Treatments | <0.0001 | |
0 | 2.77 | 2.67 | 2.67 | 2.75 | 2.6 | 2.66 | PC | 3.863 d | 3 | 4.143 c | Time | <0.0001 |
3 | 5.2 a | 2.87 c | 4.66 a | 3.34 bc | 4.22 ab | 4.57 a | T1 | 5.945 b | 6 | 5.890 b | Treatments × time | <0.0001 |
6 | 8.22 a | 4.11 e | 6.89 b | 4.56 de | 5.55 cd | 6.01 bc | T2 | 4.358 d | 9 | 8.400 a | ||
9 | 13.11 a | 5.8 d | 9.56 b | 6.78 cd | 7.2 c | 7.95 c | T3 | 4.893 c | ||||
T4 | 5.298 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Predescu, C.N.; Papuc, C.; Stefan, G.; Tașbac, B.; Temocico, G.; Sărăcilă, M.; Untea, A.E. Combined Effects of Parsnip Fermented Juice and Hawthorn Extract Regarding Pork Mince Stability: Physico-Chemical and Microbiological Aspects. Agriculture 2023, 13, 432. https://doi.org/10.3390/agriculture13020432
Predescu CN, Papuc C, Stefan G, Tașbac B, Temocico G, Sărăcilă M, Untea AE. Combined Effects of Parsnip Fermented Juice and Hawthorn Extract Regarding Pork Mince Stability: Physico-Chemical and Microbiological Aspects. Agriculture. 2023; 13(2):432. https://doi.org/10.3390/agriculture13020432
Chicago/Turabian StylePredescu, Corina Nicoleta, Camelia Papuc, Georgeta Stefan, Bogdan Tașbac, Georgeta Temocico, Mihaela Sărăcilă, and Arabela Elena Untea. 2023. "Combined Effects of Parsnip Fermented Juice and Hawthorn Extract Regarding Pork Mince Stability: Physico-Chemical and Microbiological Aspects" Agriculture 13, no. 2: 432. https://doi.org/10.3390/agriculture13020432
APA StylePredescu, C. N., Papuc, C., Stefan, G., Tașbac, B., Temocico, G., Sărăcilă, M., & Untea, A. E. (2023). Combined Effects of Parsnip Fermented Juice and Hawthorn Extract Regarding Pork Mince Stability: Physico-Chemical and Microbiological Aspects. Agriculture, 13(2), 432. https://doi.org/10.3390/agriculture13020432